Specific phosphorylation of microtubule-associated protein 2c by extracellular signal-regulated kinase reduces interactions at its Pro-rich regions

Jitka Plucarová^{1,2}, Séverine Jansen², Subhash Narasimhan^{1,2}, Alice Laníková^{1,2}, Marc Lewitzky³, Stephan M. Feller³ and Lukáš Žídek^{1,2}

From the ¹National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic, ²Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic, ³Institute of Molecular Medicine, Martin-Luther-University Halle-Wittenberg, Halle, Germany

Running title: MAP2c phosphorylation by ERK2

To whom correspondence should be addressed: Lukáš Žídek, phone: +420 54949 8393, fax: +420 54949 2556, lzidek@chemi.muni.cz

Keywords: microtubule-associated protein (MAP), extracellular signal-regulated kinase (ERK), cyclindependent kinase (CDK), Src homology 3 domain (SH3 domain), protein kinase A (PKA), nuclear magnetic resonance (NMR), growth factor receptor-bound protein 2 (GRB2)

CONTENTS

Table <mark>S1</mark>	Chemical shifts of MAP2c residues phosphorylated by ERK and CDK2
Table <mark>S2</mark>	List of primers used
Figure <mark>S1</mark>	Microscale Thermophoresis of MAP2c and ERK2
Figure <mark>S2</mark>	Initial kinetics of phosphorylation of ¹⁵ N-MAP2c by ERK2 and CDK2
Figure <mark>S3</mark>	Phosphorylation kinetics by ERK2 of MAP2c after prior phopshorylation by
	PKA, GSK3 β and CDK2
Figure <mark>S4</mark>	Phosphorylation kinetics by ERK2 of MAP2c-1–159 and MAP2c-159–255
	without D-docking sites
Figure <mark>S5</mark>	Phosphorylation of MAP2c by PKA after prior phosphorylation by ERK2
Figure <mark>S6</mark>	Microscale Thermophoresis of MAP2c and Fyn-SH3 and Abl-SH3
Figure <mark>S7</mark>	Dephosphorylation of MAP2c phosphorylated by ERK in neuroblastoma cell
	extract
Figure <mark>S8</mark>	Phosphorylation of MAP2c-S435D and MAP2c-S140D in neuroblastoma cell
	extract

TABLES

Table S1: ${}^{15}N/{}^{1}H$ Chemical shifts of phosphorylated serines and threonines in samples of ${}^{15}N$ -MAP2c phosphorylated by ERK2 and CDK2 for 20 hours. For phosphorylated residues clustered in the sequence, phosphorylated neighbor residues that influence the position of the peak are indicated in parenthesis. *np* indicate that the residue is not phosphorylated by the respective kinase. Unassigned peaks are labled as *nd*.

Residue	Unphosphorylated		ERK2		CDK2	
	¹⁵ N	$^{1}\mathbf{H}$	¹⁵ N	$^{1}\mathbf{H}$	¹⁵ N	$^{1}\mathbf{H}$
Ser028	118.653	8.211	120.111	8.725	119.992	8.710
Ser136	117.533	8.328	118.810	8.712	118.719	8.700
Ser140	117.401	8.370	118.715	8.751	118.645	8.743
Ser178	118.841	8.358	120.580	8.848	120.414	8.835
Thr235	118.495	8.212	122.909	9.142	122.912	9.147
Thr238	118.645	8.168	120.244	8.664	120.295	8.658
Thr238(Thr235)	-	-	nd	nd	119.864	8.618
Thr238(Ser241)	-	-	120.975	8.724	np	np
Ser241	115.314	8.138	117.193	8.904	np	np
Thr245	121.410	8.271	123.783	8.879	123.792	8.885
Thr248	116.811	7.989	119.565	8.893	121.157	8.995
Thr248(Thr245)	-	-	120.736	8.906	120.467	8.867
Thr256	117.782	8.187	121.816	9.087	122.012	9.143
Thr256(Thr259)	-	-	122.221	9.167	nd	nd
Thr259	115.836	7.981	119.373	8.709	119.158	8.662
Thr259(Thr256)	-	-	118.781	8.651	nd	nd
Thr259(Thr262)	-	-	nd	nd	118.679	8.617
Thr262	115.836	7.981	119.384	8.696	119.186	8.694
Thr262(Ser264)	-	-	np	np	119.086	8.642
Ser264	115.321	8.194	np	np	117.712	8.854
Thr268	117.686	8.207	121.177	9.066	121.855	9.102
Thr268(Thr271)	-	-	nd	nd	121.186	9.074
Thr271	116.372	8.031	119.795	8.932	nd	nd
Thr271(Thr268)	-	-	nd	nd	119.268	8.802
Thr271(Ser274)	-	-	120.365	8.907	-	-
Ser274	116.219	8.223	117.829	8.790	np	np
Thr289	118.651	8.205	121.489	9.043	nd	nd
Ser293	118.674	8.342	120.827	8.867	-	-
Ser293(Thr289)	-	-	120.262	8.785	120.175	8.779
Thr296	116.028	8.122	119.152	8.905	nd	nd
Thr296(Ser293)	-	-	119.656	8.967	118.586	8.826
Ser422	118.671	8.393	119.702	8.710	119.615	8.697
Ser430	116.592	8.210	117.582	8.533	117.470	8.508
Ser448	117.567	8.213	119.421	8.726	np	np

Mutated site	primers					
S28D	acccccacgacccagagatgaaggaccagggaggctcagggg					
	atctctgggtcgtgggggtgtgcagctgcctctgtgagtga					
S136D	ctgccacctgacccaccatcgccagcatcagaacaaac					
	tggtggtgggtcaggtggcagattaactgtttcttcagctgc					
S140D	caccaccagacccagcatcagaacaaacagctgcactggaagaagcaacaag					
	tgatgctgggtctggtgggggaaggtggcagattaactgtttcttcagc					
S178D	ataaccaaggacccagaaaaacgttcttccctcccaagaccttcc					
	tttttctgggtccttggttattccatcagtgactttgtccttcgcc					
T238E	acacetactgageetggatetactgeaateaeceetggeaetee					
	agatccaggctcagtaggtgttgaggtgccgctttttcctgctctg					
T245E	ctgcaatcgagcctggcactcctccaagctactcttcacgtaccccag					
	gtgccaggctcgattgcagtagatccaggggtagtagtgtgtgaggtgc					
T259E	cccaggcgagcctggaaccccgagctatcccaggacaccaggaac					
	gttccaggctcgcctggggtacgtgaagagtagcttggaggagtgcc					
T262E	acccctggagaaccgagctatcccaggacaccagg					
	atagctcggttctccaggggtgcctggggtacgtga ag					
S264D	gaaccccggactatcccaggacaccaggaaccccc aaa tct gg					
	ctgggatagtccggggttccaggggtgcctgggg					
T268E	tatcccagggaaccaggaacccccaaatctggcatcttggtgcccag					
	ggttcctggttccctgggatagctcggggttccaggggtgc					
T271E	acaccaggagaacccaaatctggcatcttggtgcccagtgagaag					
	agatttgggttctcctggtgtcctgggatagctcggggttccag					
S274D	cccccaaagatggcatcttggtgcccagtgagaagaaagttgccatcattcgc					
	aagatgccatctttgggggttcctggtgtcctgggatagctcggg					
T289E	atcattcgcgaacctccaaagtccccagctactcccaagcag					
	ctttggaggttcgcgaatgatggcaactttcttctcactgggcac					
S293A	ctccaaaggccccagctactcccaagcagcttcggctcattaaccaac					
	gtagctggggcctttggaggagtgcgaatgctggcaactttcttctc					
S422D	atcacacaggacccaagcaggtcaagcgtggcgtctccccgg					
	cctgcttgggtcctgtgtgatgatctcagccccgtggtcgacgcg					
Fyn-SH3	actcccatggaaacactctttgtggccctttatg					
	gcgggatcctcaaactggagccacataattgctg					

Table S2: Primers used to produce the MAP2c phosphorylation mutants, and for cloning of Fyn-SH3

Figure S1: Microscale thermophoretic analysis of the interaction between MAP2c and ERK2. The concentration of MAP2c was 5 nM and ERK2 concentration ranged from 1.3 nM ERK2 to 45 μ M. The dissociation constant is (0.8 ± 0.4) μ M

Figure S2: Initial kinetics of phosphorylation of ¹⁵N-MAP2c by ERK2 (circles and solid curves) and CDK2 (crosses and dashed lines). Kinetics of phosphorylation of Ser178, Ser293 and Ser448 by ERK2 was determined using MAP2c fragments 1–159, 250–347 and 300–467, respectively (triangles and dashed lines). Note that only two peak heights were used to determine $\tau_{1/2}$ of Ser293 in MAP2c-250–347 because the slowly growing peak height of phosphorylated Ser293 in the vicinity of phosphorylated Thr296 was not measured due to the complexity of the spectra.

Figure S3: Kinetics of phosphorylation of well-resolved peaks of MAP2c residues by ERK2 with prior priming by CDK2 (blue), GSK3 β (green) and PKA (red). Phosphorylation kinetics of unprimed MAP2c are shown in black. Ser136, Thr235, and Ser430 are phosphorylated by GSK3 β and CDK2, while Ser140, Thr238, Thr245 and Thr271 are phosphorylated by CDK2. Therefore, peaks of phosphorylated forms of these residues are present already at the beginning of phosphorylation by ERK2. Upon phosphorylation by GSK3 β , Thr238 and Ser422 are not resolved in ¹H,¹⁵N-SOFAST-HMQC. Prior phosphorylation by PKA does not have any effect on the kinetics of phosphorylation by ERK2, while prior phosphorylation by CDK2 moderately increase the rate of ERK2 phosphorylation of Thr235, Thr238, Thr245, and Ser274, and prior phosphorylation by GSK3 β moderately increases the rate of phosphorylation of Thr245.

Figure S4: Comparison of the kinetics of phosphorylation by ERK2 of ¹⁵N-MAP2c-1–159 (A, green) and ¹⁵N-159–254 (B, red), lacking the D-box docking sites, with that of full-length ¹⁵MAP2c (blue). Phosphorylation rates of the different residues in absence of the D-boxes are similar to the wild-type MAP2c, indicating that the D-boxes do not influence phosphorylation kinetics significantly.

Figure S5: Kinetics of phosphorylation of the main PKA phosphorylation sites (Ser184, Ser189 and Ser435) in ¹⁵N-MAP2c by PKA with prior priming by ERK2 (red), compared to unprimed ¹⁵N-MAP2c (black). Thr220 was not resolved in the ¹H,¹⁵N-HSQC spectrum of MAP2c phopshorylated by ERK2. Upon phosphorylation by ERK2, phosphorylation of Ser435 is slower ($\tau_{1/2} = (0.85 \pm 0.08)$ hrs, when MAP2c phosphorylated by ERK2, $\tau_{1/2} = 0.07$ hours in unprimed MAP2c). Phosphorylation of Ser184 is less affected ($\tau_{1/2} = 4.1 \pm 0.8$) hrs and $\tau_{1/2} = (2.6 \pm 0.1)$ hrs for primed and unprimed MAP2c, respectively), while Ser189 phosphorylation is not affected.

Figure S6: Microscale thermophoresis analysis of the interactions of 5 nM MAP2c with (A) 0.046 nM to $1.5 \,\mu$ M Fyn-SH3 and (B) $1.8 \,\mu$ M to $533 \,\mu$ M Abl-SH3. The dissociation constant are (22 ± 5) nM and $(68 \pm 10) \,\mu$ M for Fyn-SH3 and Abl-SH3, respectively.

Figure S7: Decrease of the intensities of well resolved serines and threonines of ¹⁵N-MAP2c phosphorylated by ERK2 in SH-SY5Y neuroblastoma cell extract.

Figure S8: Overlaid ¹H,¹⁵N-SOFAST-HMQC spectra of ¹⁵N-MAP2c-S435D (red), ¹⁵N-MAP2c-S140D (green), and ¹⁵N-MAP2c wild type (blue, presented separately in Figure 6) phosphorylated in SH-SY5Y neuroblastoma cell extract. Peaks of phosphorylated Ser435 and Ser140 are present in the spectra of wild-type MAP2c (blue, in both panels) but missing in spectra of the corresponding mutants (the peak of Ser435 is missing in the spectrum of the S435D, shown in red in the left panel and the peak of Ser140 is missing in the spectrum of the S140D, shown in green in the right panel).