
Group sequential designs for longitudinal outcomes

Nick R Parsons1, Nigel Stallard1, Helen Parsons2, Aminul Haque2, Martin Underwood2,3, James
Mason2, Iftekhar Khan2, Matthew L Costa4, Damian R Griffin2, James Griffin2, David J Beard4,

Jonathan A Cook5, Loretta Davies4, Jemma Hudson6, and Andrew Metcalfe2,3

1Statistics and Epidemiology Unit, Warwick Medical School, University of Warwick, CV4 7AL,
Coventry, UK

2Warwick Clinical Trials Unit (WCTU), Warwick Medical School, University of Warwick, CV4
7AL, Coventry, UK

3University Hospital Coventry and Warwickshire (UHCW), CV2 2DX, Coventry, UK
4Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS),

University of Oxford, OX3 7LD, Oxford, UK
5Centre for Statistics in Medicine, Nuffield Department of Orthopaedics, Rheumatology and

Musculoskeletal Sciences (NDORMS), University of Oxford, OX3 7LD, Oxford, UK
6Health Services Research Unit (HSRU), University of Aberdeen, AB25 2ZD, Aberdeen, UK

September 27, 2022

1 Longitudinal outcomes

In a two-arm controlled clinical trial where participants are followed-up and outcomes reported at a series of t time-
points, let yijs be the outcome for the ith of N participants (i = 1, . . . , N), at time-point s (s = 1, . . . , t) recruited into
intervention arm j (0 = control and 1 = treatment) of the trial. Let us assume that the total number of participants
supplying (follow-up) data at time-point s is N0s + N1s, where N0s is the number in the control arm and N1s is
the number in the treatment arm. Before recruitment into the trial is completed, we assume that the number of
outcome data are structured such that N01 ≥ N02 ≥ · · · ≥ N0t−1 ≥ N0t and N11 ≥ N12 ≥ · · · ≥ N1t−1 ≥ N1t; i.e.
there are always more or equivalent data available for the early than the later time-points. At the completion of the
study (i.e. the end of follow-up), we also further assume that data are independent (between participants) and that
the distribution of outcomes (yij1, . . . , yijt) is multivariate normal, with mean (µj1, . . . , µjt) and covariance matrix

Σ =


σ2
1 σ1σ2ρ12 . . . σ1σtρ1t

σ2σ1ρ21 σ2
2 . . . σ2σtρ2t

...
...

. . .
...

σtσ1ρt1 σtσ2ρt2 . . . σ2
t

 , (1)

where σs is the standard deviation of the outcome at time s and ρss′ is the correlation between endpoints at time-
points s and s′.
The primary interest of the clinical trial is to estimate the effect of the treatment on the study outcome at time-point
t (the primary study endpoint), which we call βt. In order to undertake the study in the most efficient manner
possible, we aim to assess the treatment effect at interim analyses (early looks) during follow-up with the possibility
of stopping the study for either futility or efficacy. A number of authors have investigated this problem [1, 2, 3]
and more generally group-sequential analysis for longitudinal data [4, 5]. The method of analysis proposed by Engel
and Walstra [2] was formulated for a long-term and a single short-term endpoint in the setting of a fixed sample
size experiment, rather than a clinical trial, and recognised the fact that information on the long-term endpoint was
available from the short-term endpoint, due to the correlation between data from individual study participants at
the two time points. The motivation for this approach, referred to as double-regression, was to use observations
from the early outcome, which are considered to be generally less expensive, to inform inferences on more expensive
definitive (final) outcomes. In the setting of a clinical trial, the cost of the longer term outcome (relatively to
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the shorter outcome) is both in the resources required for longer term follow-up and the wider societal costs of
potentially exposing patients to ineffective treatments, if the study ultimately provides little support for the efficacy
of the intervention under test. A more general approach in the setting of a sequential trial, with a number of interim
analyses, with a long-term and potentially many short-term endpoints involving comparison of an experimental arm
with a control arm was first suggested by Galbraith and Marschner [3].

2 Model

Formulating as a linear longitudinal model with correlated errors, under the assumption of multivariate normality
(MVN) for outcome yi, we can write,

yi ∼ MVN(Xiβ,Σi), (2)

where Σi(σ, ρ) is the k × k covariance matrix of yi characterised by parameters σ (σ1, . . . , σk) and ρ (ρ12, . . . , ρss′),
Xi is a k × 2t design matrix (where study participant i has k endpoints; 1 ≤ k ≤ t) and β is a 2t × 1 vector of
unknown model parameters. β can be structured, for convenience, such that β = (β10, β20, . . . , βt0, β1, β2, . . . , βt),
where βs0 estimates the outcome mean in the control arm of the study, and βs estimates the effect of the treatment
arm relative to the control arm at time-point s. Therefore, βt is the effect of the treatment on the study outcome at
time-point t (the primary endpoint).

The maximum likelihood estimator for β, under the multivariate normal assumption for known Σi, is the gener-
alized least squares estimator [6]

β̃ =

(
N∑
i=1

X ′iΣ
−1
i (σ, ρ)Xi

)−1( N∑
i=1

X ′iΣ
−1
i (σ, ρ)yi

)
, (3)

with variance given by

var(β̃) =

(
N∑
i=1

X ′iΣ
−1
i (σ, ρ)Xi

)−1
. (4)

Estimates β̃ and var(β̃) follow naturally given covariance matrix Σi, which may be obtained from estimates of
the correlations ρ, and standard deviations σ. These could in principle be obtained in a number of ways or could
be fixed to known or expected values. Galbraith and Marschner [3] suggest using conventional mixed-effects models
for analysis of correlated data to estimate the covariance parameters. This can easily be implemented, for example,
by fitting separate fixed-effects for each follow-up time with an unstructured error covariance using the function
lme in R [7] package nlme. Alternatively, for the purposes of monitoring information accumulation during a trial
it is often beneficial to directly model the covariance structure amongst repeated outcomes rather than including
random-effects to account for within individual dependences. This can be achieved using the generalized least squares
model (e.g. gls function in nlme), which unlike the mixed-effects model, provides explicit estimates of the covariance
parameters [8]; see example code in Section 6 for details of how models can be fitted to data in R. Either model
formulation provides consistent and unbiased estimates of model parameters (see the simulation study of Section 7),
under an assumed multivariate normal distribution with a general covariance structure, common follow-up times for
each individual and missing outcomes that are assumed to be a consequence of the shortened follow-up duration.

Simple expressions for estimators β̃t and var(β̃t) can be obtained directly for one (t = 2) and two (t = 3) early
outcomes, after some algebraic manipulation, from expressions (3) and (4), if we assume that numbers in the control
and intervention arms are equal (N0s = N1s = Ns), and by noting that N1 ≥ N2 ≥ · · · ≥ Nt−1 ≥ Nt, where the
determinants of the correlation matrices

R2 =

(
1 ρ12
ρ12 1

)
and R3 =

 1 ρ12 ρ13
ρ12 1 ρ23
ρ13 ρ23 1


are given by |R2| = 1− ρ212 and |R2| = 1− ρ212 − ρ213 − ρ223 + 2ρ12ρ13ρ23. The estimators var(β̃2) and β̃2 for one early
outcome are

var(β̃2) =
2σ2

2

N2

(
N2 + (N1 −N2)|R2|

N1

)
(5)
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and

β̃2 =
1
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σ1
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1
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)
(6)

and var(β̃3) and β̃3 for two early outcomes are

var(β̃3) =
2σ2

3

N3

(
|R3|
|R2|

+
N3

N2

(
1− |R3|
|R2|

)
− N3(N1 −N2)ρ213

N1N2

)
(7)

and
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1
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N3∑
i=1

yi13−yi03 +
σ3
N3σ2

(
(ρ12ρ13 − ρ23)

|R2|

N3∑
i=1

yi12−yi02 −
N3(ρ12ρ13 − ρ23)

|R2|N2

N2∑
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(8)

3 Information

In order to understand how information on βt is accumulated as a trial proceeds, the covariance matrix can be
written as Σk to indicate that, for any study participant, it is formed from the k × k sub-matrix consisting of rows
(r) and columns (c) 1 to k of the complete covariance matrix Σ. The variance matrix (4) can then be expressed as
the block matrix

var(β̃) =

(
V0 + V1 V1

V1 V1

)−1
=

(
V−10 V−10

V−10 V−10 + V−11

)
(9)

where V0 and V1 are t× t matrices with elements given by

Vj [r, c] =

t∑
k=max(r,c)

(Njk −Njk+1)Σ−1k [r, c] (10)

where j is the indicator for the treatment group allocation (0 = control and 1 = treatment), N0t+1 = N1t+1 = 0 and
1 ≤ r, c ≤ t. Letting V = V−10 + V−11 gives var(βt) = V[t, t], with information on the treatment effect for the study
outcome at time-point t given by I = 1/var(βt). The information depends on estimates of covariance parameters
ρ = ρ12, . . . , ρss′ and σ = σ1, . . . , σk, through Σk, and the number of participants (N0k and N1k) with data at each
time-point k. Therefore, it is possible to monitor a study as it proceeds by estimating the covariance parameters
and calculating the accumulated information at any point during recruitment. Pre-set information thresholds can
be used to trigger interim analyses, with stopping decisions being made based on estimates of βt and var(βt) from
expressions (3) and (4).

4 Implementation for a two-arm trial

For a two-arm study, with outcomes observed at t time-points, study participants are randomized to either the
control or active intervention arms, and data collection proceeds until the first interim analysis when Nt1, . . . , N11,
data are available; for notational convenience hereafter we let Ntw, . . . , N1w be the number of study participants
with data available at interim analysis w, where Nkw = N0kw + N1kw and 1 ≤ k ≤ t. The planned number of
interim analyses W , and the criteria for triggering each analysis, are stated explicitly at the start of the study.
If information accrual is used as the criterion for triggering an interim analysis, then the thresholds are stated in
advance and are such that I1 < I2 < · · · < IW . Other criteria are perfectly possible, but these are not discussed
in detail here for purposes of brevity; for instance one might decide that the minimum number of participants with
outcomes at time t, Nt, must exceed some pre-set threshold. These should also similarly be stated explicitly in
advance. The first interim analysis is triggered when the estimated information on the treatment effect at time t,
determined from current estimates of σ and ρ, is equal to or greater than I1. Expressions expressions (3) and (4)
are then used to obtain estimates βt1 and var(βt1), using only data available at the first look, from which the test
statistic Z1 = βt1/sd(βt1) is estimated. The observed test statistic Z1 is then compared to pre-defined lower and
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upper stopping boundaries l1 and u1, which are determined by the pre-set expected information I1 at the first look
and the planned error spend (see Section 5), and either the trial is stopped, for futility or efficacy, or it continues to
the next interim analysis. At each subsequent interim analysis, the test statistic Zw = βtw/sd(βtw) is calculated in
an analogous manner as at the first analysis, using all available data, and compared to stopping boundaries lw and
uw that determine whether the study is stopped early (e.g. see Parsons et al. [1]). Bias corrected point estimates
of the intervention effect and associated confidence intervals can calculated, if required, using appropriate statistical
methods that adjust for the interim analyses (if stopping occurred after the first analysis) [9, 10]. In general, if a
study is stopped at an interim analysis, then data collection will continue for all participants recruited up to that
point and these final (complete follow-up) data can also be used for making inferences in an overrunning analysis [11].

5 Sequential stopping boundaries

In a sequential trial, with a series of W interim analyses (looks), we aim to compare the two study intervention
arms in order to make inferences about the superiority of the active intervention arm (over the control). Decisions
about whether to stop the study or continue recruitment, at each interim analysis w, are made by comparing the
test statistic Zw to pre-defined lower and upper boundaries lw and uw. These boundaries are such that the type
I error rate (false positive rate) is controlled across all W interim analyses. For a one-sided alternative at overall
level α, with possible stopping for futility, the type I error rate spent is such that α∗u1 < · · · < α∗uW = α and
α∗l1 < · · · < α∗lW = 1 − α, where α∗uw is the probability of stopping and rejecting H0 in favour of βt > 0 at look
w (efficacy) and α∗lw is the probability of stopping without rejecting H0 at look w (futility). The type I error rate
spent is determined by α∗lw and α∗uw, which are specified in advance of the study beginning. For a two-arm study,
standard group sequential methods and widely available software allow one to calculate the lower and upper stopping
boundaries (lw and uw) at each look w using numerical integration [12]. For instance, the gsBound function in R
package gsDesign [13], can calculate boundaries using the expected information and values of α∗lw and α∗uw.
As a simple illustrative example, consider a trial with two planned interim analyses (w = 1, 2 and total number of
interim analyses W = 2), for two outcomes, early and late (primary) outcomes, and expected variance equal to 4 for
both outcomes, and expected correlation ρ12 = 0.5 and variances σ2

1 = σ2
2 = 4. If we plan the first interim analysis

when there are primary outcome data from 20 participants and early data from 40 participants in each group, then
we expect that N011 = N111 = 40, N021 = N121 = 20, assuming equal numbers in intervention arms, and for
notational convenience N031 = N131 = 0. Using expressions (9) to (10) and the appropriate covariance matrices,
we can write var(βt) = V[t, t] = 7/20 and the information at the first interim analysis is I1 = 20/7. At the second
interim analysis, we might expect that N012 = N112 = 60, N022 = N122 = 30 and N032 = N132 = 0, and thus the
expected information is I2 = 30/7. The information at the end of the study, which we denote as analysis W + 1 = 3,
when N013 = N113 = N023 = N123 = 90 is given by I3 = 45/4, or more simply in this example where sample sizes
in the groups are equal (i.e. at the study end we expected that N0k3 = N1k3 = 90) by I3 = Nk3/2σ

2
2 = 45/4. Setting

the lower and upper stopping probabilities to α∗l = (0.320, 0.640, 0.975) and α∗l = (0.001, 0.010, 0.025) respectively,
and the corresponding information as I = (20/7, 30/7, 45/4), as inputs to the gsBound function, gives the following
lower and upper bounds l = (−0.47, 0.33, 2.06) and u = (3.09, 2.34, 2.06). Therefore, to undertake a group-sequential
study, we recruit participants and monitor current information from early and late outcomes until it first reaches I1.
We then calculate Z1 and compare to the lower and upper boundaries l1 and u1, stopping the study for futility if
Z1 ≤ l1 or efficacy if Z1 ≥ u1. Otherwise, the study continues to recruit until we reach I2, when we stop the study
for futility if Z2 ≤ l2 or efficacy if Z2 ≥ u2. If the study continues to the end, we reject at the upper 2.5% level if
Z3 ≥ u3. For studies that stop at an interim analysis, data collection will continue (until follow-up is complete) for
all participants recruited up to the point the study is stopped. In such circumstances, final inferences can be made
using the deletion method that effectively analyses the data as if the only interim analyses to have taken place were
those prior to analysis w, when the study stopped, and the analysis at w+1 (the overrunning analysis) [11, 14]. Bias
corrected estimates and confidence intervals can be readily calculated using previously described methods [9, 10] and
available R packages [15, 13, 16].

6 R code

As a means to demonstrate how the models described here can be fitted to longitudinal data from a clinical trial,
code is shown below in R [7] to simulate data with t = 3 time-points for N individuals from two treatment groups
(coded as 0, the control, and 1). Correlations are arbitrarily set, for illustrative purposes, to ρ12 = 0.6, ρ23 = 0.5
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and ρ13 = 0.8 and standard deviations to σ1 = 10, σ2 = 20 and σ3 = 16, and data set to missing for 50% and
25% of values at time-points t = 3 and t = 2 respectively to simulate data at an interim analysis when follow-up is
incomplete. Models are fitted using functions gls and lme in package nlme [17]. The simulations in Section 7 use a
much more general coding framework, than that shown here, that allowed different patterns of follow-up and varying
treatment group sizes.

# R code to simulate data and fit models in order to estimate effects

# simulate data for t=3 time points

# for control (0) and intervention (1) treatment groups

# intervention effect at t=3 is 10 (at t=1 is 6 and t=2 is 4, arbitrarily)

# standard deviations at t=1,2,3 are 10,20,16

# correlations r12=0.6, r23=0.5, and r13=0.8

# load packages

library(nlme)

library(mvtnorm)

# set seed for data simulation

set.seed(78012)

set.seed(58963)

# create matrix of treatment means nrows=3 and ncols=2 (treatment groups)

mean.matrix <- matrix(c(0,6,0,4,0,10),byrow=TRUE,ncol=2)

corr.matrix <- matrix(c(1,0.6,0.8,0.6,1,0.5,0.8,0.5,1),byrow=TRUE,nrow=3)

# diagonal matrix of standard deviations

sd.matrix <- diag(c(10,20,16))

cov.matrix <- sd.matrix%*%corr.matrix%*%sd.matrix

# simulate data for N=100 participants

N <- 100

# treatment group indicator variable

treat <- rep(seq(0,1),rep(N,2))

mean.full <- matrix(rep(t(mean.matrix),each=N),byrow=FALSE,nrow=2*N)

error.full <- rmvnorm(2*N,mean=rep(0,dim(mean.matrix)[1]),

+ sigma=covariance.matrix)

# full data at study completion

full.data <- data.frame(error.full+mean.full)

# include missing values to simulate interim analysis

# 50% missing at t=3 and 25% missing at t=2 (arbitrarily)

full.data[seq(1,2*N,2),3] <- NA

full.data[seq(1,2*N,4),2] <- NA

full.data <- data.frame(id = rep(1:(2*N),each=3),

+ treat = factor(rep(rep(seq(0,1),rep(N,2)),each=3)),

+ atimes = factor(rep(1:3,times=2*N)),y=as.numeric(t(full.data[,1:3])))

# table showing data missingness

table(full.data$atimes, is.na(full.data$y)==FALSE)

# complete cases only for model fitting

complete.data <- subset(full.data, complete.cases(full.data))

# fit gls model

gls.fit <- gls(y (atimes-1)+(atimes-1):treat,data=complete.data,

+ correlation=corSymm(form =∼1|id),

+ weights=varIdent(form =∼1|atimes),method="REML")

summary(gls.fit)

# estimates of model coefficients and covariance matrix

# cf. expected treatment effect at t=3 is 10

coef(gls.fit)

vcov(gls.fit)

# cf. expected standard deviations 10,20,16

coef(gls.fit$modelStruct$varStruct,uncons=FALSE,allCoef=TRUE)*gls.fit$sigma

# cf. expected correlations 0.6,0.8,0.5

coef(gls.fit$modelStruct$corStruct,uncons=FALSE,allCoef=TRUE)
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# fit lme model

lme.fit <- lme(y (atimes-1)+(atimes-1):treat,random= 1|id,data=complete.data,

+ correlation=corSymm(form=∼1|id),

+ weights=varIdent(form=∼1|atimes),method="REML")

summary(lme.fit)

# estimates of model coefficients and covariance matrix

fixef(lme.fit)

vcov(lme.fit)

# coefficient and covariance matrix estimates are the same for gls and lme

7 Simulations

At an interim analysis during a clinical trial, comparing a control and test intervention, for an outcome reported at a
series of t time-points, we wish to estimate the treatment effect at time βt. In order to do this, we fit a longitudinal
model (Section 2) to the totality of data available at the interim analysis. We can fit either a mixed-effects model or
generalized least squares model using the functions lme and gls in R package nlme. We show, via a simulation study,
that both methods provide identical (and consistent) estimates of βt and var(β2). However, function gls provides
identifiable estimates of the covariance parameters (σ and ρ) that are useful for assessing model assumptions as a
study progresses and for this reason this method may often be preferable.
Data are simulated from multivariate Normal distributions with t outcomes (where t = 2, 3, 4), to give a time series
of t outcomes for each of N participants in a clinical trial with two intervention arms, for four different settings (see
Tables 1 to 4), comprising two treatment effect sizes (mean difference in outcomes between intervention arms) and
two correlation models (moderate and strong), labelled as (i) to (iv), and two sample sizes (labelled as small and
large N). The sample sizes were set such that the median values for the group sizes were approximately as follows
in the small N study: N1 = 160 and N2 = 80 for t = 2, N1 = 180, N2 = 120 and N3 = 60 for t = 3 and N1 = 192,
N2 = 144, N3 = 96 and N4 = 48 for t = 4. Sample sizes for the large N study were ten times larger than these
values. The covariance model for each setting was determined by standard deviations (σs), which were (arbitrarily)
selected to be an even integer in the range 10 to 30, and correlations between outcomes (ρss′), which were as per
Tables 1 to 4 for each setting, and (arbitrarily) set to represent either moderate or strong correlations between out-
comes. The mean model for each setting was such that the mean difference between intervention arms at time t was
either 0 or 10, with differences at earlier time-points taking integer values in the range -10 to 10. Again, the values
are arbitrary, and were selected in order to demonstrate the consistency of estimation only. At each simulation,
data were generated in R using package mvtnorm [15] from the set covariance model for each setting, and treatment
differences βt and variances var(βt) were estimated using functions gls and lme in package nlme. In addition, for
gls covariance parameter estimates were obtained and for lme the residual (within-group error), intercept and total
standard deviation estimates were obtained (where σ2

total = σ2
intercept + σ2

residual).
The results of 1000 simulations are shown in Tables 1 to 4, for each of the settings. Estimates of βt and var(βt)
were, as expected, identical for methods gls and lme, as were estimates of σ1 (from gls) and σtotal, which for lme

is set by default to the standard deviation for the first time-point. The results show that treatment effect estimates
βt from the simulations were consistent with the selected mean models for all values of t, and confidence intervals
were narrower for the large sample sizes, than for the small sizes. Estimates of the covariance parameters (σ and
ρ), from gls, were also consistent with the selected covariance models for all values of t. In summary, model fitting
using either gls or lme gives exactly the same overall model fit. For applications, where monitoring information
accumulation and assessing modelling assumptions for the covariance parameters at interm analyses during a clinical
trial, fitting models using gls may be preferable as it allows these tasks to be undertaken much more simply and
directly.
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Table 1: Estimates of means and confidence intervals of model parameters (based on 1000 simulations), β2, var(β2),
ρss′ , σs and standard deviation components for settings (i) to (iv), t = 2 for small and large N using gls and lme

Method Parameter Set Small N Large N
Mean 95%CI Mean 95%CI

(i) β2 = 0 and moderate correlation
gls/lme β2 0 0.104 (-0.158 - 0.365) -0.012 (-0.095 - 0.072)

var(β2) - 18.530 (18.321 - 18.740) 1.842 (1.836 - 1.848)
gls ρ12 0.4 0.401 (0.396 - 0.407) 0.401 (0.399 - 0.402)

σ1 28 27.998 (27.899 - 28.097) 28.000 (27.968 - 28.031)
σ2 20 19.888 (19.787 - 19.990) 19.993 (19.962 - 20.024)

lme σtotal 28 27.998 (27.899 - 28.097) 28.000 (27.968 - 28.031)
σintercept - 14.727 (14.608 - 14.846) 14.655 (14.604 - 14.706)
σresidual - 23.734 (23.634 - 23.834) 23.841 (23.802 - 23.881)

(ii) β2 = 10 and moderate correlation
gls/lme β2 10 9.954 (9.564 - 10.344) 10.009 (9.884 - 10.133)

var(β2) - 38.917 (38.458 - 39.375) 3.851 (3.838 - 3.864)
gls ρ12 0.2 0.203 (0.196 - 0.210) 0.198 (0.196 - 0.200)

σ1 16 15.917 (15.861 - 15.973) 16.003 (15.986 - 16.020)
σ2 28 27.948 (27.805 - 28.090) 28.012 (27.969 - 28.055)

lme σtotal 16 15.917 (15.861 - 15.973) 16.003 (15.986 - 16.020)
σintercept - 8.421 (8.277 - 8.564) 9.928 (9.793 - 10.063)
σresidual - 13.236 (13.133 - 13.338) 12.246 (12.140 - 12.352)

(iii) β2 = 0 and strong correlation
gls/lme β2 0 0.350 (0.121 - 0.579) -0.012 (-0.084 - 0.061)

var(β2) - 14.567 (14.455 - 14.680) 1.440 (1.436 - 1.444)
gls ρ12 0.9 0.900 (0.899 - 0.901) 0.900 (0.899 - 0.900)

σ1 28 27.973 (27.875 - 28.070) 27.971 (27.939 - 28.003)
σ2 22 21.999 (21.912 - 22.086) 21.983 (21.955 - 22.011)

lme σtotal 28 27.973 (27.875 - 28.070) 27.971 (27.939 - 28.003)
σintercept - 20.326 (20.232 - 20.421) 20.352 (20.316 - 20.388)
σresidual - 19.106 (18.976 - 19.236) 19.172 (19.126 - 19.218)

(iv) β2 = 10 and strong correlation
gls/lme β2 10 10.008 (9.787 - 10.229) 10.033 (9.966 - 10.099)

var(β2) - 12.051 (11.953 - 12.148) 1.190 (1.187 - 1.193)
gls ρ12 0.9 0.901 (0.899 - 0.902) 0.900 (0.900 - 0.900)

σ1 10 9.984 (9.950 - 10.018) 9.997 (9.986 - 10.008)
σ2 20 20.029 (19.949 - 20.110) 19.989 (19.964 - 20.014)

lme σtotal 10 9.984 (9.950 - 10.018) 9.997 (9.986 - 10.008)
σintercept - 4.149 (4.120 - 4.179) 4.099 (4.088 - 4.109)
σresidual - 9.064 (9.025 - 9.102) 9.116 (9.104 - 9.128)
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Table 2: Estimates of means and confidence intervals of model parameters (based on 1000 simulations), β3, var(β3),
ρss′ , σs and standard deviation components for settings (i) to (iv), t = 3 for small and large N using gls and lme

Method Parameter Set Small N Large N
Mean 95%CI Mean 95%CI

(i) β3 = 0 and moderate correlation
gls/lme β3 0 0.016 (-0.265-0.297) 0.040 (-0.050-0.129)

var(β3) - 19.419 (19.157-19.680) 1.926 (1.918-1.934)
gls ρ12 0.1 0.096 (0.090-0.102) 0.101 (0.100-0.103)

ρ13 0.4 0.393 (0.386-0.401) 0.402 (0.400-0.404)
ρ23 0.1 0.100 (0.092-0.109) 0.101 (0.099-0.104)
σ1 28 27.927 (27.832-28.022) 28.015 (27.986-28.043)
σ2 20 19.974 (19.891-20.058) 19.997 (19.973-20.022)
σ3 18 17.962 (17.855-18.068) 17.988 (17.956-18.020)

lme σtotal 28 27.927 (27.832-28.022) 28.015 (27.986-28.043)
σintercept - 9.458 (9.385-9.531) 9.482 (9.460-9.505)
σresidual - 26.247 (26.148-26.345) 26.358 (26.329-26.388)

(ii) β3 = 10 and moderate correlation
gls/lme β3 10 10.031 (9.758-10.303) 9.991 (9.906-10.076)

var(β3) - 18.889 (18.645-19.133) 1.870 (1.863-1.878)
gls ρ12 0.5 0.499 (0.495-0.503) 0.500 (0.499-0.501)

ρ13 0.2 0.203 (0.195-0.210) 0.198 (0.196-0.201)
ρ23 0.5 0.501 (0.495-0.507) 0.499 (0.497-0.501)
σ1 16 16.002 (15.950-16.054) 15.994 (15.977-16.010)
σ2 28 27.897 (27.783-28.012) 28.022 (27.987-28.057)
σ3 18 17.974 (17.868-18.081) 17.992 (17.960-18.024)

lme σtotal 16 16.002 (15.950-16.054) 15.994 (15.977-16.010)
σintercept - 8.108 (8.050-8.166) 7.988 (7.968-8.009)
σresidual - 13.764 (13.712-13.817) 13.851 (13.831-13.870)

(iii) β3 = 0 and strong correlation
gls/lme β3 0 -0.142 (-0.434-0.149) 0.065 (-0.022-0.152)

var(β3) - 20.818 (20.642-20.994) 2.073 (2.067-2.078)
gls ρ12 0.7 0.697 (0.694-0.700) 0.700 (0.699-0.701)

ρ13 0.9 0.901 (0.899-0.902) 0.900 (0.900-0.901)
ρ23 0.6 0.600 (0.596-0.604) 0.601 (0.599-0.602)
σ1 28 27.893 (27.802-27.985) 27.983 (27.953-28.013)
σ2 22 21.905 (21.823-21.988) 21.972 (21.945-21.999)
σ3 26 25.985 (25.873-26.096) 26.007 (25.970-26.044)

lme σtotal 28 27.893 (27.802-27.985) 27.983 (27.953-28.013)
σintercept - 16.327 (16.211-16.443) 16.789 (16.720-16.858)
σresidual - 22.537 (22.445-22.630) 22.352 (22.304-22.399)

(iv) β3 = 10 and strong correlation
gls/lme β3 10 10.009 (9.707-10.312) 10.063 (9.966-10.160)

var(β3) - 24.053 (23.840-24.265) 2.396 (2.390-2.403)
gls ρ12 0.6 0.594 (0.590-0.597) 0.598 (0.597-0.600)

ρ13 0.9 0.899 (0.898-0.901) 0.900 (0.900-0.900)
ρ23 0.5 0.493 (0.489-0.498) 0.499 (0.498-0.500)
σ1 10 9.948 (9.914-9.981) 9.998 (9.988-10.008)
σ2 20 19.911 (19.833-19.989) 20.008 (19.984-20.032)
σ3 28 27.897 (27.773-28.021) 27.987 (27.950-28.025)

lme σtotal 10 9.948 (9.914-9.981) 9.998 (9.988-10.008)
σintercept - 3.968 (3.943-3.994) 4.095 (4.087-4.104)
σresidual - 9.112 (9.078-9.147) 9.119 (9.109-9.130)
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Table 3: Estimates of means and confidence intervals of model parameters (based on 1000 simulations), β4, var(β4),
ρss′ , σs and standard deviation components for settings (i) to (iii), t = 4 for small and large N using gls and lme

Method Parameter Set Small N Large N
Mean 95%CI Mean 95%CI

(i) β4 = 0 and moderate correlation
gls/lme β4 0 0.091 (-0.190-0.371) 0.067 (-0.018-0.151)

var(β4) - 18.544 (18.268-18.819) 1.878 (1.869-1.887)
gls ρ12 0.1 0.099 (0.093-0.104) 0.099 (0.097-0.100)

ρ13 0.1 0.097 (0.091-0.103) 0.099 (0.098-0.101)
ρ14 0.4 0.398 (0.390-0.405) 0.399 (0.396-0.401)
ρ23 0.3 0.293 (0.287-0.299) 0.298 (0.296-0.300)
ρ24 0.1 0.108 (0.099-0.117) 0.100 (0.098-0.103)
ρ34 0.1 0.101 (0.092-0.110) 0.098 (0.095-0.101)
σ1 28 28.018 (27.931-28.106) 28.004 (27.976-28.031)
σ2 20 19.954 (19.881-20.026) 19.994 (19.970-20.018)
σ3 18 17.919 (17.840-17.998) 17.998 (17.972-18.023)
σ4 16 15.933 (15.830-16.035) 16.017 (15.985-16.048)

lme σtotal 28 28.018 (27.931-28.106) 28.004 (27.976-28.031)
σintercept - 7.562 (7.500-7.624) 7.577 (7.559-7.595)
σresidual - 26.957 (26.867-27.048) 26.957 (26.929-26.985)

(ii) β4 = 10 and moderate correlation
gls/lme β4 10 9.609 (9.107-10.110) 10.085 (9.938-10.233)

var(β4) - 60.359 (59.451-61.266) 6.101 (6.074-6.128)
gls ρ12 0.2 0.198 (0.193-0.204) 0.198 (0.196-0.200)

ρ13 0.5 0.495 (0.491-0.500) 0.500 (0.499-0.501)
ρ14 0.2 0.198 (0.190-0.206) 0.199 (0.196-0.201)
ρ23 0.5 0.502 (0.498-0.507) 0.499 (0.497-0.500)
ρ24 0.5 0.496 (0.489-0.503) 0.497 (0.495-0.499)
ρ34 0.4 0.398 (0.390-0.405) 0.400 (0.397-0.402)
σ1 16 15.951 (15.898-16.004) 16.001 (15.985-16.017)
σ2 28 28.015 (27.914-28.117) 27.970 (27.937-28.003)
σ3 18 17.971 (17.891-18.051) 17.983 (17.958-18.007)
σ4 30 29.796 (29.589-30.003) 29.960 (29.901-30.018)

lme σtotal 16 15.951 (15.898-16.004) 16.001 (15.985-16.017)
σintercept - 7.261 (7.198-7.323) 7.234 (7.214-7.253)
σresidual - 14.170 (14.120-14.220) 14.269 (14.256-14.283)

(iii) β4 = 0 and strong correlation
gls/lme β4 0 -0.050 (-0.213-0.112) -0.008 (-0.059-0.042)

var(β4) - 6.961 (6.890-7.032) 0.694 (0.692-0.696)
gls ρ12 0.8 0.799 (0.798-0.801) 0.800 (0.799-0.800)

ρ13 0.6 0.598 (0.594-0.601) 0.599 (0.598-0.600)
ρ14 0.8 0.800 (0.797-0.803) 0.800 (0.799-0.800)
ρ23 0.6 0.600 (0.596-0.603) 0.599 (0.598-0.601)
ρ24 0.5 0.500 (0.496-0.505) 0.500 (0.499-0.501)
ρ34 0.7 0.698 (0.694-0.702) 0.700 (0.699-0.702)
σ1 28 27.981 (27.894-28.068) 27.997 (27.969-28.025)
σ2 22 21.968 (21.892-22.044) 21.976 (21.952-22.001)
σ3 26 25.950 (25.836-26.064) 25.987 (25.950-26.023)
σ4 14 14.003 (13.932-14.073) 13.990 (13.970-14.010)

lme σtotal 28 27.981 (27.894-28.068) 27.997 (27.969-28.025)
σintercept - 6.499 (6.443-6.555) 6.542 (6.519-6.565)
σresidual - 27.198 (27.108-27.289) 27.219 (27.189-27.249)
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Table 4: Estimates of means and confidence intervals of model parameters (based on 1000 simulations), β4, var(β4),
ρss′ , σs and standard deviation components for setting (iv), t = 4 for small and large N using gls and lme

Method Parameter Set Small N Large N
Mean 95%CI Mean 95%CI

(iv) β4 = 10 and strong correlation
gls/lme β4 10 9.936 (9.713-10.158) 9.940 (9.868-10.011)

var(β4) - 12.483 (12.345-12.621) 1.250 (1.246-1.254)
gls ρ12 0.5 0.499 (0.495-0.503) 0.500 (0.499-0.502)

ρ13 0.5 0.501 (0.497-0.506) 0.501 (0.500-0.503)
ρ14 0.8 0.800 (0.797-0.803) 0.800 (0.800-0.801)
ρ23 0.8 0.799 (0.797-0.801) 0.800 (0.799-0.801)
ρ24 0.4 0.397 (0.392-0.403) 0.400 (0.398-0.401)
ρ34 0.6 0.599 (0.594-0.604) 0.600 (0.598-0.601)
σ1 10 10.003 (9.971-10.035) 10.000 (9.989-10.010)
σ2 20 19.972 (19.899-20.046) 20.006 (19.982-20.029)
σ3 28 28.004 (27.886-28.122) 28.008 (27.970-28.046)
σ4 18 17.986 (17.892-18.081) 18.016 (17.987-18.045)

lme σtotal 10 10.003 (9.971-10.035) 10.000 (9.989-10.010)
σintercept - 5.091 (5.053-5.128) 5.179 (5.166-5.192)
σresidual - 8.594 (8.568-8.621) 8.551 (8.542-8.561)
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