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A. Brain parcellation. In Figure 1B, E, and F, we used a subdivision
of the parcellation from Destrieux Atlas (27). Regions with more
than 400 vertices were split into smaller regions (so that each regions
contains less than 400 vertices). The original parcellation consists
of 75 regions per hemisphere. Our custom parcellation consists in
142 regions per hemisphere.

In Figure 1G, we use the original parcellation for simplicity, and
the following acronyms:

Acronym Definition

STG / STS Superior temporal gyrus / sulcus
aSTS Anterior STS
maSTS Mid-anterior STS
mpSTS Mid-posterior STS
pSTS Posterior STS
Angular / Supramar Angular / Supramarginal inferior parietal gyrus
MTG / MTS Medial temporal gyrus / sulcus
SFG / SFS Superior frontal gyrus / sulcus
IFG / IFS Inferior frontal gyrus / sulcus
Tri / Op Pars triangularis / opercularis (IFG)
TTransverse Temporal transverse sulcus
PCG Posterior cingulate gyrus
STO Temporo-occipital lateral sulcus

B. Mixed-effect model. Not all subjects listened to the same stories.
To check that the R scores (correlation between comprehension and
brain mapping) were not driven by the narratives and question-
naires’ variability, a linear mixed-e�ect model was fit to predict the
comprehension of a subject given its brain mapping scores, specify-
ing the narrative as a random e�ect. More precisely, if Mwi œ R
corresponds to the mapping scores of the ith subject that listened
to the story w, and Cwi œ R refers to the comprehension scores,
we estimate the fixed e�ect parameters Â— œ R and Â÷ œ R (shared
across narratives), and the random e�ect parameter —w œ R and
÷w œ R (specific to the narrative w) such that:

Cwi = (Â— + —w) ◊ Mwi + (Â÷ + ÷w) + ‘wi

with ‘wi a vector of i.i.d normal errors with mean 0 and variance ‡2.
In practice, we use the statsmodels (67) implementation of linear
mixed-e�ect models. Significance of the coe�cients were assessed
with a t-test, as implemented in statsmodels.

C. Replication across single narratives. To further support that the
R were not driven by the narratives’ variability, we replicate the
analysis of Figure 1D within single narratives. In Figure S1, we
show that correlation scores between brain scores and comprehension
scores are positive for each of the seven narratives.

D. Noise Ceiling Estimates. fMRI recordings are inherently noisy.
Thus, we estimate an upper bound of the best brain score that can
be obtained given the level of noise in the Narrative dataset. To this
end, for each (subject, narrative) pair, we linearly map the fMRI
recordings, not with the GPT-2 activations, but with the average
fMRI recordings of the other subjects who listened to that narrative.
More precisely, we use the exact same setting as in Eq. (1), but
we predict Y (s), not from g(X) (GPT-2’s features after temporal
alignment, of size ntimes ◊ ndim), but from the mean of the other
subject’s brains Y = 1

|S|
q

sÕ ”=s
Y (sÕ) (of size ntimes◊nvoxels). This

score is called the noise ceiling for the (subject, narrative) pair. The
noise ceilings for each brain region are displayed in Figure S2, and
correspond to upper bounds of the brain scores displayed in Figure
1B.

E. Replication across the contextual layers of GPT-2. Previous anal-
yses mostly focus on the eight layer of GPT-2. In Figure S4, we
compute the brain scores of each layer of GPT-2, and report their

Fig. S1. Replication within single narratives. Same as Figure 1D for each single
narrative.

correlation with the subject’s comprehension scores. While the corre-
lation with comprehension is the highest in layers 6-to-12 (and thus
best explain comprehension’s variability), our results do generalize
to other contextual layers of GPT-2.

F. Distribution of regularization parameters. To quantify the map-
ping between the brain signals and GPT-2 activations, we use a
¸2-penalized linear regression (cf. Methods). To further investi-
gate how penalization a�ected the brain score, we compute the
optimal regularization parameter alpha for each (subject, narrative,
voxel, fold), we average the alphas across (subject, narrative, fold)
triplets, and report the corresponding alphas across voxels (left) as
well as the relationship between alphas and brain scores (on the
right). As shown in Figure S5, regularization parameters are lower
in regions commonly associated with language (auditory cortex,
supramarginal, inferior-frontal areas) while higher alphas (yellow)
are associated with noisier regions.

G. Replication using partial correlation analyses. In Figure 1F, we
compute the specific contribution of phonological, lexical and com-
positional features, respectively. To do so, we favor the simplest and
most conservative method by using hierarchical modeling, which
consists of computing the brain score of the two sets of features
(e.g. Word Embedding vs. Layer 8) and then subtracting the scores.
This approach is particularly conservative: the explainable variance
shared by two sets of features is by definition fully attributed to the
lower-level feature set (i.e. Word Embedding). Thus, our method
tends to underestimate the variance specific to deeper layers. The
fact that these e�ects remain largely above chance is thus good evi-
dence that this layer captures representations specifically predictive
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Fig. S2. Noise ceiling estimates. Noise ceilings averaged across subjects, narra-
tives and voxels within each region of interest. They are upper bounds of the brain
scores in Figure 1B.

Fig. S3. Replication to two other causal transformer architectures from Huggingface
(XLNet base and Distilgpt2). The vertical axis shows the average correlation between
(i) comprehension scores and (ii) brain scores. The top text displays the p-values of
the corresponding correlation. The mapping scores were averaged across all voxels
and the correlation with comprehension was computed, similarly to Figure 1D.

of comprehension.
In Figure S6, we replicate our results with a partial correlation

method, i.e. a method that separates two sets of features (Word
Embedding and GPT-2) during the fitting of the linear model.
Specifically, we fit both Word and GPT-2 models simultaneously
with a banded ridge regression (68), and then evaluate the unique
variance accounted for by each sub-model. For simplicity, we follow
the setup of the original paper (68) and replicate our results for one
pair of features (here, Word Embedding and GPT-2). We use the
same modeling and cross-validation setting as in Figure 1F. Figure
S6 shows the specific brains scores attributed to Word and GPT-2
embeddings, and their specific correlation with comprehension. We
obtain similar results as in Figure 1F, but the correlation with
comprehension specific to GPT-2 (R[M ÕÕ(GPT2)] = 0.52) is slightly
higher than the one in the paper (R[M Õ(GPT2) ≠ M(Word)] =
0.31).

H. Effect of attention processes in the brain. Is the correlation be-
tween comprehension and GPT-2’s representations solely due to
attentional fluctuation? Indeed, attention can modulate both (i)
comprehension and (ii) the average BOLD activity (48, 49) and
thus lead to an indirect correlation between these last two variables.
To address this issue, we first qualitatively compare our results to
those of a meta-analysis covering 6,201 subjects recorded with fMRI
during a study related to speech-based or auditory-based attention
(Figure S7). The results suggest that these attentional mechanisms
are associated with a restricted set of temporal and sensory-motor
areas. Furthermore, our analysis of the average BOLD response
and its correlation with comprehension highlight a similar cortical
network (Figure S8). In both cases, however, these neural bases of
attention appear much less distributed than those obtained with
GPT-2. In particular, the activations in the prefrontal and parietal
cortices as well as in the inferior temporal gyri seem to be specif-
ically accounted for by GPT-2’s representations. Overall, while
these results call for more direct manipulations of subjects’ atten-
tion, they suggest that the link between GPT-2 and the brain bases
of comprehension is not trivially reducible to attention.

I. fMRI preprocessing. Our analyses rely on the already pre-
processed data from Nastase et al. 2020 (61), unsmoothed version.

Fig. S4. Correlation between comprehension scores and brain scores, for each layer
of GPT-2 as well as phonetic features. Error bars are the standard errors of the means
across subjects.

Optimal alpha
A. B.

Fig. S5. A) Optimal regularization parameters alpha (log-scaled) across voxels.
A penalized regression is fitted for each (subject, narrative, voxel, fold) and the
corresponding optimal regularization parameters alphas are extracted. Alphas are
averaged across (subject, narrative, fold) to obtain one score per voxel. B) the same
alphas on the y-axis. On the x-axis, the corresponding brain scores for each (subject,
narrative, voxel, fold) averaged across (subject, narrative, fold).

Below, the pre-processing pipeline, as stated in the original paper.
“The functional MRI data were preprocessed in the following

way. First, a reference volume and its skull-stripped version were
generated using a custom methodology of fMRIPrep. A deformation
field to correct for susceptibility distortions was estimated using
fMRIPrep’s fieldmap-less approach. The deformation field results
from co-registering the BOLD reference to the same-subject T1w-
reference with its intensity inverted (Huntenburg, 2014; Wang et al.,
2017). Registration was performed with antsRegistration (ANTs
2.2.0), and the process was regularized by constraining deforma-
tion to be nonzero only along the phase-encoding direction, and
modulated with an average fieldmap template (Treiber et al., 2016).
Based on the estimated susceptibility distortion, a corrected EPI
reference was calculated for more accurate co-registration with the
anatomical reference. The BOLD reference was then co-registered
to the T1w reference using bbregister (FreeSurfer 6.0.1), which
implements boundary-based registration (Greve and Fischl, 2009).
Co-registration was configured with six degrees of freedom. Head-
motion parameters with respect to the BOLD reference (transfor-
mation matrices, and six corresponding rotation and translation
parameters) are estimated before any spatiotemporal filtering using
mcflirt (FSL 5.0.9; Jenkinson et al., 2002, 2012; Smith et al., 2004).
BOLD runs were slice-time corrected using 3dTshift from AFNI
(20160207; Cox and Hyde, 1997). The BOLD time-series were resam-
pled onto the following surfaces: fsaverage , fsaverage6 , fsaverage5
. The BOLD time-series (including slice-timing correction when ap-
plied) were resampled onto their original, native space by applying
a single, composite transform to correct for head-motion and suscep-
tibility distortions. These resampled BOLD time-series are referred
to as preprocessed BOLD in original space, or just preprocessed
BOLD. The BOLD time-series were resampled into two volumetric
standard spaces, correspondingly generating the following spatially-
normalized, preprocessed BOLD runs: MNI152NLin2009cAsym ,
MNI152NLin6Asym . A reference volume and its skull-stripped
version were first generated using a custom methodology of fM-
RIPrep. All resamplings were performed with a single interpolation
step by composing all the pertinent transformations (i.e. head-
motion transform matrices, susceptibility distortion correction, and
co-registrations to anatomical and output spaces). Gridded (vol-
umetric) resamplings were performed using antsApplyTransforms
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Fig. S6. Same as Figure 1D but using partial correlation analysis: a model is fitted
using both Word vectors and GPT-2 as input, we then evaluate the brain score
accounted for by each submodel specifically. A) Brain scores of the Word vectors
specifically, averaged across voxels. B) Brain scores of the eight layer of GPT-2
specifically, averaged across voxels. In red, the correlation between comprehension
scores (x-axis) and brain scores (y-axis).

Fig. S7. Meta-analyses from NeuroQuery. Brain networks associated with the con-
cepts of“attentio” combined with “auditory”, and “attention” combined with “speech”.

(ANTs 2.2.0), configured with Lanczos interpolation to minimize
the smoothing e�ects of other kernels (Lanczos, 1964). Non-gridded
(surface) resamplings were performed using mri_vol2surf (FreeSurfer
6.0.1).

Several confounding time-series were calculated based on the
preprocessed BOLD: framewise displacement (FD), DVARS, and
three region-wise global signals. FD and DVARS are calculated for
each functional run, both using their implementations in Nipype
(following the definitions by Power et al., 2014). The three global
signals are extracted within the CSF, the WM, and the whole-
brain masks. Additionally, a set of physiological regressors were
extracted to allow for component-based noise correction (CompCor;
Behzadi et al., 2007). Principal components are estimated after
high-pass filtering the preprocessed BOLD time-series (using a
discrete cosine filter with 128s cut-o�) for the two CompCor variants:
temporal (tCompCor) and anatomical (aCompCor). The tCompCor
components are then calculated from the top 5% variable voxels
within a mask covering the subcortical regions. This subcortical
mask is obtained by heavily eroding the brain mask, which ensures it
does not include cortical GM regions. For aCompCor, components
are calculated within the intersection of the aforementioned mask
and the union of CSF and WM masks calculated in T1w space,
after their projection to the native space of each functional run
(using the inverse BOLD-to-T1w transformation). Components are
also calculated separately within the WM and CSF masks. For
each CompCor decomposition, the k components with the largest
singular values are retained, such that the retained components’
time series are su�cient to explain 50 percent of variance across the
nuisance mask (CSF, WM, combined, or temporal). The remaining
components are dropped from consideration. The head-motion
estimates calculated in the correction step were also placed within
the corresponding confounds file. The confound time series derived
from head motion estimates and global signals were expanded with
the inclusion of temporal derivatives and quadratic terms for each
(Satterthwaite et al., 2013). Frames that exceeded a threshold of
0.5 mm FD or 1.5 standardized DVARS were annotated as motion
outliers. All of these confound variables are provided with the
dataset for researchers to use as they see fit. HTML files with

Fig. S8. Correlation between comprehension scores and (a) brain scores of GPT-2
for each (subject, story) pair, (b) the BOLD magnitude, averaged across scans for
each subject and story separately.

quality control visualizations output by fMRIPrep are available via
DataLad.

We next temporally filtered the functional data to mitigate
the e�ects of confounding variables. Unlike traditional task fMRI
experiments with a well-defined event structure, the goal of re-
gression was not to estimate regression coe�cients for any given
experimental conditions; rather, similar to resting-state functional
connectivity analysis, the goal of regression was to model nuisance
variables, resulting in a “clean” residual time series. However, unlike
conventional resting-state paradigms, naturalistic stimuli enable
intersubject analyses, which are less sensitive to idiosyncratic noises
than within-subject functional connectivity analysis typically used
with resting-state data (Simony et al., 2016; Simony and Chang,
2019). With this in mind, we used a modest confound regression
model informed by the rich literature on confound regression for
resting-state functional connectivity (e.g. Ciric et al., 2017; Parkes et
al., 2018). AFNI’s 3dTproject was used to regress out the following
nuisance variables: six head motion parameters (three translation,
three rotation), the first five principal component time series from
an eroded CSF and a white matter mask (Behzadi et al., 2007;
Muschelli et al., 2014), cosine bases for high-pass filtering (using
a discrete cosine filter with cuto�: 128 s, or .0078 Hz), and first-
and second-order detrending polynomials. These variables were in-
cluded in a single regression model to avoid reintroducing artifacts
by sequential filtering (Lindquist et al., 2019). The scripts used to
perform this regression and the residual time series are provided
with this data release. This processing workflow ultimately yields
smoothed and non-smoothed versions of the “clean” functional time
series data in several volumetric and surface-based standard spaces.”
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