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REVIEWER COMMENTS 

 

Reviewer #1 (Remarks to the Author): 

 

In this manuscript the authors demonstrate a hardware implementation of probabilistic circuits 

using the stochastic switching behavior of a diffusive memristor. The implementation is interesting 

and the paper has the potential to be an important alternative compared to other realizations of 

stochastic nanodevices for p-computing, however, the manuscript in its current form needs 

significant work to be publishable in any venue. 

 

First, the comparisons to quantum computing that are in the text are quite inaccurate and careless. 

For example, the statement: “The principle of p-computing is derived from the theoretical 

background of quantum computing and Hopfield network-based machine learning” is not specific 

enough to make sense. It is true that p-computing has a lot of similarities to a type of quantum 

computing (namely quantum annealing pursued by D-Wave) but without this qualification it is 

inaccurate. Second, the authors repeated use of “Hopfield Networks” is also inaccurate because 

hardware p-circuits most naturally resemble Boltzmann Networks (that are admittedly stochastic 

Hopfield Networks but without the unnecessary connotations to associative memory etc., which is 

the main focus of Hopfield Networks). 

 

Similarly, Table I provides little comparison to anything substantial other than making perfunctory 

statements about differences between p and q-computing. What would have been a far more useful 

comparison in Table I would be to compare the authors’ implementation in this paper with respect 

to Magnetic Tunnel Junction based p-bits which have been explored and demonstrated extensively. 

 

For example, could the fluctuations observed in diffusive memristors can reach GHz time scales such 

as those achieved by the IBM [Safranski et al, Nano Letters 2020] and Tohoku Groups [Hayakawa et 

al, PRL 2020] in magnetic tunnel junctions? How should the power dissipation of their p-bit compare 

to the MTJ-bsaed p-bit evaluated as dissipating 20 microWatts per p-bit discussed in Hassan et al, 

Phys. Rev. Applied 2021? Unfortunately, crucial comparisons like these are replaced by somewhat 

artificial comparisons to quantum computing without much support. 

 

Similarly, unless I missed it, there is not enough detail regarding how the synaptic operation is 

performed, even in the lengthy supplementary. 

 

 



In short, I believe the manuscript has potential, but is in need of significant and careful revision, 

especially in regards to how quantum computing references. Careful comparisons with actual state 

of the art is needed. More details regarding the scheme needs to be presented. 

 

 

 

 

Reviewer #2 (Remarks to the Author): 

 

Probabilistic computing, or computing using "p-bits" originally proposed by Datta group from Purdue 

University has gained some traction as one of the approaches to implement an Ising Machine, which 

themselves are investigated for solving certain problems that can be cast or recast as a global 

optimization problem. A p-bit computer is "wired" up corresponding to the optimization program 

and then the result is obtained by either through simulated annealing or via very long term sampling 

of the p-bit values which seeks to obtain the bit pattern corresponding to the ground-state (lowest 

eigen value) of the Hamiltonian being encoded by the p-bit network. As such this form of computing 

is suitable for any probabilistic algorithm that is based on energy minimization and a nano-material 

that shows significant stochastic electrical response is well suited to provide the stochastic samples 

necessary for the operation of such an optimizer. 

 

Datta group has presented quite a few papers on the theoretical analysis, as well as low barrier 

magnet MTJ based hardware (published in Nature), as well as emulated p-bits generated purely 

algorithmically using CMOS circuits, including microcontrollers, and FPGA (from Camsari group at 

UCSB). It should also be nolted that p-bits do not provide the only implementation for an Ising 

machine solver as many other groups have approached this problem using dynamical systems built 

from oscillators built from CMOS, variety of memristors, optical substrates, charge density waves in 

2D materials etc. It should also be noted that a significant number of quantum computing research, 

most prominently D-Wave, are solving the same problem via quantum methods (quantum annealing 

ratehr than simulated annealing) even though the problem itself is classical and small problems can 

be solved using simple MATLAB codes on a mid-range laptop. Therefore the jury is still out if this 

method has any intrinsic benefits over conventional computing and at what problem sizes might 

such an advantage show up. 

 

The authors have presented a work that attempts to build proof-of-concept Ising chains using a 

Copper-Telluride-Platinum Hafnia (CTHP) diffusive memristor. They have fabricated p-bits using a 

combination of the CTHP, a resistor, and a comparator. This is in lines of other designs presented 

using MTJs. The circuits were assembled on a breadboard, which as also as per the standard 

 



practice. Therefore I find the methodology section as per the standard setups being used in this 

area. 

 

However my central concerns are against the presentation of the material, going beyond the stylistic 

approaches. The authors present the p-bit with a comparison between classical/deterministic, p-

computing and quantum computing. This comparison starts right at the very beginning, e.g. line 34-

39. While the quantum computing has indeed being used in Ising machine like problem as I 

mentioned before, this contentions is not warranted. Quantum computing's power arises from large 

scale entanglement which really forms a large state space to compute over. Similarly quantum 

computers often exploit "negative" probability amplitudes that allow for destructive interference of 

the compute possibilities (see Grover search or the classic Deustch alogrithm that started off the 

field). I suspect that authors are motivating the p-bits as a "poor man's quantum computer" since 

quantum computers are significantly harder to build and operate. However a much simpler 

motivation of solving BPP alogrithms, going beyond P ones would have been sufficient. There is also 

a strong conjecture that P=BPP which, if true, will render such accelerators moot. Therefore the 

table 1 is not illuminating beyond trivial comparison. 

 

Another such concerning point is the comparison made between machine learning methods and p-

computing. It is puzzling to me because authors themselves correctly point out that p-computers are 

merely stochastic Hopfield networks, a very popular neural network, also called the Boltzmann 

machine. The operating principles of operation is precisely the same, energy minimization and a 

Boltzmann distruibution based programming of energy eigen values. Even the original proponent of 

p-bit have clearly stated that their approach to actually figure out the weights depend on the same 

algorithm that is well known and used in Hopfile d network literature, i.e. carefully aligning the 

eigenvectors and thus the p-bit values to the truth table being programmed. For an unknown 

problem, some sort of weight update algorithm will be necessary even for p-computing. All this 

makes me wonder how much thought the authors have given in connecting these established and 

well known pieces in their own minds, and this reflects in the exposition. 

 

My last concern is regarding the novelty of the work. The basic principles are well known and 

established in the lietrature, only difference is that they have used a particular material to create 

their p-bits as a drop-in replacement for a BSN which again is a very old and well known concept, see 

the very first chapter of Simon Haykin's celebrated book on NNs. I am not sure that such an 

incremental work warrants a publication at a venue such as Nature Communication, given the utter 

lack of surprise in the presented results which do not illuminate or advance the field in any 

significant way. 

 

 

Reviewer #3 (Remarks to the Author): 

 



 

I think this manuscript reports significant new results using memristive elements in a role that is very 

different from the usual synaptic functions. As such I believe it should be published in a journal like 

Nature Communications after appropriate revisions. 

 

There are statements in this paper that do not sound right to me. For example, in the context of 

quantum computing I see the statement: ".. lacking the general algorithm for Boolean logic 

operations is another critical huddle for its widespread use." I believe that at least some of the 

probabilistic algorithms demonstrated here (like Boolean operations and factorization) were first 

explored in the context of adiabatic quantum computing. 

 

One minor comment is about their use of "Hopfield networks" to describe what is probably a 

"Boltzmann machine" which is a stochastic Hopfield network. 

 

Since this paper uses memristors to implement a function that has been implemented with magnetic 

tunnel junctions, it seems to me that a paragraph comparing them may be of interest to readers. 

 

 



We appreciate the valuable and constructive comments from the reviewers, which contributed greatly 

to enhancing the quality of the manuscript. (NCOMMS-22-02193) We did our best to comply with each 

comment and correct the manuscript accordingly. Our point-by-point responses to each comment are 

shown below. In addition, the related modifications are highlighted and also applied to the revised 

manuscript. 

 

REVIEWER COMMENTS 

 

Reviewer #1 (Remarks to the Author): 

 

In this manuscript the authors demonstrate a hardware implementation of probabilistic circuits using 

the stochastic switching behavior of a diffusive memristor. The implementation is interesting and the 

paper has the potential to be an important alternative compared to other realizations of stochastic 

nanodevices for p-computing, however, the manuscript in its current form needs significant work to be 

publishable in any venue. 

 

 Answer from authors:  

We appreciate the brief overview and concise summarization of the manuscript by the reviewer. Below 

are the point-by-point responses to each comment.  
 

Comment 1: First, the comparisons to quantum computing that are in the text are quite inaccurate 

and careless. For example, the statement: “The principle of p-computing is derived from the theoretical 

background of quantum computing and Hopfield network-based machine learning” is not specific 

enough to make sense. It is true that p-computing has a lot of similarities to a type of quantum computing 

(namely quantum annealing pursued by D-Wave) but without this qualification it is inaccurate.  

 

 Answer from authors:  

We thank the reviewer for these valuable comments. We revised the introductory part to make it more 

specific to the relevant context of quantum computing (quantum annealing). We originally thought this 

was a bit too specific, but now we agree with the reviewer’s comments and modified the text. 

 Page 5, deleted:  

The working principle of the p-computing network can be more directly derived from the Hopfield 

 



network. The Hopfield network is a single-layer neural network with neurons corresponding to the spins 

on the lattice sites of the Ising model, fully connected to each other.35 The weight represents the strength 

of each connection. 

 Page 5, added: 

The operation principle of p-computing is derived from the theoretical background of quantum 

computing called quantum annealing, which shares similar features with a stochastic Hopfield 

network.35 Quantum annealing is based on an energy-based model to solve combinatorial optimization 

problems. In quantum annealing, the energy of a quantum system comprised of “qubits” is defined as 

Hamiltonians, further divided into the initial and final Hamiltonian. The initial Hamiltonian denotes the 

initial ground state of the system, where each qubit remains in a state with the quantum superposition 

of 0 and 1. As the system undergoes the annealing procedure, the initial Hamiltonian slowly develops 

into the final Hamiltonian, which provides a low-energy solution to the given problem.36 Similarly, for 

p-computing, each qubit can be substituted with multiple “p-bits,” in which the binary states fluctuate 

with time.37,38 For simplicity, the equations of a stochastic Hopfield network or a Boltzmann machine39 

are introduced, which may provide the conceptual framework of the present p-computing principle. 
 

Comment 2: Second, the authors repeated use of “Hopfield Networks” is also inaccurate because 

hardware p-circuits most naturally resemble Boltzmann Networks (that are admittedly stochastic 

Hopfield Networks but without the unnecessary connotations to associative memory etc., which is the 

main focus of Hopfield Networks). 

 

 Answer from authors:  

We appreciate this careful comment. We agree that the repeated use of “Hopfield Network” may 

confuse the reviewer and readers. We made corrections and added a few citations regarding the 

hardware implementations of Boltzmann networks to prevent confusion. 

 Page 5, modified:  

The operation principle of p-computing is derived from the theoretical background of quantum 

computing called quantum annealing, which also shares similar features with a stochastic Hopfield 

network.35 

 Page 5, added:  

For simplicity, the equations of a stochastic Hopfield network or a Boltzmann machine39 are introduced, 

which may provide the conceptual framework of the present p-computing principle. 

 



 

 

Comment 3: Similarly, Table I provides little comparison to anything substantial other than making 

perfunctory statements about differences between p and q-computing. What would have been a far 
more useful comparison in Table I would be to compare the authors’ implementation in this paper 
with respect to Magnetic Tunnel Junction based p-bits which have been explored and demonstrated 

extensively. 

 

For example, could the fluctuations observed in diffusive memristors can reach GHz time scales such 

as those achieved by the IBM [Safranski et al, Nano Letters 2020] and Tohoku Groups [Hayakawa et 

al, PRL 2020] in magnetic tunnel junctions? How should the power dissipation of their p-bit compare 

to the MTJ-bsaed p-bit evaluated as dissipating 20 microWatts per p-bit discussed in Hassan et al, Phys. 

Rev. Applied 2021? Unfortunately, crucial comparisons like these are replaced by somewhat artificial 

comparisons to quantum computing without much support. 

 Answer from authors:  

We thank the reviewer for this fruitful advice. Table I was added to assist the readers who may not be 

well familiar with quantum and probabilistic computing principles. We agree that a more realistic 

comparison between our work and previous works would be more appropriate to prove the novelty of 

the manuscript. Therefore, we organized Table II with quantitative data such as power, fabrication and 

size, shown below. The power consumption was calculated by the equation: P = ௜ܸ௡ܫ௔௩௚, where ௜ܸ௡ 

is the input voltage, and ܫ௔௩௚  is the average current flowing through the CTHP device. A typical 

comparator design was considered for the comparison of the cell area. 

 Page 13, added: 

Complex functions, such as full adder and multiplication/factorization, were also suggested, showing 

the potential of the proposed method to apply to more complex logic circuits. Finally, a comparison 

between other probabilistic computing hardware and this work is shown in Table II.  

Table II: Comparison between various probabilistic computing hardwares. For the MTJ and 

CTHP devices, only energy for the probabilistic device was considered (comparator energy 

consumption was excluded). However, the operation speed of the MTJ is higher than CTHP.  

 
CMOS-
based12 

Magnetic Tunnel 
Junction-based12,49 

This work 

 



Fabrication 

(Device) 

Complex 

(Transistor 

Logic) 

Complex 

(Ta/Pt/[Co/Pt]7/Co/Ru/[C

o/Pt]2/Co/Ta/CoFeB/Mg

O/CoFeB/Ta/Ru/Ta) 

Simple 

Metal/Insulator/Metal 

(CuxTe1-x/HfO2/Pt) 

Power 

Consumption  
 200 μW  10 μW 2.3 μW 

CMOS 

circuits 

(Number of 

transistors) 

LFSR 

(1194) 

NMOS+Comparator 

(11) 

Comparator 

(10) 

 

 

Comment 4: Similarly, unless I missed it, there is not enough detail regarding how the synaptic 

operation is performed, even in the lengthy supplementary. 

In short, I believe the manuscript has potential, but is in need of significant and careful revision, 

especially in regards to how quantum computing references. Careful comparisons with actual state of 

the art is needed. More details regarding the scheme needs to be presented. 

 

 Answer from authors:  

Thank you for pointing out a missing explanation. We agree that the details about synaptic operations 

in the p-bit network were not specified in the main text. We have expanded the details of synaptic 

operations, and also rewrote the “Logic operations” section almost entirely. The logic operations can 

be executed by calculating the input functions in Supplementary Table 1. The input functions are 

composed of the coefficients and the p-bit outputs, analogous to the synaptic weights and the neuron 

outputs in neural networks. Therefore, it is necessary to build hardware that can perform the sums and 

products in the equations. For this purpose, FPGA might be the most suitable solution. However, we 

found that the actual setting of the FPGA required quite extensive engineering efforts, which bears little 

relevance to the core idea of this work. Therefore, we used a computer simulation method to emulate 

the computing environment, and we conducted simulations with experimental p-bit circuit results. The 

operation details were added below, taking AND operation as an example. 

 

 Page 9-10, modified:  

 



Logic operations. With the p-computing network based on the memristor-based p-bits, logic operations 

can be executed. For instance, an ‘AND’ operation returns ‘true’ when all the inputs are ‘true.’ 

Otherwise, the output is false. The corresponding equation that satisfies these conditions is written as ݕଵ =  ଶ, which is then used to create a cost function for the AND operation. The input functions areݔଵݔ

obtained from differentiating the corresponding cost functions following Equation 5. Each variable is 

assigned to the p-bit, and thus, a three-p-bit network is required to operate the AND logic, as shown in 

Figure 3a. Similarly, all 16 Boolean logic operations can be performed with appropriate cost functions. 

Definitions of cost (or energy) functions and the resulting input functions for all 16 Boolean logic 

operations are shown in Supplementary Table 1. The cost function of AND logic, for example, is given 

as the square of the difference between the true value (ݔଵݔଶ) and current value (ݕଵ), which is similar to 

how the cost function is defined in deep learning of neural networks. When the cost function of the 

AND logic is fully expressed, ܧሺݔଵ, ଵሻݕ,ଶݔ  = ଶݔଵݔ − ଵݕଶݔଵݔ2 + ଵݕ , there are multiplications and 

summations of the inputs, ݔଵ,  ଵ, with the relevant coefficients, 1, -2, and 1. Theݕ ,ଶ, and outputݔ 

coefficients define the connection strength between the p-bit outputs, which is analogous to synaptic 

weights connecting the neurons in machine learning. When different logic gates are necessary, these 

functional relationships between the terms and relevant coefficients should be modified. Supplementary 

Table I summarizes all these relationships and coefficients for the 16 Boolean logic gates. As shown 

later, even complex gates, such as full adder, can be defined similarly. Besides, there is a crucial 

difference between synaptic weights in p-computing and neural networks. In the p- computing, the 

synaptic weights are fixed for a given logic operation, but they evolve with training for a given task in 

the neural networks. 

Next, more detailed explanations are given on how the p-computing can be executed. First, the input 

functions should be realized by networking the synaptic hardware and multiple p-bit circuits. 

Programmable digital circuits such as a field programable gate array (FPGA) are the most suitable 

approach to demonstrate such input functions with the multiplications of p-bit outputs by hardware. 

Figure 3b shows the schematic diagram of such hardware construction. Three p-bit circuits for ݔଵ,  ,ଶݔ 

and, ݕଵ, each composed of a CTHP memristor and a comparator, are connected to the inputs of FPGA, 

and the FPGA outputs three bits corresponding to ݔଵ,  ଵ. The FPGA is programmed to outputݕ ,ଶ, andݔ 

the correct bits depending on the given logic operations using the input and cost functions. In this work, 

all logic operations were implemented by simulation based on the CTHP-based p-bit characteristics and 

the cost functions. The simulation was performed using the fitted sigmoid relation and parameters 

calculated from Equation 7. The sigmoid fitting curve in Figure 2b is based on the averaged Vout, but 

variations exist, as shown in Figure 3c. The widest distribution is found at 5.23 V, where the p-bit 

exhibits the most stochastic behavior. As the Vin value deviates farther from 5.23 V, the distributions 

become narrower, and the p-bit becomes deterministic to ‘0’ or ‘1.’ Since the memristor always has 

 



variability issues, such as cycle-to-cycle and device-to-device variations, these variations were 

considered for all logic operations in the simulation. For each clock cycle, a random output of 0 or ஽ܸ஽ 

is generated from the comparator. This output is normalized to 0 or 1 by the relation, ݌௡ = ௏ೀೆ೅௏ವವ .  

For the forward operations, the input voltages into the p-bits corresponding to ݔଵ,  and ݔଶ are derived 

from Equation 7 by ூܸே = ௜ܫ ௌܸ + ைܸ . When the inputs are 0, ூܸே,௫ଵ  and ூܸே,௫ଶ  are fixed to 

sufficiently low voltage, ca. 5.10 V, to ensure switching probability close to 0. Under this circumstance, 

the p-bit circuits for the two inputs most frequently output zero voltage, which drives the FPGA to 

output the corresponding bit of 0. For the input 1, the ூܸே value of the corresponding input p-bit circuit 

is settled to 5.32 V, which renders the FPGA mostly produce the corresponding bit of 1. Next, the 

corresponding ݕଵ  value must be determined for the given inputs. For this operation, the ூܸே,௬ଵ  is 

initially settled to ைܸ (~5.23 V in this case), which is the voltage of 50% switching probability, and 

then it is floated. Next, the ூܸே,௬ଵ must be changed to a value, which can represent the AND logic 

operation. By the definition of the input function of AND logic, ܫ௬ଵ = ଶݔଵݔ2 −  ௬ଵ is calculated toܫ ,1

be -1 for ݔଵ or  ݔଶ = 0. In this case, the switching probability is ~27 % (See Supplementary Figure 

S2). ூܸே,௬ଵ is then calculated to show the ݕଵ p-bit outputs <௏ೀೆ೅௏ವವ > ~27%, and is inputted to the ݕଵ p-

bit. Under this circumstance, the FPGA outputs the ݕଵ bit mostly 0. However, it should be noted that 

there is a significant chance for the output ݕଵ  bit of FPGA is 1 due to the involvement of CTHP 

variation and rand. Therefore, when the procedures discussed above are simulated 100 times, the 

probability of the outputs of the FPGA (ݔଵ,  ,ଵ)  to be (000) and (001) are ~0.84 and ~0.16ݕ,ଶݔ

respectively, as shown in the left panel of Figure 3d (i, forward operation). The corresponding 

probabilities for (010), (011); (100), (101); (110), (111) are ~0.84, ~0.16; ~0.84, ~0.16; ~0.25, ~0.75, 

indicating that the correct AND logic operations are acquired. However, it can be argued that one of the 

fundamental assets of any logic operation, i.e., logic correctness, is only probabilistically confirmed. 

Therefore, it can be questioned what can be the merit of such logic gating using the p-bits? One of the 

reasonable rationales is the invertible calculation. The following inverted calculation can be performed 

using the same hardware for AND logic. In this case, ݕଵ is given first to be 0 or 1, which then requires ݔଵ, ଶݔ = ሺ0,0), ሺ0,1), (1,0)  or (1,1). For this operation, the ூܸே,௬ଵ  is fixed to low (5.10 V) or high 

(5.32 V) voltage, while the ூܸே,௫ଵ and ூܸே,௫ଶ inputs are first settled to 5.23 V and then floated. Then, 

ூܸே,௫ଵ  and ூܸே,௫ଶ  values are determined based on their respective input functions, ܫ௫ଵ  and ܫ௫ଶ . 

Subsequently, similar procedures are repeated to determine the ݔଵ,  ଵ  value. Theݕ ଶ  for the givenݔ

right panel of Figure 3d (ii, inverted operation) reveals that (000), (010), and (100), corresponding to 

the correct case for ݕଵ= 0, have a probability of ~0.3, whereas other incorrect cases have a probability 

of < ~0.1. For the ݕଵ= 1, the correct and incorrect cases have their respective probability of ~0.5 and < 

~0.2. Therefore, it can be inferred that the inverted AND logic operation could be feasibly (statistically) 

 



achieved using the given p-bit circuits. The supplementary information (Supplementary Figs. S3-S17) 

also shows that inverted logic operations for all the remaining Boolean gates are possible. 

 

Reviewer #2 (Remarks to the Author): 

 

Probabilistic computing, or computing using “p-bits” originally proposed by Datta group from Purdue 

University has gained some traction as one of the approaches to implement an Ising Machine, which 

themselves are investigated for solving certain problems that can be cast or recast as a global 

optimization problem. A p-bit computer is “wired” up corresponding to the optimization program and 

then the result is obtained by either through simulated annealing or via very long term sampling of the 

p-bit values which seeks to obtain the bit pattern corresponding to the ground-state (lowest eigen value) 

of the Hamiltonian being encoded by the p-bit network. As such this form of computing is suitable for 

any probabilistic algorithm that is based on energy minimization and a nano-material that shows 

significant stochastic electrical response is well suited to provide the stochastic samples necessary for 

the operation of such an optimizer. 

 

Datta group has presented quite a few papers on the theoretical analysis, as well as low barrier magnet 

MTJ based hardware (published in Nature), as well as emulated p-bits generated purely algorithmically 

using CMOS circuits, including microcontrollers, and FPGA (from Camsari group at UCSB). It should 

also be nolted that p-bits do not provide the only implementation for an Ising machine solver as many 

other groups have approached this problem using dynamical systems built from oscillators built from 

CMOS, variety of memristors, optical substrates, charge density waves in 2D materials etc. It should 

also be noted that a significant number of quantum computing research, most prominently D-Wave, are 

solving the same problem via quantum methods (quantum annealing ratehr than simulated annealing) 

even though the problem itself is classical and small problems can be solved using simple MATLAB 

codes on a mid-range laptop. Therefore the jury is still out if this method has any intrinsic 

benefits over conventional computing and at what problem sizes might such an advantage show up. 

 

The authors have presented a work that attempts to build proof-of-concept Ising chains using a Copper-

Telluride-Platinum Hafnia (CTHP) diffusive memristor. They have fabricated p-bits using a 

combination of the CTHP, a resistor, and a comparator. This is in lines of other designs presented using 

MTJs. The circuits were assembled on a breadboard, which is also as per the standard practice. 

Therefore I find the methodology section as per the standard setups being used in this area. 

 

 



 Answer from authors:  

We appreciate this brief introduction to the background of p-computing and summarization of the 

manuscript. The reviewer has a deeper understanding of this field, which we appreciate very much. The 

point-by-point responses to each comment are as follows. 
 

Comment 1: However my central concerns are against the presentation of the material, going beyond 

the stylistic approaches. The authors present the p-bit with a comparison between classical/deterministic, 

p-computing and quantum computing. This comparison starts right at the very beginning, e.g. line 34-

39. While the quantum computing has indeed being used in Ising machine like problem as I mentioned 

before, this contentions is not warranted. Quantum computing’s power arises from large scale 

entanglement which really forms a large state space to compute over. Similarly quantum computers 

often exploit “negative” probability amplitudes that allow for destructive interference of the compute 

possibilities (see Grover search or the classic Deustch alogrithm that started off the field). I suspect that 

authors are motivating the p-bits as a “poor man’s quantum computer” since quantum computers are 

significantly harder to build and operate. However a much simpler motivation of solving BPP 
alogrithms, going beyond P ones would have been sufficient. There is also a strong conjecture that 

P=BPP which, if true, will render such accelerators moot. Therefore table 1 is not illuminating 

beyond trivial comparison. 

 

 Answer from authors:  

We thank the referee for the valuable comments. We organized Table I to enhance the comprehension 

of p-bit computing, which might be uneasy to understand for most readers unfamiliar with quantum 

computing. We agree that p-computing is similar to quantum annealing. Both computing schemes adopt 

the same energy-based model or Hamiltonian to acquire the solution to the target problem. We added 

an introductory paragraph about quantum annealing and its connection to p-computing as below. 

 

 Page 6, added and modified:  

The operation principle of p-computing is derived from the theoretical background of quantum 

computing called quantum annealing, which shares similar features with a stochastic Hopfield 

network.35 Quantum annealing is based on an energy-based model to solve combinatorial optimization 

problems. In quantum annealing, the energy of a quantum system comprised of “qubits” is defined as 

Hamiltonians, further divided into the initial and final Hamiltonian. The initial Hamiltonian denotes the 

initial ground state of the system, where each qubit remains in a state with the quantum superposition 

 



of 0 and 1. As the system undergoes the annealing procedure, the initial Hamiltonian slowly develops 

into the final Hamiltonian, which provides a low-energy solution to the given problem.36 Similarly, for 

p-computing, each qubit can be substituted with multiple “p-bits,” in which the binary states fluctuate 

with time.37,38 For simplicity, the equations of a stochastic Hopfield network or a Boltzmann machine39 

are introduced, which may provide the conceptual framework of the present p-computing principle. 

 

Comment 2: Another such concerning point is the comparison made between machine learning 
methods and p-computing. It is puzzling to me because authors themselves correctly point out that p-

computers are merely stochastic Hopfield networks, a very popular neural network, also called the 

Boltzmann machine. The operating principles of operation is precisely the same, energy 

minimization and a Boltzmann distruibution based programming of energy eigen values. Even the 

original proponent of p-bit have clearly stated that their approach to actually figure out the weights 

depend on the same algorithm that is well known and used in Hopfield network literature, i.e. carefully 

aligning the eigenvectors and thus the p-bit values to the truth table being programmed. For an unknown 

problem, some sort of weight update algorithm will be necessary even for p-computing. All this makes 

me wonder how much thought the authors have given in connecting these established and well known 

pieces in their own minds, and this reflects in the exposition. 

 

 Answer from authors:  

Thank you for the valuable comments. The way how machine learning and p-computing find the 

solution to a particular problem is different. In machine learning, the synaptic weights connecting the 

neurons are updated according to the appropriate training schemes to maximize the probability of 

getting the correct solution. As a result, after the training is over, the network outputs the solution with 

high accuracy. In contrast, in p-computing, there is no weight update; once the weights are fixed to the 

values derived from the energy function, the system finds the p-bit configuration with the highest 

probability. Each p-bit state fluctuates with time, and the configuration with the highest output 

frequency is chosen as the solution. We added the following comments to make this point clearer. 

 Page 5, added and modified: 

The p-computing can calculate the results in one shot without training the weights. In contrast, machine 

learning takes multiple training epochs and consequently more power to optimize the weight matrix to 

calculate the correct results. 

We also modified the section Logic operations substantially to show the more precise operation of the 

suggested p-bit circuits, in which the difference was also elaborated. Please refer to our answer to the 

 



last comment of reviewer #1 above. 

 

Comment 3: My last concern is regarding the novelty of the work. The basic principles are well 

known and established in the lietrature, only difference is that they have used a particular material to 

create their p-bits as a drop-in replacement for a BSN which again is a very old and well known concept, 

see the very first chapter of Simon Haykin’s celebrated book on NNs. I am not sure that such an 

incremental work warrants a publication at a venue such as Nature Communication, given the utter lack 

of surprise in the presented results which do not illuminate or advance the field in any significant way. 

 

 Answer from authors:  

We admit that what we report in this work may not be regarded as a breakthrough for the new algorithm 

or computational method for the mentioned complex problems. Instead, we believe we provided a 

significantly improved implementation method based on the known principle suggested by Datta’s 

group using the 2-terminal diffusive memristors. Compared with the MTJ p-bit in which a transistor-

modulated current drives the MTJ device, our diffusive memristor is driven by a direct voltage. Also, 

we made several breakthroughs compared with the previous works in terms of power, size and 

fabrication process, also noted in Table II. Another notable merit is that we provided a complete list of 

cost functions for all the necessary Boolean logic gates, even with a simpler form than the original 

suggestion by Datta’s group, which has not been reported yet. We believe that these are sufficient 

justification for this work to be seen in this journal, which other reviewers also appreciate.  

 

 Page 15, modified: 

Moreover, the cost functions and the input functions for all 16 Boolean logic operations were derived 

in a simpler form compared to the previous works. All logic operations were implemented in forward 

and reversed directions through the memristor-based p-computing network. Complex functions, such 

as full adder and multiplication/factorization, were also suggested, showing the methodology’s potential 

to be applied to more complex logic circuits. Finally, a comparison between other probabilistic 

computing hardware and this work is shown in Table II. 

 

Reviewer #3 (Remarks to the Author): 

 

I think this manuscript reports significant new results using memristive elements in a role that is very 

different from the usual synaptic functions. As such I believe it should be published in a journal like 

 



Nature Communications after appropriate revisions. 

 

 Answer from authors:  

We appreciate the reviewer for the positive evaluation of our work.  

 

Comment 1: There are statements in this paper that do not sound right to me. For example, in the context 

of quantum computing I see the statement: “.. lacking the general algorithm for Boolean logic operations 

is another critical huddle for its widespread use.” I believe that at least some of the probabilistic 

algorithms demonstrated here (like Boolean operations and factorization) were first explored in 
the context of adiabatic quantum computing. 
 

 Answer from authors:  

Thank you for the correction. We deleted the statement from the main text. 

 

 Page 2, deleted:  

Also, lacking the general algorithm for Boolean logic 36 operations is another critical huddle for its 

widespread use. 

 

Comment 2: One minor comment is about their use of “Hopfield networks” to describe what is probably 

a “Boltzmann machine” which is a stochastic Hopfield network. 

 

 Answer from authors:  

We appreciate this careful comment. We agree that the repeated use of “Hopfield Network” may 

confuse the reviewer and readers. We made corrections and added a few citations regarding the 

hardware implementations of Boltzmann networks to prevent confusion. 

 Page 5, modified:  

The operation principle of p-computing is derived from the theoretical background of quantum 

computing called quantum annealing, which shares similar features with a stochastic Hopfield network. 

 Page 5, added:  

For simplicity, the equations of a stochastic Hopfield network or a Boltzmann machine39 are introduced, 

 



which may provide the conceptual framework of the present p-computing principle.  

 

Comment 3: Since this paper uses memristors to implement a function that has been implemented with 

magnetic tunnel junctions, it seems to me that a paragraph comparing them may be of interest to readers. 

 Answer from authors:  

We thank the reviewer for this fruitful advice. Table I was added to assist the readers who may not be 

well familiar with quantum and probabilistic computing principles. We agree that a more realistic 

comparison between our work and previous works would be more appropriate to prove the novelty of 

the manuscript. Therefore, we organized Table II with quantitative data such as power, fabrication and 

size, shown below. 

 Page 13, added: 

Complex functions, such as full adder and multiplication/factorization, were also suggested showing 

the methodology’s potential to be applied to more complex logic circuits. Finally, a comparison between 

other probabilistic computing hardware and this work is shown in Table II. The power consumption 

was calculated by the equation: P = ௜ܸ௡ܫ௔௩௚, where ௜ܸ௡ is the input voltage, and ܫ௔௩௚ is the average 

current flowing through the CTHP device. A typical comparator design was considered for the 

comparison of the cell area. 

 

Table II: Comparison between various probabilistic computing hardwares. For the MTJ and 

CTHP devices, only energy for the probabilistic device was considered (comparator energy 

consumption was excluded). However, the operation speed of the MTJ is higher than CTHP.  

 
CMOS-
based12 

Magnetic Tunnel 
Junction-based12,49 

This work 

Fabrication 

(Device) 

Complex 

(Transistor 

Logic) 

Complex 

(Ta/Pt/[Co/Pt]7/Co/Ru/[C

o/Pt]2/Co/Ta/CoFeB/Mg

O/CoFeB/Ta/Ru/Ta) 

Simple 

Metal/Insulator/Metal 

(CuxTe1-x/HfO2/Pt) 

Power 

Consumption  
 200 μW  10 μW 2.3 μW 

 



CMOS 

circuits 

(Number of 

transistors) 

LFSR 

(1194) 

NMOS+Comparator 

(11) 

Comparator 

(10) 

 

 

 

 



REVIEWER COMMENTS 

 

Reviewer #1 (Remarks to the Author): 

 

(0) The authors responded to the reviewer comments well. Remarks regarding quantum computing 

is now tempered and there are comparisons to MTJ-based p-computing. The synaptic operation with 

FPGA + DAC is clearly visible with details. 

The paper evolved to a much better state. However, I still have some suggestions for revision, mostly 

to ensure the paper remains scientifically accurate in the long term. 

 

(1) The most important one is the use of "quantum computing". It would be safer and more 

"accurate" to simply replace this with "quantum annealing". For example, Table I compares p-

computing with q-computing and suggests they both have high "parallelity of processing" (a better 

term is needed since I am not sure what this means). The full distinction of gate-based quantum 

computing vs p-computing was recently explored in https://arxiv.org/abs/2007.07379. In that paper 

the authors showed that emulating a generic quantum gate with p-bits requires polynomial 

resources in memory but exponential resources in time, more or less in line with the the theoretical 

computer science understanding. However, Ref. 37 of the manuscript (by the same authors of the 

article I mentioned) showed that when it comes to quantum annealing, the similarities are much 

more direct and there is no apparent need for exponentially more resources for p-computing. As 

such, p-computing and q-computing should not be called out equally like so, as shown in Table~I and 

in the paper but a much better comparison could be quantum annealing (if such a comparison is 

absolutely necessary). 

 

Otherwise, remarks from the authors might draw significant criticism from the quantum computing 

community if the authors publish the manuscript in this form, in such a visible venue! 

 

(2) Table II is a great start. I understand the authors' instinct to put the best aspects of the 

memristors vs MTJs ... But it would be good to have a column that shows the present-day speeds of 

MTJs and the prospects of memristors (and how fast they can be) in the future. 

Right now, the authors simply added this sentence to the caption without any references that I 

mentioned in my previous round report: "However, the operation speed of the MTJ is higher than 

CTHP." 

Yes, it is true that stochasticity might be a better alternative than MTJs for p-computing like the 

authors suggest but a frank assessment is needed. It is understandable that the first experiments 

 



with memristors do not show ~nanosecond fluctuations but are there prospects for this to happen ? 

What other advantages might memristors hold ? 

 

(3) Regarding the statement that's added in this round: 

 

"The p-computing can calculate the results in one shot without training the weights. In contrast, 

machine 

learning takes multiple training epochs and consequently more power to optimize the weight matrix 

to 

calculate the correct results." 

 

My suggestion is to remove this or qualify it somehow. When it comes to small invertible logic 

operations like Full Adders and AND gates ... Machine Learning algorithms can find these weight 

matrices quite easily, as well. Training a Boltzmann Machine with 5-visible nodes will easily find the 

Full Adder weights with 5 p-bits. 

 

(4) Regarding the statement: 

 

"Another advantage of this study is that the memristor-based p- computing enables both forward 

and inverted operations, allowing for expanding its uses for complex operations, such as integer 

factorization." 

 

An advantage over what? I thought MTJ-based or any other stochastic p-bit will have the same 

property of being invertible. 

This last sentence in that paragraph may not be needed. 

 

(5) My final comment: I believe the paper shows an intriguing possibility of making p-bits with 

stochastic diffusive memristors. This is a significant result. Instead of trying to "make the case" for p-

computing by contrasting it with q-computing, the authors should try to give a direct comparison 

with alternatives. I hope the authors will find these comments useful and try to improve the paper 

another time with this spirit. 

 

 

 



 

Reviewer #2 (Remarks to the Author): 

 

The authors have made changes to the manuscript in a positive direction. I think the exposition of 

the computing paradigm is much cleaner. This form of computing touches upon many other 

disciplines, which makes it a hard topic to describe in the space of a paper. However, there are still 

some issues which need clarification/ better explanation. My comments are as follows: 

 

1. Authors describe this memristor as "fast" in line 182. A little before that it seemed that they used 

pulses of around 200us, which translates to a frequency of p-value generation of around 5kHz (not 

considering the relaxation period), which is quite low. My 6 year old laptop running MATLAB can 

generate a million MCMC samples for a 25-node Ising network in a few hundred milliseconds. Could 

they specify if they are making the comparison against any other specific material technology? 

 

2. The computing demo part seemed to have been done via simulations using fitted V-V 

characteristics curves. It is however not clear what the simulation technique was, other than that it 

was done possibly on python. There is a further claim that device-to-device and cycle-to-cycle 

variability was considered. I feel this is completely inadequate without further explanation of the 

simulation methodology. Such a simulation should be performed on some version of SPICE that can 

account for actual nodal voltages and currents in the memristor along with the driving transistors, 

because without that the reported power values in table II are meaningless speculations. 

 

3. In continuation of the previous comment, while the variability was considered, it is not clear to me 

what their impact was on the final calculations. 

 

4. The authors have not discussed physical and logical failure modes specific to the CTHP memristor, 

without which it is hard to judge the viability and importance of this material in this space. I 

understand if they have not performed such studies, but if they can point to any other studies or 

their own thoughts on these point, it will be very useful. 

 

5. I did not understand the point being made during comparison with PiM or LiM architectures (line 

265). PiMs use very light weight read-out circuits on a column shared read line sense amp to 

generate logic operations to avoid intermediate readouts/writeins between memory and processor. 

I do not see why implementing any of these 16 Boolean operations would be significantly simpler in 

this methodology as compared to PiM. Further PiMs amortize any "complex" logic circuitry over a 

 



large memory array which makes them practically "free". This claims needs to be either dropped or 

expanded and clarified further to make technical sense. 

 

Overall, I feel that the exposition has been significantly improved with regards to the computing 

paradigm, but the details on the memristor itself lacks some clarity. 

 

 

Reviewer #3 (Remarks to the Author): 

 

The revised manuscript seems much improved. 

 

One comment that the authors may wish to consider: 

The novelty of the paper lies in the use of memristors in an unconventional role, namely as p-bits 

instead of MTJ's or other CMOS-based alternatives. It would be good to stress this point more with 

quantitative comparisons. 

 

 



We thank the reviewers for the valuable comments, which helped us reorganize the main concepts and 

improve the quality of the manuscript. We did our best to respond to each comment and modify the 

manuscript accordingly. Our point-by-point replies to all the comments are provided as shown below. 

 

REVIEWER COMMENTS 

 

Reviewer #1 (Remarks to the Author): 

 

The authors responded to the reviewer comments well. Remarks regarding quantum computing is now 

tempered and there are comparisons to MTJ-based p-computing. The synaptic operation with FPGA + 

DAC is clearly visible with details. 

The paper evolved to a much better state. However, I still have some suggestions for revision, mostly 

to ensure the paper remains scientifically accurate in the long term. 

 

 Answer from authors:  

We do appreciate the thoughtful advice. Especially, explanations of the synaptic operation and the 

connections with quantum annealing are more clarified in this revision, as follows.  

 

Comment 1: The most important one is the use of "quantum computing". It would be safer and more 

"accurate" to simply replace this with "quantum annealing". For example, Table I compares p-

computing with q-computing and suggests they both have high "parallelity of processing" (a better term 

is needed since I am not sure what this means). The full distinction of gate-based quantum computing 

vs p-computing was recently explored in https://arxiv.org/abs/2007.07379. In that paper the authors 

showed that emulating a generic quantum gate with p-bits requires polynomial resources in memory 

but exponential resources in time, more or less in line with the theoretical computer science 

understanding. However, Ref. 37 of the manuscript (by the same authors of the article I mentioned) 

showed that when it comes to quantum annealing, the similarities are much more direct and there is no 

apparent need for exponentially more resources for p-computing. As such, p-computing and q-

computing should not be called out equally like so, as shown in Table~I and in the paper but a much 

better comparison could be quantum annealing (if such a comparison is absolutely necessary). 

Otherwise, remarks from the authors might draw significant criticism from the quantum computing 

community if the authors publish the manuscript in this form, in such a visible venue! 

 Answer from authors:  

 



We appreciate these careful comments. Among various types of quantum computing, quantum 

annealing provides the most relevant theoretical background of p-computing, as the reviewer correctly 

indicated. Therefore, we replaced "quantum computing" with "quantum annealing" throughout the text. 

Regarding the term "parallelity of processing", our definition was the ability to compute two or more 

tasks simultaneously. However, we concluded it is premature to compare the parallelity of 3 types of 

computing directly. Therefore, we deleted the row in Table I about "parallelity of processing". 

 

 Table I, 6th row removed: 

Computation 
methods 

Classical 
computing 

Quantum 
computing 

Probabilistic 
computing 

Data 

expression 

0 or 1 

deterministic 

values 

Superposition of 0 

and 1; an infinite 

number of states 

between 0 and 1 

Probabilistic 0 or 1 

Hardware 

implementation 

CMOS-based 

digital logic 

circuits 

Computing system

 based on electro

n spin resonance 

Oscillating digital outp

uts based on stochasti

c devices 

Output Deterministic Probabilistic Probabilistic 

Power 

consumption 

High High Low 

 

Comment 2: Table II is a great start. I understand the authors' instinct to put the best aspects of the 

memristors vs MTJs ... But it would be good to have a column that shows the present-day speeds of 

MTJs and the prospects of memristors (and how fast they can be) in the future. 

Right now, the authors simply added this sentence to the caption without any references that I mentioned 

in my previous round report: "However, the operation speed of the MTJ is higher than CTHP." 

Yes, it is true that stochasticity might be a better alternative than MTJs for p-computing like the authors 

suggest but a frank assessment is needed. It is understandable that the first experiments with memristors 

do not show ~nanosecond fluctuations but are there prospects for this to happen ? What other advantages 

might memristors hold ? 

 Answer from authors:  

Thank you for this careful assessment of the revised text. At this moment, the switching speed of the 

 



memristors, especially ion-migration-based ones, including the present work, can hardly exceed that of 

the MTJs. However, the memristors still possess the potential to overcome the speed limit. The 

minimum switching time of memristors was reported as short as tens of picoseconds in literature46. 

They are also advantageous when expanded on a larger scale for complex operations. Furthermore, they 

generally have a larger tolerance for process variation, such as insulating layer thickness variation, than 

the extremely tight thickness variation allowance of the MTJ. We added a statement in the main text 

and an additional row in Table II regarding this point. 

 Page 9, revised: 

Still, the bit generation speed of memristor-based p-bits can be further improved through device 

engineering. For example, substituting the insulator with a higher Cu ion diffusivity can further 

accelerate the CF formation and dissolution processes.29 The switching time of memristors can be as 

short as tens of picoseconds, showing the potential for fast and low-power computing.18,46 The electrode 

structure of a memristor is much simpler than the MTJ. They also have a larger tolerance for the 

thickness variation of the insulating layer compared with the extremely tight allowable thickness 

variation of the insulating layer in MTJ.   

 

 Table II, added: 

 
CMOS-
based12 

Magnetic Tunnel 
Junction-based12,53 

Memristor-based 

Fabrication 

(Device) 

Complex 

(Transistor 

Logic) 

Complex 

(Ta/Pt/[Co/Pt]7/Co/Ru/[C

o/Pt]2/Co/Ta/CoFeB/Mg

O/CoFeB/Ta/Ru/Ta) 

Simple 

Metal/Insulator/Metal 

(CuxTe1-x/HfO2/Pt) 

Power 

Consumption  
 200 μW  10 μW 154 nW @ 5.4 V 

CMOS 

circuits 

(Number of 

transistors) 

LFSR 

(1194) 

NMOS+Comparator 

(11) 

Comparator 

(10) 

Potential 

switching 
100 ps12 200 ps18,52 85 ps18,46 

 



speed of the 

device 

 

 Page 15, added: 

Based on a 2-terminal metal-insulator-metal structure, p-bits built with memristors are advantageous in 

area efficiency and production cost compared with other p-bits when integrated into a larger network. 

 

Comment 3: Regarding the statement that's added in this round: 

"The p-computing can calculate the results in one shot without training the weights. In contrast, machine 

learning takes multiple training epochs and consequently more power to optimize the weight matrix to 

calculate the correct results." 

My suggestion is to remove this or qualify it somehow. When it comes to small invertible logic 

operations like Full Adders and AND gates ... Machine Learning algorithms can find these weight 

matrices quite easily, as well. Training a Boltzmann Machine with 5-visible nodes will easily find the 

Full Adder weights with 5 p-bits. 

 Answer from authors: 

Thank you for this careful comment. We wanted to emphasize that p-computing is distinguished from 

machine learning in that it does not require an iterative training step, not directly to compare which one 

is better. P-computing shares similarities with the Boltzmann machine, but its primary purpose is to 

solve problems with fixed energy (cost) functions. In contrast, machine learning trains weights to 

optimize the network to return results with high accuracy. Therefore, power consumption and 

computing accuracy are in a trade-off relation. We agree that machine learning can perform simple 

tasks quite easily. To avoid unnecessary complications, we tone down the relevant text as follows. 

 Page 7, revised: 

The main difference between p-computing and machine learning is that the p-computing can calculate 

the results in one shot without training the weights at the expense of the loss of computing accuracy. In 

contrast, machine learning takes multiple training epochs, which consumes more power. However, 

machine learning can perform the tasks more accurately by optimizing the weight matrix. 

 

Comment 4: Regarding the statement: 

"Another advantage of this study is that the memristor-based p- computing enables both forward and 

inverted operations, allowing for expanding its uses for complex operations, such as integer 

 



factorization." 

An advantage over what? I thought MTJ-based or any other stochastic p-bit will have the same property 

of being invertible. 

This last sentence in that paragraph may not be needed. 

 Answer from authors:  

Thank you for the corrections. We intended to mention one of the strengths of memristor-based p-bit, 

but the context may confuse the readers. Since the inverted operation was already demonstrated in this 

work and in the MTJ-based work, we deleted this sentence.  

 Page 4, deleted: 

"Another advantage of this study is that the memristor-based p- computing enables both forward and 

inverted operations, allowing for expanding its uses for complex operations, such as integer 

factorization." 

 

Comment 5: My final comment: I believe the paper shows an intriguing possibility of making p-bits 

with stochastic diffusive memristors. This is a significant result. Instead of trying to "make the case" 

for p-computing by contrasting it with q-computing, the authors should try to give a direct comparison 

with alternatives. I hope the authors will find these comments useful and try to improve the paper 

another time with this spirit. 

 Answer from authors: 

Thank you for the thoughtful and insightful evaluation of our work. We believe this comment is in line 

with the 2nd comment above. The memristors are advantageous for complex operations when expanded 

on a larger scale due to their simple 2-terminal MIM structure. Therefore, it can enhance the area 

efficiency and reduce production costs. Regarding the device switching speed, the memristors cannot 

exceed the performance of the MTJs so far. However, memristors still possess the potential to overcome 

the deficiency. We hope that the modifications in this revision make the reviewer satisfied. 

 

  

 



Reviewer #2 (Remarks to the Author): 

 

The authors have made changes to the manuscript in a positive direction. I think the exposition of the 

computing paradigm is much cleaner. This form of computing touches upon many other disciplines, 

which makes it a hard topic to describe in the space of a paper. However, there are still some issues 

which need clarification/ better explanation. My comments are as follows: 

 Answer from authors:  

Thank you for the overall positive evaluation of the revised manuscript. The previous comments helped 

enhance the quality of the manuscript substantially. Below are the responses to each comment and the 

corresponding corrections in the main text. 
 

Comment 1: Authors describe this memristor as "fast" in line 182. A little before that it seemed that 

they used pulses of around 200us, which translates to a frequency of p-value generation of around 5kHz 

(not considering the relaxation period), which is quite low. My 6 year old laptop running MATLAB can 

generate a million MCMC samples for a 25-node Ising network in a few hundred milliseconds. Could 

they specify if they are making the comparison against any other specific material technology? 

 Answer from authors:  

Thank you for this critical comment. We suppose the intention of the statement was not conveyed 

smoothly. We intended to imply the potential to enhance the bit generation speed of memristor-based 

p-bits through additional device engineering. However, it was reported that the switching time of the 

memristors could be as short as tens of picoseconds46. The original explanation may confuse the 

reviewer, so we changed the text to clarify our intentions. 

 Page 9, revised: 

Still, the bit generation speed of memristor-based p-bits can be further improved through device 

engineering. Substituting the insulator with a higher Cu ion diffusivity can further accelerate the CF 

formation and dissolution processes.29 The switching time of memristors can be as short as tens of 

picoseconds, showing the potential for fast and low-power computing.18,46 

 

Comment 2: The computing demo part seemed to have been done via simulations using fitted V-V 

characteristics curves. It is however not clear what the simulation technique was, other than that it was 

done possibly on python. There is a further claim that device-to-device and cycle-to-cycle variability 

was considered. I feel this is completely inadequate without further explanation of the simulation 

methodology. Such a simulation should be performed on some version of SPICE that can account for 

 



actual nodal voltages and currents in the memristor along with the driving transistors, because without 

that the reported power values in table II are meaningless speculations. 

 Answer from authors:  

Thank you for indicating this critical point. We attempted to conduct an additional HSPICE simulation 

to calculate the actual power consumption of the circuit. However, it was challenging to achieve the 

device outputs with the multiple input pulses in HSPICE since the stochastic CTHP switching cannot 

be modeled by simple circuit elements, such as the resistors and the capacitors, which was necessary to 

perform the HSPICE simulation. Also, it was challenging to estimate the comparator power since the 

comparator cannot be realized in the HSPICE simulation environment unless specific transistor 

characteristics are provided. We consulted this problem with several simulation specialists in our EE 

department, but they also replied similarly. Because of these problems, we could only estimate the 

power consumption of the CTHP device and the series resistor by simple mathematical calculations 

using Ohm's law. The measured pulse data of the CTHP device was averaged over 40 cycles to calculate 

the circuit's power, as shown in Supplementary Fig. S19. In this case, the power consumptions of the 

CTHP and series R were added.  

 Page 8, added: 

 The average power consumption of the p-bit circuit was calculated using the pulse output of the device  

(Supplementary Fig. S19). 

 Table II, revised: 

Table II: Comparison between various probabilistic computing hardwares. For the MTJ and 

CTHP devices, only energy for the probabilistic device was considered (comparator energy 

consumption was excluded). However, the operation speed of the MTJ is higher than CTHP.  

 
CMOS-
based12 

Magnetic Tunnel 
Junction-based12,53 

Memristor-based 

Fabrication 

(Device) 

Complex 

(Transistor 

Logic) 

Complex 

(Ta/Pt/[Co/Pt]7/Co/Ru/[C

o/Pt]2/Co/Ta/CoFeB/Mg

O/CoFeB/Ta/Ru/Ta) 

Simple 

Metal/Insulator/Metal 

(CuxTe1-x/HfO2/Pt) 

Power 

Consumption  
 200 μW  10 μW 154 nW @ 5.4 V 

 



CMOS 

circuits 

(Number of 

transistors) 

LFSR 

(1194) 

NMOS+Comparator 

(11) 

Comparator 

(10) 

Potential 

switching 

speed of the 

device 

100 ps12 200 ps18,52 85 ps18,46 

 

 Supplementary Figure S19 added: 

Supplementary Figure S19: Power consumption calculation results of the CTHP p-bit circuit. 

a) Power consumption of the CTHP device. b) Power consumption of the series resistor. c) The 

CTHP p-bit circuit design used in the analysis. d) Power consumption at different input voltage 

pulse amplitudes, averaged over 40 cycles. 

 

Comment 3: In continuation of the previous comment, while the variability was considered, it is not 

clear to me what their impact was on the final calculations. 

 Answer from authors:  

Thank you for this helpful advice. We considered the variability of the device to conduct the experiment 

assuming more practical situations. Most stochastic elements based on physical phenomena have 

 



intrinsic variations due to the intrinsic and extrinsic noises. These may include variations in device 

fabrication, thermal noise, parasitic components in the measurement environment, etc. Therefore, we 

considered these in the first place to ensure the plausibility of the simulation.  

 

Comment 4: The authors have not discussed physical and logical failure modes specific to the CTHP 

memristor, without which it is hard to judge the viability and importance of this material in this space. 

I understand if they have not performed such studies, but if they can point to any other studies or their 

own thoughts on these point, it will be very useful. 

 

 Answer from authors:  

Thank you for your valuable comments. The physical breakdown of the CTHP device can be defined 

as the permanent change of the switching mode from threshold switching to resistive switching. This 

behavior is due to the excessive inclusion of Cu atoms into the insulating layer. To ensure stable 

generation of the p-bit outputs, we measured the endurance, estimated to be over 106 cycles 

(Supplementary Figure S1e). We also noted this aspect in the "Memristor-based p-bit and p-computing 

system" section. Moreover, the endurance of Cu-based threshold switching can reach 1010 cycles, 

according to literature45. 

 Page 8, added: 

The endurance of Cu-based threshold switching can reach 1010 cycles, showing the potential for stable 

bit generation.44,45 However, its threshold switching performance could be frustrated by changing it to 

the resistive switching mode, accompanied by the excessive Cu atom migration into the insulating layer. 

 

Comment 5: I did not understand the point being made during comparison with PiM or LiM 

architectures (line 265). PiMs use very light weight read-out circuits on a column shared read line sense 

amp to generate logic operations to avoid intermediate readouts/writeins between memory and 

processor. I do not see why implementing any of these 16 Boolean operations would be significantly 

simpler in this methodology as compared to PiM. Further PiMs amortize any "complex" logic circuitry 

over a large memory array which makes them practically "free". This claims needs to be either dropped 

or expanded and clarified further to make technical sense. 

 

Overall, I feel that the exposition has been significantly improved with regards to the computing 

paradigm, but the details on the memristor itself lacks some clarity. 

 

 



 Answer from authors:  

Thank you for pointing out this critical point. We agree that comparing our p-bit with the PiM or LiM 

is too premature. We deleted the sentence from the main text. 

 Page 13, deleted: 

Also, the memristor-based LIM requires additional operation steps for a more complex operation, such 

as a full adder. 

 

  

 



Reviewer #3 (Remarks to the Author): 

 

The revised manuscript seems much improved. 

 

One comment that the authors may wish to consider: 

The novelty of the paper lies in the use of memristors in an unconventional role, namely as p-bits instead 

of MTJ's or other CMOS-based alternatives. It would be good to stress this point more with quantitative 

comparisons. 

 

 Answer from authors:  

We thank the reviewer for the favorable review of our research. Since we already compared with other 

types of p-bit hardware, we added a statement in the main text to emphasize the strength and perspective 

of memristor-based p-bits. Although the bit generation speed of the CTHP p-bit is measured as a 

microsecond-scale, there is still much room for improving device switching speed. The switching speed 

can be further enhanced through device engineering. Furthermore, the maximum switching time of 

memristors can be as short as the picoseconds scale in the literature, which shows the prospect of the 

memristors performing computing efficiency comparable to their counterparts. 

 Page 9, revised: 

Still, the bit generation speed of memristor-based p-bits can be further improved through device 

engineering. Substituting the insulator with a higher Cu ion diffusivity can further accelerate the CF 

formation and dissolution processes.29 The switching time of memristors can be as short as tens of 

picoseconds, showing the potential for fast and low-power computing.18,46 The electrode structure of a 

memristor is much simpler than the MTJ. They also have a larger tolerance for the thickness variation 

of the insulating layer compared with the extremely tight thickness control of the insulating layer in 

MTJ. 

 



REVIEWERS' COMMENTS 

 

Reviewer #1 (Remarks to the Author): 

 

I think the authors have revised the manuscript well, addressing concerns from all the reviewers. I 

have no further comments, the paper is balanced and reads well. 

 

 

Reviewer #2 (Remarks to the Author): 

 

The paper has significantly improved and the exposition is much clearer. The analysis of variability 

and endurance is a significant addition which I feel has made this a useful paper in this space. In lines 

with the other reviewer's comments, I think the reduction on the novelty and utility claims for the p-

computing and focusing more on the CTHP memristor itself as a platform has made this a 

significantly better read. 

 

I believe that the paper is acceptable and meets the standards of Nature Communications in terms 

of importance, relevance, and novelty. 

 

As an optional suggestion to the authors, it is indeed possible to model the CTHP and other 

memristors (and indeed most other trivial and non-trivial dynamical systems) within a SPICE like 

environment. However it is a non-trivial effort especially if the specific expertise is lacking within the 

department since it is a highly unconventional area as yet for the electrical engineering and needs an 

extensive search for appropriate modeling abstractions. One example of such an approach is the 

"Modular Approach to Spintronics" which was published in a sister journal of NCOMMS a few years 

ago. This does not distract from the present work and its importance, and my suggestion is for any 

future work authors may undertake. 

 

I wish my best to the authors. 

 



We appreciate the valuable advice from the reviewers, which significantly enhanced the quality of this 

work and straightened out the ideas.  

 

REVIEWER COMMENTS 

 

Reviewer #1 (Remarks to the Author): 

 

I think the authors have revised the manuscript well, addressing concerns from all the reviewers. I have 

no further comments, the paper is balanced and reads well. 

 

 Answer from authors:  

We thank the reviewer for the thoughtful comments, which helped the manuscript, especially in refining 

the adiabatic quantum computing concepts. 

 

 

  

 



Reviewer #2 (Remarks to the Author): 

 

The paper has significantly improved and the exposition is much clearer. The analysis of variability and 

endurance is a significant addition which I feel has made this a useful paper in this space. In lines with 

the other reviewer's comments, I think the reduction on the novelty and utility claims for the p-

computing and focusing more on the CTHP memristor itself as a platform has made this a significantly 

better read. 

 

I believe that the paper is acceptable and meets the standards of Nature Communications in terms of 

importance, relevance, and novelty. 

 

As an optional suggestion to the authors, it is indeed possible to model the CTHP and other memristors 

(and indeed most other trivial and non-trivial dynamical systems) within a SPICE like environment. 

However it is a non-trivial effort especially if the specific expertise is lacking within the department 

since it is a highly unconventional area as yet for the electrical engineering and needs an extensive 

search for appropriate modeling abstractions. One example of such an approach is the "Modular 

Approach to Spintronics" which was published in a sister journal of NCOMMS a few years ago. This 

does not distract from the present work and its importance, and my suggestion is for any future work 

authors may undertake. 

 

I wish my best to the authors. 

 

 Answer from authors:  

We appreciate the precious comments throughout the revision process of this work. Also, we thank the 

reviewer for suggesting the idea for future works. We will consider conducting the advanced simulation 

method using the HSPICE model of the CTHP device. 
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