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Supplementary Figure 1. ANOVA Main Effect of Sex. a. Summed one-way ANOVA F-statistics
representing main effect of sex on rsFC with 77 default mode network (DMN) ROls for each of 360
HCPMM1 ROIs plotted on a brain surface. All effects plotted are significant with FDR g<0.05. b.
Significant (unadj. p<0.05) t-statistics representing rsFC effects associated with female sex in healthy

subjects. ¢. Significant (unadj. p<0.05) t-statistics representing rsFC effects associated with female sex in
subjects with MDD.
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Supplementary Figure 2. Two-tailed t-test Results Pre- and Post- ComBat Harmonization. To
ensure that the ComBat Harmonization technique was not introducing significant artifactual effects in our
analysis, we compared the results of (a) male and (b) female MDD vs healthy control t-tests at each of
26,180 unique connectivity features between 77 DMN nodes (in rows) and 360 HCPMM1 and 19
freesurfer subcortical regions (in columns) before ComBat harmonization (top panels) using only subjects
from the Toronto dataset (h=148 male MDD, n=33 male HC, n=223 female MDD, n=52 female HC) who
were scanned in the same scanner with the same protocol, and after ComBat Harmonization using 553
subjects from two sites. Pre- and post- ComBat harmonization t-statistics were correlated over 26,180
connectivity features in each sex, resulting in Pearson correlations of 0.89 for males, and 0.88 for
females, indicating a high degree of concordance in the direction of MDD-related effects. Qualitatively,
sex-specific results highlighted in this paper, including male-specific DMN hyperconnectivity, are present
regardless of ComBat harmonization.
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Supplementary Figure 3. Effects of MDD history and sex on DMN rsFC in UK Biobank subjects.
Plots depicting rsFC between ICA-nodes restricted to DMN regions, described in Fig. 2f, in four groups of
UK BioBank subjects: Male MDD Hx, males with a probable history of MDD (n=537); Male HC, healthy
males (n=1907); female MDD Hx, females with a probable history of MDD (n=921); female HC, healthy
females (n=1773). Warm colors denote increased connectivity in subjects with probable MDD history
compared to controls (a-b) or in women compared to men (c-d).
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Supplementary Figure 4. Sex-specific rsFC effects at five transcriptionally-defined ROIs. a-b. For a
given seed region (green circles, labeled in rows), two-way ANOVA (factors = MDD status, sex, n=553)
was performed at each rsFC feature associated with an brain parcel within that seed region, and F-
statistics representing significant (p<0.05) (a.) main effects of MDD and (b.) MDD-sex interaction effects
were meaned over brain parcels participating in each seed region and plotted on a brain surface. Regions
with FDR g<0.05 effects are outlined in green. ¢. Brain spatial map of p-values representing the percentile
of the correlation between male and female depression effects on rsFC (t-stat via two-tailed t-test) in a
null distribution of 1,000 correlations of depression effects on rsFC between two randomly assigned sub-
groups of subjects (i.e. not aligned with sex). Male-female correlations below the fifth percentile (p<0.05)

are highlighted by black borders.
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Supplementary Figure 5. Gene-Neuroimaging Partial Least Squares Regression Score
Correlations. For 10 PLS-R models at five seed regions (columns) in females (top panels) and in males
(bottom panels), Pearson correlation coefficients between PLS-R component loading scores are shown
above scatter-plots indicating how well PLS-R Gene component scores (x-axes) can predict MDD effects
on rsFC (y-axes). Each dot in the scatter plot represents a cortical region in the HCPMM?1 parcellation.
Significance was assessed for each of the 10 PLS-R models using both a random spatial permutation test
and a random spatial rotation “spin” test (described in Methods). Associated p-values (prand and pspin,
respectively) are plotted below each scatter plot, with non-significant p-values in red. All p-values are
adjusted for multiple comparisons using the Benjamini-Hochberg FDR correction approach (see

Methods).
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Supplementary Figure 6. Spearman correlation of loading weights across 21,120 genes in six PLS
models from (Fig. 4f-g).
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Supplementary Figure 7. PLS-R Models trained on AHBA and Brainspan gene expression data
show convergent results on enrichment of depression-related gene sets. a. f{GSEA results for
differentially expressed genes in depression using loading weight-ranked gene lists derived from PLS
analysis with gene predictors derived from AHBA (top) and Brainspan (bottom) datasets. In all four PLS
models shown, genes predicting the spatial distribution of connectivity abnormalities in MDD are enriched
for genes that show increased (green) or decreased (red) expression in brain tissue donated by MDD
subjects of the corresponding sex. f{GSEA-generated normalized enrichment scores (x-axis), p-values
(plotted in each bar), and adjusted p-values (darkened bar color if FDR q<0.05) are plotted. Negative
enrichment scores denote enrichment among genes with negative LWs in the PLS regression model, and
positive enrichment scores denote enrichment among genes with positive LWs. b. f{GSEA results for
depression-related risk genes as defined in the DisGeNet database using loading weight-ranked gene
lists derived from PLS analysis in AHBA (top) and Brainspan (bottom) datasets. ¢. f{GSEA results for
genes whose nervous tissue expression is modulated by significant SNPs from the most recent large-
scale GWAS for depression using loading weight-ranked gene lists derived from PLS analysis in AHBA
(top) and Brainspan (bottom) datasets. Full listing of genes in all gene sets can be found in
Supplementary Table 3.
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Supplementary Figure 8. PLS-R Models trained on AHBA and Brainspan gene expression data
show convergent results on enrichment of sex-biased gene sets. a. f{GSEA results for genes
differentially expressed between males and females during development’ (i.e. 4 post-conception weeks —
20 years old) using loading weight-ranked gene lists derived from PLS analysis with gene predictors
derived from AHBA (top) and Brainspan (bottom) datasets. In all four PLS models shown, genes
predicting the spatial distribution of connectivity abnormalities in MDD are enriched for genes that show
decreased (light blue) expression in brain tissue donated by female subjects in one or both datasets.
fGSEA-generated normalized enrichment scores (x-axis), p-values (plotted in each bar), and adjusted p-
values (darkened bar color if FDR g<0.05) are plotted. Negative enrichment scores denote enrichment
among genes with negative LWs in the PLS regression model, and positive enrichment scores denote
enrichment among genes with positive LWs. b. f{GSEA results for genes differentially expressed between
males and females during adulthood? (i.e. >20 years old) using loading weight-ranked gene lists derived
from PLS analysis in AHBA (top) and Brainspan (bottom) datasets. Full listing of genes in all gene sets
can be found in Supplementary Table 3.
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Supplementary Figure 9. PLS-R Models trained on AHBA gene expression data show enrichment
of gene sets related to depression, neuropsychiatric disorders, and hypertension. f{GSEA results
for disease-related genes for 10 diseases (in rows of each panel) defined in the DisGeNet database using
loading weight-ranked gene lists derived from PLS models trained on AHBA gene expression data to
predict depression-related connectivity changes in females at the BA25 seed (top left), in females at the
NAc seed (top right), in males at the BA25 seed (bottom left), in males at the BA8/9 seed (bottom right).
Horizontal bars depict {GSEA normalized enrichment scores for each gene set in loading-weight-ranked
gene lists from each PLS model. Raw fGSEA p-values for each gene set in each PLS model are depicted
inside horizontal bars. Gene sets that were significantly enriched after Bonferroni correction (adjusted
p<0.05) are highlighted with boldened horizontal bars.
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Supplementary Figure 10. Over-representation of Gene Ontologies in Highly Significant PLS-R
Models Across Both Sexes. Top 10 most significant Gene Ontology Biological Process terms enriched
among the (a,c) most positively- and (b,d) most negatively-weighted genes from the six PLS models from
(Fig. 4f-g). FDR g-values representing significance of enrichment of genes from a given GO term in a
given loading weight-ranked gene list are plotted in colors, with grey-to-white gradients representing g-
values >0.05 and white-to-red or white-to-blue gradients representing significant g-values <0.05. GO
enrichment analyses were carried out using two techniques to test for convergent enrichments: GOrilla
(http://cbl-gorilla.cs.technion.ac.il/) (a-b) and a spatial brain permutation null phenotype® (c-d). GO terms
were manually colored by their involvement in 3 broad categories: neuronal signaling (blue),
neurodevelopment (green), and immune function (red).
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Supplementary Figure 11. Similarities in male and female brain gene expression patterns from
Brainspan data. a. Brain gene expression patterns from the same sex do not explain greater variance in
depression-related rsFC changes than do brain gene expression patterns from the opposite sex or both
sexes. b. Correlation of each gene’s spatial expression pattern between male and female brain gene
expression matrices derived from Brainspan data. 20,287 genes were tested in total. c. Gene loading
scores based on genes identified by PLS using Allen Human Brain Atlas are similar in male (n=4) and
female (n=4) brain gene expression matrices derived from Brainspan data.



# Subjects Mean Age + SD | Mean HAM-D
Score = SD
ThreeD Data Set
Depressed 371 4191114 23.6+44
Male 148 41.9+11.9 23.2+4.38
Female 223 419+ 11.1 23.8+4.3
Healthy 85 35.1+£13.0 N/A
Male 33 33.3+123 N/A
Female 52 36.2+134 N/A
fc1000 Data Set
Healthy 97 43.6 +16.2 N/A
Male 46 44.0 £ 14.0 N/A
Female 51 43.2 +18.1 N/A

Supplementary Table 1: Subject Profile. Subjects came from four scanner sites; “ThreeD” (Toronto)
and three sites from the “fc1000” dataset (“ICBM”, “NewYork_a”, and “Cleveland CCF”). Number of
subjects included in rsfMRI analysis, mean age, and mean Hamilton Depression Rating Score with
standard deviations are shown for subjects grouped by sex and diagnosis from each dataset.
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