Cell Reports, Volume 40

Supplemental information

Activation of VIP interneurons

in the prefrontal cortex

ameliorates neuropathic pain aversiveness

Miao Li, Hang Zhou, Sasa Teng, and Guang Yang

Figure S1. Neuropathic pain decreases pyramidal neuron Ca²⁺ activity in PL of male and female mice, related to Figure 1

(A) SNI decreases pyramidal neuron (PYR) Ca^{2+} activity in both male (P < 0.0001) and female (P < 0.0001) mice. 14 days after SNI, AUC is slightly higher in males than females (P = 0.0171). Within the sham group, no significant difference between males and females (P = 0.6358).

(B) SNI decreases PYR Ca²⁺ frequency in both male (P < 0.0001) and female (P < 0.0001) mice. Within the sham group, frequency is slightly higher in males than females (P = 0.0279). Within the SNI group, no significant difference between males and females (P = 0.3833).

(C) SNI deceases peak amplitude of PYR Ca²⁺ transients in both male (P < 0.0001) and female (P < 0.0001) mice. No difference between males and females within the sham (P = 0.2165) and SNI (P = 0.1464) group.

(**D**) SNI deceases Ca^{2+} transient duration in both male (P < 0.0001) and female (P < 0.0001) mice. No difference between males and females within the sham (P = 0.7705) and SNI (P = 0.5056) group.

In (A–D), n = 121, 292 cells from 2, 3 males; n = 365, 341 cells from 3, 4 females; sham and SNI respectively.

Individual dots represent data from a single cell. Summary data are presented as mean \pm S.E.M. **P* < 0.05, *****P* < 0.0001; ns, not significant; by Mann-Whitney test.

Figure S2. Neuropathic pain decreases the Ca²⁺ activity of PL neurons projecting to ACC, regardless of the sex of animals, related to Figure 2

SNI decreases Ca^{2+} activity in PL–ACC projection neurons in both male (P < 0.0001; sham, n = 88 cells from 3 mice; SNI, n = 113 cells from 4 mice) and female mice (P < 0.0001; sham, n = 126 cells from 4 mice; SNI, n = 136 cells from 4 mice). No difference between males and females within the SNI group (P = 0.6981).

Individual dots represent data from a single cell. Summary data are presented as mean \pm S.E.M. **P* < 0.05, *****P* < 0.0001; ns, not significant; by Mann-Whitney test.

Figure S3. Neuropathic pain has no effects on VIP interneuron density in PL, related to Figure 3

(A) Experimental design to specifically express GCaMP6s in VIP interneurons in the mouse PL.

(**B**) Representative fluorescence images of PL neurons showing the colocalization of GCaMP fluorescence and anti-VIP immunoreactivity. Scale bar, 20 μ m.

(C) Percentage of colocalized somas in PL to estimate the specificity of Cre-mediated GCaMP expression (n = 13 sections from 4 mice). $94.26 \pm 1.30\%$ of GCaMP-expressing cells are colocalized with anti-VIP immunoreactivity.

(**D**) The number of VIP-expressing interneurons (per 200 μ m × 200 μ m × 20 μ m) in PL 14 days after sham or SNI surgery (P = 0.4603, n = 5 sections from 2 mice per group).

Individual dots represent data from a single section. Summary data are mean \pm S.E.M. ns, not significant; by Mann-Whitney test.

Figure S4. Neuropathic pain decreases Ca²⁺ activity and presynaptic terminal number in VIP interneurons, regardless of the sex of animals, related to Figure 3

(A) SNI decreases VIP Ca²⁺ activity in male (P < 0.0001) and female (P < 0.0001) mice 3 days after surgery. No difference between males and females within the sham or SNI group (sham: P = 0.3195, SNI: P = 0.9287).

(B) SNI decreases VIP Ca²⁺ frequency in male (P < 0.0001) and female (P = 0.0011) mice 3 days after surgery. No difference between males and females within the sham or SNI group (sham: P = 0.0547, SNI: P = 0.1549).

(C) SNI decreased VIP Ca²⁺ peak amplitude in male (P = 0.0001) and female (P = 0.0900, a trend) mice 3 days after surgery. No difference between males and females within the sham or SNI group (sham: P = 0.1761, SNI: P = 0.4860).

(**D**) SNI decreases VIP Ca²⁺ duration in male (P = 0.0024) and female (P = 0.0002) mice 3 days after surgery. No difference between males and females within the sham or SNI group (sham: P = 0.3238, SNI: P = 0.8011).

In (A–D), n = 60, 94 cells from 3, 6 males, n = 53, 83 cells from 3, 6 females.

(E) SNI decreases VIP neuron Ca²⁺ activity in male (P < 0.0001) and female (P = 0.0004) mice 14 days after surgery. No difference between males and females within the sham or SNI group (sham: P = 0.0523, SNI: P = 0.3467).

(F) SNI decreases VIP Ca²⁺ frequency in male (P = 0.0006) but not female (P = 0.2679) mice 14 days after surgery. Within the sham group, the frequency is slightly lower in females (P = 0.0315). No difference between males and females within the SNI group (P = 0.4537).

(G) SNI decreases VIP Ca²⁺ peak amplitude in male (P = 0.0176) and female (P = 0.0292) mice 14 days after surgery. No difference between males and females within the sham or SNI group (sham: P = 0.1122, SNI: P = 0.0975).

(H) SNI decreases VIP Ca²⁺ duration in male (P = 0.0022) and female (P = 0.0729, a trend) mice 14 days after surgery. No difference between males and females within the sham or SNI group (sham: P = 0.1811, SNI: P = 0.7159).

In (E–H), n = 42, 91 cells from 3, 4 males, n = 70, 91 cells from 3, 4 females.

(I) The count of VIP presynaptic EGFP puncta (per 30 μ m × 30 μ m × 20 μ m) in PL of male (P = 0.0453) and female (P = 0.0790, a trend) mice 14 days after sham or SNI. No difference between males and females (sham: P = 0.6894, SNI: P = 0.3089).

(J) Percentage of VIP EGFP puncta colocalized with VGAT in male (P = 0.5774) and female (P = 0.3956) mice 14 days after sham or SNI. No difference between males and females (sham: P = 0.6749, SNI: P = 0.9386).

(K) The count of VGAT⁺ EGFP puncta (per 30 μ m × 30 μ m × 20 μ m) in PL of male (P = 0.0446) and female (P = 0.0521, a trend) mice 14 days after sham or SNI. No difference between males and females (sham: P = 0.9742, SNI: P = 0.6270).

In (I–K), n = 15, 19 sections from 2, 3 males, n = 14, 6 sections from 2, 2 females.

Throughout, individual dots represent data from a single cell or section. Summary data are mean \pm S.E.M. **P* < 0.05, ***P* < 0.01, ****P* < 0.001, *****P* < 0.0001; ns, not significant; by Mann-Whitney test.

Figure S5. Injection of multiple viruses has no detectable effects on neuronal density in the injected regions, related to Figure 4

(A) Experimental design to virally express GCaMP6s in PL–ACC projection neurons and hM₃Dq-mCherry in PL VIP interneurons. Four weeks after viral infection, cortical sections were immunostained for NeuN, a neuronal marker.

(**B**) Immunofluorescence images showing NeuN⁺ cells in the cortical regions with or without viral injections. Arrows indicate virus targeted PL–ACC neurons expressing GCaMP6. Arrowheads indicate virus targeted VIP cells expressing hM₃Dq-mCherry. Scale bar, 20 μ m.

(C) The number of NeuN⁺ cells (per 100 μ m × 100 μ m × 20 μ m) in the cortical regions with or without viral injections (P = 0.7560, n = 14, 18 fields of view from 3 mice). Individual dots represent data from a single field of view. Summary data are mean ± S.E.M. ns, not significant; by Mann-Whitney test.

Figure S6. A single injection of CNO transiently suppresses VIP interneuron activity in PL and mechanical allodynia in mice, related to Figure 5

(A) Experimental design to examine the acute effects of hM_3Dq activation on VIP interneuron activity in PL and mechanical pain thresholds (von Frey test) in mice at day 3 post-SNI.

(B) VIP Ca²⁺ activity before and after a single CNO injection in SNI mice expressing hM₃Dq (P < 0.0001 for 0.5, 1, 2, 4 h vs. baseline, P = 0.0828, > 0.9999, > 0.9999 for 6, 9, 24 h vs. baseline; n = 145 cells from 4 mice).

(C) VIP Ca²⁺ activity before and after a single CNO injection in SNI mice expressing mCherry (P > 0.9999, > 0.9999, > 0.9999, = 0.1443, > 0.9999, > 0.9999, > 0.9999 for 0.5, 1, 2, 4, 6, 9, 24 h vs. baseline; n = 115 cells from 3 mice).

(**D**) Time course of mechanical pain thresholds before and after a single CNO injection in SNI mice expressing hM₃Dq in PL VIP neurons (P = 0.0087, 0.0055, 0.0087, 0.0109 for 0.5, 1, 2, 4 h vs. baseline, P = 0.9635, > 0.9999, > 0.9999 for 6, 9, 24 h vs. baseline; n = 5 mice). PWT, paw withdrawal threshold.

(E) Time course of mechanical pain thresholds before and after a single CNO injection in SNI mice expressing mCherry in PL VIP neurons (P > 0.9999, = 0.9850, = 0.9850, > 0.9999, > 0.9999, > 0.9999, > 0.9999, > 0.9999 for 0.5, 1, 2, 4, 6, 9, 24 h vs. baseline; n = 6 mice).

Data are presented as mean \pm S.E.M. *P < 0.05, **P < 0.01, ****P < 0.0001; ns, not significant; by Friedman test followed by Dunn's multiple comparisons test.

Figure S7. Daily activation of VIP interneurons following nerve injury ameliorates cognitive impairments associated with neuropathic pain, related to Figure 5

(A) Schematic and timeline for the novel object recognition (NOR) test, which measures the animal's recognition memory, based on the willingness of rodents to explore a novel object. F, familiar object; N, novel object.

(B) Discrimination ratio of sham and SNI mice 14 days after surgery (P = 0.0056). Daily activation of PL VIP interneurons prevents recognition memory impairment after SNI (P = 0.0055 vs. mCherry; P = 0.5457 vs. sham). n = 9, 9, 8, 9 mice.

(C) Schematic and timeline for the T maze test, which measures the animal's spatial memory, based on the willingness of rodents to explore a new environment.

(D) Percentage of time spent in the novel arm during a T maze test 14 days after sham or SNI surgery (P = 0.0002). Daily activation of PL VIP interneurons prevents spatial memory impairment after SNI (P = 0.0023 vs. mCherry; P = 0.1206 vs. sham). n = 8, 9, 6, 7 mice.

Individual dots represent data from a single mouse. Summary data are mean \pm S.E.M. ***P* < 0.01, ****P* < 0.001; ns, not significant; by Mann-Whitney test.