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S1: The mathematics and convergence of the heterozy-1

gosity window2

In the following, we derive an analytical approximation for the solution of cell-type fre-3

quencies over time for the assumption that the initial frequency f is very small, similar to4

Eq. (A.12) in section A.3. Here, we only consider the mode of random segregation. Later5

on we use this solution to proof the convergence of the heterozygosity window in the limit6

of the threshold xthr → 1 as discussed in the main text.7

As in Appendix A.3, we choose the initial frequency f sufficiently low such that the relative8

frequencies of heterozygotes χj :=
xj

x1+···+xn−1
equilibrate at a timescale that is short relative9

to the time it takes until mutant cells take over the population. Hence, we assume in the10

following that (x1, . . . , xn−1)T is proportional to the eigenvector of (mi→j − δji)ji∈{1,...,n−1}11

corresponding to the dominant eigenvalue ξ, which depends on the copy number n and12

on the mode of replication (see Eq. (A.13) and (A.18), mi→j defined in (A.12) denotes the13

expected number of j-type cells produced at division of a i-type cell). Once equilibrated, the14

frequencies of the heterozygous cells relative to each other χj remain constant throughout15
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the entire fixation process, which can formally be seen by the following calculation:16

d
xj
xhet

dt
=

ẋj
xhet

− xj
x2

het

ẋhet17

=
1

xhet

{
ẋj −

xj
xhet

xhet

}
18

=
1

xhet

{
−x0xj − (1 + s)xnxj +

n−1∑
i=1

xi(1 + s)(mi→j − xj)− xj(1 + s)− xj
xhet

n−1∑
k=1

ẋk

}
19

=
1

xhet

{
− x0xj − (1 + s)xnxj +

n−1∑
i=1

xi(1 + s)mi→j − (1 + s)xjxhet − xj(1 + s)20

− xj
xhet

n−1∑
k=1

(
−x0xk − (1 + s)xnxk

n−1∑
i=1

xi(1 + s)(mi→k − xk)− xk(1 + s)

)}
21

=
1

xhet

{
− x0xj − (1 + s)xj(1− x0) +

n−1∑
i=1

(1 + s)xi(mi→j − δij)22

− xj
xhet

n−1∑
k=1

(
−x0xk − (1 + s)xk(1− x0) +

n−1∑
i=1

xi(1 + s)(mi→k − δik)

)}
23

=
1

xhet

{
− x0xj − (1 + s)xj(1− x0) +

n−1∑
i=1

(1 + s)xi(mi→j − δij)24

− xj
xhet

(
−x0xhet − (1 + s)xhet(1− x0) +

n−1∑
k=1

n−1∑
i=1

xi(1 + s)(mi→k − δik)

)}
25

=
1

xhet

{
n−1∑
i=1

(1 + s)xi(mi→j − δij)−
xj
xhet

n−1∑
k=1

n−1∑
i=1

xi(1 + s)(mi→k − δik)

}
26

= (1 + s)

{
n−1∑
i=1

xi
xhet

(mi→j − δij)−
xj
xhet

n−1∑
k=1

n−1∑
i=1

xi
xhet

(mi→k − δik)

}
27

= (1 + s)

{
ξ
xj
xhet

− xj
xhet

n−1∑
k=1

ξ
xk
xhet

}
28

= (1 + s)

{
ξ
xj
xhet

− xj
xhet

ξ

}
29

= 0. (S1.1)3031

The evolution of the population through time in our model can then be described by a32
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system of three ordinary differential equations for the frequency of the wild type x0, the33

sum of frequencies of all heterozygous types xhet = x1 + · · · + xn−1, and frequency of the34

homozygous mutant type xn. From equation (A.11), we obtain for the time-derivative of35

the homozygous mutant type i = n36

ẋn =
n∑
i=0

{xiλi(mi→n − xn)} − xiλn37

= x0(m0→n − xn) +
n−1∑
i=1

xi(1 + s)(mi→n − xn) + xn(1 + s)(mn→n − xn)− xn(1 + s)38

= −x0xn + (1 + s)

(
n−1∑
i=1

mi→nχixhet − xn
n−1∑
i=1

xi

)
+ xn(1 + s)(2− xn)− xn(1 + s)39

= −x0xn + (1 + s)κxhet − (1 + s)xhetxn − (1 + s)x2
n + (1 + s)xn40

= −(1− xhet − xn) + (1 + s)κxhet − (1 + s)xhetxn − (1 + s)x2
n + (1 + s)xn41

= −sx2
n − sxhetxn + (1 + s)κxhet + sxn,42

43

where we used m0→n = 0 and mn→n = 2, and defined κ :=
∑n−1

i=1 mi→n
xi
xhet

. It holds44

κ =
n−1∑
i=1

(mi→n − δin)χi45

=
n∑
j=0

n−1∑
i=1

(mi→j − δij)χi −
n−1∑
j=0

n−1∑
i=1

(mi→j − δij)χi46

= 1−
n−1∑
i=1

(mi→0 − δij)χi −
n−1∑
j=1

n−1∑
i=1

(mi→j − δij)χi47

= 1−
n−1∑
i=1

(mi→n − δij)χi − ξ48

= 1− κ− ξ,49
50

where we have used
∑n−1

i=1

∑n
j=0 (mi→j − δij)χi = 1 (every cell has two daughter cells) and51
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the symmetry mi→j = mn−i→n−j. We therefore obtain52

κ =
1

2
(1− ξ). (S1.2)53

54

For the sum of heterozygous cells, we obtain55

ẋhet =
n−1∑
i=1

ẋi56

=
n−1∑
i=1

(
n∑
k=0

xkλk(mk→i − xi)− xiλi

)
57

=
n−1∑
i=1

(
x0(m0→ixi) +

n−1∑
k=1

xk(1 + s)(mk→i − xi) + xn(1 + s)(mn→i − xi)− xi(1 + s)

)
58

=
n−1∑
i=1

(
−x0xi + (1 + s)

(
n−1∑
k=1

mk→iχkxhet − xi
n−1∑
k=1

xk

)
− xn(1 + s)xi − xi(1 + s)

)
59

=
n−1∑
i=1

(−x0xhet + (1 + s)(ξ + 1)χixhet − (1 + s)xixhet − xn(1 + s)xi − xi(1 + s))60

= −x0xhet + (1 + s)(ξ + 1)xhet − (1 + s)x2
het − xhet(1 + s)xn − xhet(1 + s)61

= −(1− xhet − xn)xhet + (1 + s)(ξ + 1)xhet + (1 + s)x2
het − xn(1 + s)xhet − xhet(1 + s)62

= −sx2
het − sxnxhet + ((1 + s)ξ − 1)xhet.63

64

To make progress, it is easier to switch variables and to consider the total frequency of65

mutant cells xmut := xhet + xn and the relative fraction of heterozygous cells among all66
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mutant cells xhf := xhet
xmut

instead of xhet and xn. The time-derivative of xmut is given by67

dxmut

dt
= ẋhet + ẋn68

= −sx2
het − sx2

n − 2sxnxhet + ((1 + s)(ξ + κ)− 1)xhet + sxn69

= −s(xhet + xn)2 + ((1 + s)(ξ + κ)− 1)xhet70

= −sx2
mut + ((1 + s)(ξ + κ)− 1)xmutxhf + sxmut(1− xhf) (S1.3a)71

= −sx2
mut + sxmut + (1 + s)(ξ + κ− 1)︸ ︷︷ ︸

=:a

xmutxhf . (S1.3b)72

73

For the time-derivative of xhf , we obtain74

ẋhf =
d

dt

(
xhet

xmut

)
75

=
ẋhet

xmut

− xhf

xmut

ẋmut76

=
−sx2

het − sxnxhet + ((1 + s)ξ − 1)xhet

xmut

77

− xhf

xmut

(
−sx2

mut + ((1 + s)(ξ + κ)− 1)xmutxhf + sxmut(1− xhf)
)

78

= −sxhetxhf − sxnxhf + ((1 + s)ξ − 1)xhf79

+ sxhfxmut − ((1 + s)(ξ + κ)− 1)x2
hf − s(1− xhf)xhf80

= −sxmutxhf + ((1 + s)ξ − 1)xhf81

+ sxhfxmut − ((1 + s)(ξ + κ)− 1)x2
hf − s(1− xhf)xhf82

= ((1 + s)ξ − 1− s)xhf + (s+ 1− (1 + s)(ξ + κ))x2
hf83

= − (1 + s)(ξ + κ− 1)︸ ︷︷ ︸
=a

x2
hf + (1 + s)(ξ − 1)︸ ︷︷ ︸

=:b

xhf ,84

85

where we have used Eq. (S1.3a). The general solution to this Bernoulli differential equation86
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(Zeidler, 2013) is87

xhf(t) =
bebC+bt

aebC+bt + 1
. (S1.4)88

89

From the initial condition x1 = f, x2 = 0, . . . , xn = 0, such that xhf = xhet
xmut

= 1, we get90

C =
ln( 1

b−a)
b

. Substituting C into Eq. (S1.4) yields91

xhf(t) =
b( 1
b−a)ebt

a( 1
b−a)ebt + 1

92

=
bebt

aebt + b− a
(S1.5a)93

=
(1 + s)(ξ − 1)e(1+s)(ξ−1)t

(1 + s)(1− ξ − κ)e(1+s)(ξ−1)t − (1 + s)κ
94

=
(ξ − 1)e(1+s)(ξ−1)t

(1− ξ − κ)e(1+s)(ξ−1)t − κ
. (S1.5b)95

96

Inserting Eq. (S1.5a) into (S1.3b) gives97

ẋmut = −sx2
mut + sxmut + axmut

bebt

aebt + b− a
. (S1.6)98

99

For the initial condition xmut(0) = f , the solution (obtained with Mathematica Version100

12.0.0.0 (Wolfram Research, Inc.)) is given by101

xmut(t) =
f(b+ s)est

(
a
(
ebt − 1

)
+ b
)

fest (asebt − (a− b)(b+ s)) + b(af + b(−f) + b− fs+ s)
102

=
f(ξ + ξs− 1)est

(
κ− (κ+ ξ − 1)e(ξ−1)(s+1)t

)
fκ(ξ − 1) (est − 1)

+ fs
(
κ+ ξ + κξ (est − 1)− (κ+ ξ − 1)et(ξ+ξs−1) − 1

)
− (ξ − 1)(ξ + ξs− 1)

.

(S1.7)

103

104

In the next step, we derive an expression for the size of the heterozygosity window in the105

limit xthr → 1, where xthr denotes the threshold for fixation, and show that it is independent106
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of the initial frequency f . The limit xthr → 1 implies that tfix and tphen both tend to infinity,107

and we thus study the behavior of the system for large times (formally t→∞).108

For the time to fixation at the phenotype level tphen, it holds that x0(tphen) = 1−xmut(tphen) =109

1− xthr. For the time to fixation at the genotype level tfix (fixation of homozygous mutant110

cells), it analogously holds x0(tfix) + xhet(tfix) = 1 − xn(tfix) = 1 − xthr, where we have111

xwt := x0 + xhet as the frequency of cells that carry wild-type replicon copies. Combining112

the latter equations, we get113

1− xthr = x0(tphen) = xwt(tfix). (S1.8)114

If the strength of selection is large compared to the inverse copy number, so that we expect115

a heterozygosity window (cf. the threshold of Eq. (1)), the decay rate of the frequency of116

wild-type carrying cells xwt(t) is approximately given by117

1

t
lnxwt(t) =

1

t
ln (1− xn(t)) =

1

t
ln (1− xmut(t)(1− xhf(t)))

t→∞−→ (1 + s)(ξ − 1), (S1.9)118

119

where we obtained the limit using Mathematica as above (see File S2). Mathematica120

states the condition ξ > 2+s
2(1+s)

as a condition for this limit, which is is equivalent to121

s > 2
n−5/2

≈ 2
n

for regular replication and s > (8n)/(−1 − 7n + 2n2) ≈ 4
n

for random122

replication. This is more stringent than the condition for the existence of a heterozygosity123

window (Eq. (1)), which is s & 1
n

(regular replication, Eq. (1)) or s & 2
n

(random replication,124

Eq. (2)). Numerical results for relevant cases of n and s, however, show that Eq. (S1.9)125

also holds true if 1
n
. s . 2

n
(see File S2). Thus, for large times, we have126

xwt(t) ∝ e(1+s)(ξ−1)t.127
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Consequently, we have128

xwt(tfix) = xwt(tphen)e(1+s)(ξ−1)∆t, (S1.10)129

where we used the definition of the heterozygosity window ∆t = tfix − tphen. Moreover,130

using again Mathematica, we obtain for the limit131

xwt(t)

x0(t)

t→∞−→ κ+ (κ− 1)s

(1 + s)(κ+ ξ − 1)
=

2s

(1 + s)(1− ξ)
− 1 =: r, (S1.11)132

which is independent of f . Inserting Eq. (S1.10) and (S1.11) into Eq. (S1.8) gives, for the133

limit of the fixation threshold xthr → 1,134

xwt(tphen)e(1+s)(ξ−1)∆t = xwt(tfix) = x0(tphen) =
xwt(tphen)

r
(S1.12)135

⇔ e(1+s)(ξ−1)∆t =
1

r
136

⇔ ∆t =
ln 1

r

(1 + s)(ξ − 1)
=

ln
(

(1+s)(κ+ξ−1)
κ+(κ−1)s

)
(1 + s)(ξ − 1)

, (S1.13)137

138

which is independent of the initial frequency f . Fig. S1 and S2 show comparisons to139

numerical simulations.140

From (S1.12), we obtain xwt(tphen) ≈ rx0(tphen) = rxthr for xthr close to one. Thus, the141

frequency of heterozygotes at the time of phenotypic fixation can be approximated for large142

xthr by143

xhet(tphen) = (r − 1)xthr. (S1.14)144
145

Note that the condition (1 + s)ξ > 1 (cf. Eq. (A.15)), which is required in the derivation,146

is equivalent to r > 1. A comparison to numerical simulations is shown in Fig. S2.147

For the mode of regular replication, we obtain for the heterozygosity window by insertion148
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of the corresponding expressions for ξ and κ (Eqs. (A.13) and (S1.2))149

∆t =
2n− 1

2(1 + s)
ln

(
2(n− 1)s− 1

s+ 1

)
(S1.15a)150

≈ n

1 + s
ln

(
2ns

1 + s

)
. (S1.15b)151

152

Under the mode of random replication, we obtain analogously using Eqs. (A.18) and (S1.2)153

∆t =
2n2 + n− 1

4n(1 + s)
ln

(
n(2ns− s− 2)− s

2n(1 + s)

)
(S1.16a)154

≈ n/2

1 + s
ln

(
ns

1 + s

)
. (S1.16b)155

156
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Figure S1: (A) Influence of the fixation threshold xthr on the length of the heterozygosity
window ∆t. In the main text, a frequency of 99% mutant cells and of 99% homozygous
mutant cells is the proxy for determining the fixation times tphen and tfix respectively. The
plot shows the heterozygosity window ∆t = tfix − tphen obtained from the deterministic
model (Eq. (A.11)) for various thresholds xthr (markers) and from the analytical approx-
imations (solid and dashed lines, showing Eqs. (S1.15a) and (S1.15b), respectively). For
smaller initial frequencies of mutant cells f (see legend), the heterozygosity window con-
verges later, i.e., for thresholds xthr closer to 1. Parameters: replicon copy number n = 32,
strength of selection s = 0.1, mode of regular replication. (B) Comparison of the length
of the heterozygous window ∆t for the threshold xthr = 99% (dots) and xthr = 99.9999%
(crosses) with the analytical approximations (solid and dashed lines, showing Eqs. (S1.15a)
and (S1.15b), respectively) for various replicon copy numbers n and strength of selection
s. Parameters: initial frequency of mutant cells f = 1%, mode of regular replication.
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Figure S2: Influence of the replicon copy number n and the strength of selection s on the
remaining frequency of heterozygotes at the phenotypic fixation time, xhet(tphen), and the
heterozygosity window ∆t, assuming regular replication and random segregation. Thin
lines show results from the numerical integration of Eq. (A.11), and thick lines show the
analytical approximations of xhet(tphen) (Eq. (S1.14)) and ∆t (Eq. (S1.15a)) for small initial
frequencies f and xthr ≈ 1. (A) and (B) show results for two different fixation thresholds
(99 % and 99.99 %).
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Figure S3: The heterozygosity window ∆t for various combinations of the replicon copy
number n and the inverse of the selective advantage 1/s for the mode of random segregation
with (A) regular replication and (B) random replication. The initial frequency of mutant
cells with one mutant replicon copy is f = 0.01. The dotted lines denote the threshold
above which a heterozygosity windows arises given by Eq. (1) and (2) respectively.
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Figure S4: The heterozygosity window as a function of the strength of selection s (x-
axis) for various replicon copy numbers n (lines). Panel A shows the absolute size ∆t and
Panel B the size relative to the phenotypic fixation time ∆t/tphen. Both the absolute and
the relative sizes increase with n. The relative size of the heterozygosity window (Panel B)
also monotonically increases with the strength of selection s. The absolute size (Panel A)
has a maximum as a function of s, since the fixation times become shorter with increasing
s, which ulimately also affects the size of the window.
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Figure S5: Influence of the replicon copy
number n and the strength of selection s
on the fixation times and the heterozygos-
ity window for constant initial frequencies of
mutant replicon copies frep = f/n = 0.001.
The initial frequency of mutant cells with one
mutant replicon copy is set to f = frepn.
The panels are analogous to those of Fig-
ure 3, where f rather than frep is kept con-
stant. (A) Fixation times as a function of the
replicon copy number for several selection co-
efficients s = 0.05 (blue), 0.1 (orange), 0.3
(green) (B) Contour plot of the heterozygos-
ity window for various replicon copy numbers
n and selection coefficients s. (C) Frequency
of remaining heterozygotes at the time point
of phenotypic fixation tphen.
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Figure S6: Influence of the replicon copy
number n and the strength of selection s
on the fixation times and the heterozygos-
ity window for a replicon subject to random
replication and random segregation. This
figure is analogous to Figure 3, considering
random replication instead of regular repli-
cation of replicon copies. The dotted line in
(C) shows the threshold for s at which the
heterozygosity window start to occur (crite-
rion (2)).
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Figure S7: Fixation times of mutant cells tphen (orange) and of homozygous mutant cells
tfix (blue) for various population sizes N . Violin plots show the distribution from 103

stochastic simulations. Horizontal lines within the violin plots indicate the mean fixation
times. The dashed horizontal lines show results from the deterministic model (Eq. (A.11))
reflecting an infinite population. Parameters: n = 16, s = 0.3, f = 0.01.
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Figure S8: Fixation times as a function of the
replicon copy number of simulations for sev-
eral selection coefficients s = 0.05 (blue), 0.1
(orange), 0.3 (green) using the alternative
segregation modes. The plots are analogous
to Figure 3A (baseline model with random
segregation) and show results for (A) cluster-
ing of sister replicon copies, (B) separation
of sister replicon copies, and (C) asymmet-
ric inheritance of replicon copies. Parame-
ter: f = 0.01.
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Figure S9: Influence of the replicon copy number n and the strength of selection s on the
fixation times for constant initial frequencies of mutant replicon copies frep = f/n = 0.001
for asymmetric inheritance of replicon copies. The figure is analogous to Figure S5A.
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Figure S10: Frequency trajectories of different cell types for mutations of various domi-
nance, assuming random segregation and regular replication. The figure is analogous to
Figure 2D. (A) Cells carrying at least one mutant replicon copy have a selective advantage
s (as in the main text, same plot as in Figure 2). (B) Cells carrying only mutant replicon
copies have a selective advantage s. (C) The selective advantage of cells carrying i mutant
copies is given by s i

n
. Parameters: Replicon copy number n = 32, strength of selection

s = 0.3. The time unit corresponds to the generation time of the wild type.
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Figure S11: The spread of a beneficial dominant allele (Panels A-D, h = 1) and of a
beneficial recessive allele (Panels E-H, h = 0) in a sexually reproducing population with
random mating. The dynamics are modeled by a deterministic Wright-Fisher model with
selection (Etheridge, 2011). The variable pa denotes the frequency of the beneficial allele a
in the population. Genotype frequencies of homozygous mutant and heterozygous cells in

the subsequent generation are given by Paa = p2a(1+s)
w̄

and PaA = 2pa(1−pa)(1+hs)
w̄

respectively,
where w̄ = 1 + sp2

a + 2hspa(1 − pa). Phenotypically mutant cells have a fraction xmut =
Paa+PaA for dominant mutations and xmut = Paa for recessive mutations in the population.
The allele frequency is given by pa = Paa+PaA/2. The mutant allele frequency at generation
0 is set to pa = f/2 with f = 0.01.
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