Supporting Information

Tablet formulation of 2-((3-(chloromethyl)benzoyl)oxy)benzoic acid by linear

and quadratic models

Wuryanto Hadinugroho*, Kuncoro Foe, Yudy Tjahjono, Caroline Caroline, Senny Yesery Esar, Hendy Wijaya, Maria Annabella Jessica

Department of Pharmaceutical, Faculty of Pharmacy, Widya Mandala Surabaya Catholic

University, Kalisari Selatan no. 1 Pakuwon City, Surabaya, Indonesia

Number of Chapter/Table/Figure	Title
Chapter S1	Tablet Dosage Calculation
Table S1	Statistical analysis of 3CH ₂ Cl tablets
Table S2	The release of 3CH ₂ Cl from the tablets
Figure S1	The kinetics profile of the release of 3CH ₂ Cl from TA tablets
Figure S2	The kinetics profile of the release of 3CH ₂ Cl from TB tablets
Figure S3	The kinetics profile of the release of 3CH ₂ Cl from TC tablets
Figure S4	The kinetics profile of the release of 3CH ₂ Cl from T Opt. tablets

Chapter S1. Tablet Dosage Calculation

Data on $3CH_2Cl$ based on pharmacokinetic experiments on rats were plasma drug concentration (Cp) = 0.57 g/mL; volume of distribution (Vd) = 7200 mL; elimination constant (Kel) = 0.0003/hour; and bioavailability (F) = 0.8.

Amount of drug in the body (**A**) = Cp x Vd = 0.57 g/mL x 7200 mL = 4104 g = 4.104 mg

Rate out = Kel x A = 0.0003 hours⁻¹ x 4.104 mg = 0.0012 mg/hour

Release rate = Rate out / F = 0.0012 mg/hour / 0.8 = 0.0015 mg/hour

The drug preparation is designed to release the drug for 8 hours

Maintenance dose (DM) = Release rate x 8 hours = 0.0015 mg/hour x 8 hours = 0.0123 mg

Load dose (LD) = A/F = 4.104 mg / 0.8 = 5.13 mg

Total dose = DM + LD = 0.0123 mg + 5.13 mg = 5.1423 mg (rat dose 200 g)

Human dose (DH) = Rat dose x conversion factor = $5.1423 \text{ mg x } 56 = 287.9695 \text{ mg} \approx 300 \text{ mg}$

ANOVA	Flow time	Carr index	Hardness	Friability	Disintegrating time	Drug release
R-Squared	0.9897	0.9868	0.9857	0.9932	0.9908	0.9896
Adj R-Squared	0.9795	0.9737	0.9715	0.9865	0.9817	0.9792
Pred R-Squared	0.8613	0.8224	0.8075	0.9088	0.8761	0.8597
Adeq Precision	17.0000	15.0000	14.4000	21.0000	18.0000	16.9000

Table S1. Statistical analysis of 3CH₂Cl tablets

The coefficient of the polynomial equation of the linear model is accepted if the difference between

R-Square and Pred R-Square is less than 0.2 and Adeq Precision is more than 4.

t [min.]	ТА		ТВ		ТС		T Opt.	
	[%]	SD	[%]	[%]	[%]	SD	[%]	SD
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
10	26.54	1.12	28.74	1.93	39.18	1.06	34.29	0.97
20	41.29	0.88	42.34	1.39	56.24	1.80	51.51	0.82
30	50.40	0.22	51.53	1.57	67.64	1.81	63.73	1.01
45	54.74	1.07	60.62	1.50	76.25	1.25	73.31	0.82
60	59.41	0.95	69.95	1.00	85.04	1.05	81.53	0.86

Table S2. The release of 3CH₂Cl from the tablets

The release of $3CH_2Cl$ from tablets contains SLS [%] and CS [%]: TA (0.50:4.00), TB (0.75:3.00),

TC (1.00:2.00), and and T Opt. (0.92:2.33).

The release kinetics of 3CH₂Cl from tablets for each formula was based on the similarity of the observed point profile to the predicted line profile using DDSolver software (Figure S1-S4).

Figure S1. The kinetics profile of the release of 3CH₂Cl from TA tablets with various model kinetic. Based on the profile, the observation point is most similar to the Weibull model prediction line with a value of Rsqr_adj 0.9907; MSE_root 2.0408; and AIC 20.5635.

Figure S2. The kinetics profile of the release of 3CH₂Cl from TB tablets with various model kinetic. Based on the profile, the point of observation is most similar to the Higuchi model prediction line with a value of Rsqr_adj 0.9966; MSE_root 1.4227; and AIC 15.3644.

Figure S3. The kinetics profile of the release of 3CH₂Cl from TC tablets with various model kinetic. Based on the profile, the point of observation is most similar to the Weibull model prediction line with a value of Rsqr_adj 0.9963; MSE_root 1.8553; and AIC 19.9178.

Figure S4. The kinetics profile of the release of 3CH₂Cl from T Opt. tablets with various model kinetic. Based on the profile, the point of observation is most similar to the Higuchi model prediction line with a value of Rsqr_adj 0.9979; MSE_root 1.2986; and AIC 14.8858.