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Reviewer #1 (Remarks to the Author): 

General comments 

I quite liked this paper and find it well suited for Nat. Comms. It has broad implications 

(geographic and biogeochemical) and the approach taken well justified in my view. It 

takes a multi-decadal perspective to show that, over the past 40 years or so, the surface 

area occupied by very small lakes has increased and that of large lakes (actually mostly 

just the Aral sea) has decreased. The manuscript is divided into two quite distinct 

sections, one purely hydrological (lake mapping) and the other exploring the 

consequences of the changes in lake surface area on lake greenhouse gas emissions. In 

both cases, I thought the manuscript did quite a good job. Nevertheless, I feel the 

robustness of some of the assertions made need to be explored more fully. 

Lake mapping 

My main concern in this section is the stability of the detection/classification algorithm 

through time. It is difficult to imagine that the quality of the satellite images haven’t 

changed over the 40 years. I did not look up the GSWO data set in details on which the 

present analysis is based but it would seem necessary to me to show that the temporal 

trend in lake coverage is not due to the deep learning algorithm performing differently 

in the different decades examined. I would therefore recommend parsing the validation 

separately in the different decades. Incidentally, some details of the specific deep 

learning approach used here (the U-Net model as applied by Brandt et al.) should be 

given and not simply referenced. 

Incidentally, some points are made that I feel should be even more underlined 

forcefully. For example, their lake global coverage of is very close to that estimated by 

Downing et al. (2006) if we only consider the overlapping size classes. It is also very 

similar to Feng et al. (2015) estimate. However, it is much lower than the impossibly 

high GLOWABO numbers. 

Greenhouse gas emission 

There is no doubt that small lakes emit per unit area much more than larger lakes and 

the manuscript makes an important that the areal expansion of small lakes 

disproportionately affects the global lake emission numbers. However, I felt there was 

too much reliance on a single study (Holgerson and Raymond) and would have like some 

sensitivity analysis done on that. The authors actually acknowledge that (line 622) but 

there are many published relationships between GHG emissions and lake size (e.g. 

Rasilo et al. 2014) and a comparison of results with different such equations would 

enhance the robustness of their conclusions. Similarly, the occurrence of several 

negative CO2 fluxes if a single equation is applied to all lakes is problematic. While there 

are cases of negative CO2 fluxes in lakes, they are not particularly related to lake size 

but rather to eutrophication. Nevertheless, I appreciate that they ultimately used the 

average flux within binned log classes. 

Reference not cited in their manuscript 

1.Rasilo, T., Prairie, Y. T. & Giorgio, P. A. Large scale patterns in summer diffusive CH4 

fluxes across boreal lakes, and contribution to diffusive C emissions. Global Change Biol 

21, 1124–1139 (2014). 

Reviewer #2 (Remarks to the Author): 
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Summary 

This manuscript presents an interesting spatio-temporal analysis of a new high quality 

lake dataset, with insights on changes in global lake area over the past 4 decades. The 

results generally align with previous global scale analyses of both surface water and 

greenhouse gas emissions, reaffirming the well-established disproportionate roles of 

small water bodies in surface water hydrology and biogeochemistry. This analysis goes 

further than similar previous efforts to distinguish patterns with more nuance - natural 

lakes vs reservoirs, separating patterns within and outside glacier and permafrost 

regions. Although I don’t have the expertise to evaluate the method used to distinguish 

glacier and permafrost affected lakes, I found this is an interesting aspect of the study. 

Additionally, datasets on population density and type of drainage basin were used to 

provide further insights on different decadal patterns. 

There is room for improvement in terms of clarity and accuracy. Some of the 

interpretations in comparison to other datasets are not always supported with 

appropriate evidence – in particular the minimum lake size in existing datasets is 

smaller than in this new dataset (contradicting some statements), which also seems to 

affect the comparison of ghg emission estimates. The paper would also be much 

stronger with a clearer operational definition of lakes to help explain the assumptions 

and applicability of the classification model, and enable appropriate re-use of the data. 

A potential important advancements from this paper is the creation of a new spatially 

explicit high resolution global lake dataset – although the 2014 GLOWABO dataset from 

Verpoorter et al is higher resolution, it is not easily findable or readily accessible, and 

also not multi-temporal. The data availability statement says the data will be provided, 

but there are not enough details provided to assess whether it will be shared with 

adherence to FAIR principles (https://www.go-fair.org/fair-principles/). 

My comments are provided below: 

Main suggestions for improvement 

1. A clearer description of how “lakes” are operationally defined would improve this 

manuscript and provide a helpful foundation for future users of the GLAKES dataset. 

Although it is established in the introduction that lakes and rivers have distinct 

hydrology and biogeochemical processes, the criteria for how this distinction is made 

based on surface water extent/shape/geometry could be specified in more detail. The 

roles that other features such as wetlands play in surface water extent & variability is 

somewhat overlooked (eg. ~line 52-54) – is the underlying assumption that all surface 

water can be classified as lake vs river, or is the distinction lake vs. non-lake? Despite 

such complications, the analysis presented for upscaling GHG emissions is a good 

example for why it is valuable to distinguish lentic and lotic waterbodies in surface 

water datasets - is it possible to elaborate on other appropriate potential future uses of 

GLAKES given the assumptions used for the model and to classify the training data 

(~lines 240-244)? 

2. The novelty of GLAKES in comparison to previous datasets seems a little overstated. 

Specifically, compared to GLOWABO (Verpoorter et al 2014), which is described as 

having a minimum lake size of 0.002 km2, with the smallest objects based on filtering 

anything smaller than 9 pixels. This contradicts statements that GLAKES is the first 

global lake dataset to include lakes smaller than 0.1 km2 without statistical 

extrapolation (lines 72-73; lines 527-530; lines 545-547). 

3. Statements about comparisons to other lake GHG estimates should be reconsidered 

(lines 187- 201). Making these comparisons is obviously complicated because of the 

differences in underlying data on surface water extent datasets and different 

categorizations used for size classes (as mentioned), however as written there appear 

to be some misleading/confusing statements. 

3a. The abstract concludes GLAKES leads to higher GHG emissions (line 34) however the 

comparison to Holgerson and Raymond 2016 (line 190) shows smaller estimates than 



previous, which seems contradictory. Extended data figure 9 also shows emission 

estimates from the present study are smaller than most other estimates. Is the 

conclusion about higher emissions from lake area increases about changes over time 

between the periods analyzed (not differences with previous datasets)? If so this could 

be stated more clearly. 

3b. The lake surface area estimates from Holgerson and Raymond include more than 2 

additional logarithmic size classes smaller than the minimum size in GLAKES - 0.0001 to 

0.001 km2 (from statistical extrapolation), and 0.001-0.01 km2 (based on Verpoorter et 

al 2014 for >0.002 km2 and estimated for 0.001-0.002 km2). While it is certainly 

possible that the surface area extents for these smaller classes are overestimated, they 

are not included in GLAKES at all and therefore would be an obvious source of the 

difference (~line 191). The 2 other more recent studies included in Extended Fig 9 

(DelSontro et al 2018 and Li et al 2020) both use GLOWABO without extrapolation 

beyond the lower limit of 0.002 km2, however neither appear to be in better agreement 

(line 194-195) with the GLAKES emission estimates compared to Holgerson and 

Ramyond 2016. 

3c. The CO2 estimate of 194 Tg C is compared to combined number for both CO2 and 

CH4 in Holgerson and Raymond (should be only 571 Tg from CO2 not 583 on line 190). 

4. The paper would be improved with at least a brief description of the U-Net model to 

explain why it is applicable for distinguishing lakes from rivers/other surface water 

features, especially for readers less familiar with such classification models. Is it 

possible to be more specific about what kind of features make lakes and rivers highly 

distinguishable in visual examinations (line 401-402), and explain why that might 

justify using the U-Net model for this kind of classification problem? 

5. I think the identification/ description of the 5 categories of sample regions (lines 

430-436) is a strength of the analysis – the discussion could be improved by describing 

how well the model performs in each of those categories. Is it possible to show an 

example of each of the 5 types of sample region, or at least label the region types shown 

in Extended data fig 2? What is the size range of the sample regions used to create the 

training data? 

6. Data availability statement does not provide enough detail to evaluate how dataset 

will be archived, made available or how to access. Should be revised with adherence to 

FAIR principles (https://www.go-fair.org/fair-principles/), e.g. publishing the dataset 

in a repository that issues a unique identifier. 

7. It would help the reader if the time scale of variability (decadal?) was stated more 

prominently (e.g. line 1480149, caption for Fig 4), especially since seasonal and 

interannual fluctuations are mentioned in the introduction. Consider rephrasing 

“dynamics” to “changes” or “trends” in surface water extent, given the well documented 

but complicated relationships between GHG emissions and changes in water level 

possible on much shorter timescales (eg https://doi.org/10.5194/bg-9-2459-2012, 

https://doi.org/10.1672/07-98.1, https://doi.org/10.1002/2015JG003283, 

https://doi.org/10.3390/atmos10050269). The manuscript would also be stronger if 

the discussion addressed how the results may be affected by changes/dynamics at 

those shorter timescales, for example frozen lakes becoming only seasonally ice-

covered. 

Other/minor suggestions 

1. Line 30 – maybe specify “all six continents analyzed” since Antarctica is excluded 

2. Line 64 – should “water productivity” be “primary productivity” ? 

3. Line 82 - How was 0.03 km2 threshold determined for minimum size? Are lakes 

smaller than 0.03 km2 not present in GSW, not captured by the model, or excluded for 

other reasons? It seems somewhat overstated to say improved resolution “solves” 

issues associated with mis-accounted small lakes in previous datasets since 

lakes/surface water can be mis-classified for reasons other than spatial resolution (e.g. 

optical complexity, forest canopy, mixed pixels, shadows). 

4. Line 88 – Isn’t the GSWO dataset limited to 80 deg N? Consider specifying max 

northern extent, and/or include latitude range where dataset is described in methods. 

5. It would help the reader to explain why P1 is two decades and P2 and P3 are each 



one decade. In Figure 2, it is somewhat confusing what dates/date ranges are being 

compared in top and bottom panels - It may be more clear to give beginning and end 

year of each range. 

6. Line 143 & elsewhere – clarify if “global inland regions” are used interchangeably 

with the 1 deg grid cells? 

7. Line 144 – maybe specifying “net” area increase if that is what is meant here 

8. Line 147 – consider modifying sub-heading to specify what patterns small lakes have 

an outsized role in 

9. Line 163 – unclear whether the “small lake-dominated regions” referenced here is 

about areas with just many small lakes or areas where small lakes dominate the 

variability. (As written I interpret as the former, but the referenced figure and rest of 

the paragraph seem to be about the latter.) 

10. Line 166 – unclear what ‘dynamic amplitude’ means here 

11. Extended data Figure 8 – consider adding a reference line at y = 0 

12. Were the normal and floodplain models both applied globally, or was there a 

criteria/dataset used for distinguishing normal and floodplain areas? 

13. Extended data figure 9a – error bar on Marotta et al 2008 appears misaligned 

14. Typo in caption for Fig 4? Line 189 says the emissions estimates were calculated 

following methods in ref 23 (Holgerson and Raymond 2016) but caption for Fig 4 says 

method is from ref 22 (Oertli et al 2002, about species area relationships) 

15. Line 233-235 should also discuss or at least reference DelSontro et al 2018 (ref 24) 

which addresses eutrophication/productivity effects on emissions. 

16. Line 383 – is there evidence that these lake area changes are actually caused by 

human interventions without other natural variability? consider rephrasing “impacts of 

human interventions” to something like relationship with or co-occurrence with human 

populations 

17. Line 444 – how was “coverage of all possible hydrological conditions” determined? 

18. Line 465 – should “flood” be floodplain? 

19. Lines 478-484 – can this part be explained more clearly? (or examples shown in 

extended figures?) 

20. Line 539 – found the wording here confusing, whether “missing” lakes in eastern 

Canada and Scandinavia were commission or omission errors in GLAKES 

21. Line 603 – what is the source of the air temperature data? 

22. Line 616-618 – consider including newer references for work on reservoir ghg 

emissions eg. https://doi.org/10.1093/biosci/biw117, 

https://doi.org/10.1029/2019JG005600 

Reviewer #3 (Remarks to the Author): 

Attachment on the following page
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Summary 

This study introduces a new dataset named GLAKES, which depicts the surface extent dynamics 

of 3.4 million lakes at the global scale from the 1980s to present day. The authors delineated 

individual lake polygons by adapting a deep-learning model to conduct a supervised 

classification of existing grids of long-term (1984-2019) surface water occurrence. The deep 

learning model outputs were enhanced by removing delineated water bodies that substantially 

overlap with river channels and seawater. With this new dataset of lake polygons, changes in 

global lake density and area were then computed between three time periods (1980-90s, 2000s, 

and 2010s). The authors estimate that lakes expanded across all continents over the past four 

decades, mostly due to artificial reservoir building, and that small lakes account for most of the 

variability in global lake area. Leveraging these estimates, this study also determines that global 

carbon emissions from natural lakes increased over the same time periods, most of which 

attributed to small lakes. 

Outstanding features 

I consider the following to be the outstanding features of this research work: 

- Leverages state-of-the-art data sources and models to create a near-comprehensive 

dataset of individual lakes, delineating lakes down to 0.03 km2 in surface area (compared 

to 0.1 km2 for the most widely used lake polygon dataset at present, HydroLAKES). 

- Provides the first spatially-[nfb_Y_j [ij_cWj[) je j^[ h[l_[m[h}i ademb[Z][) of global long-

term lake extent dynamics. 

- Updates estimates of global carbon emissions from natural lakes, predicting a net 

increase in lacustrine emissions over time.  

- Confirms the outsized role of small lakes in global lacustrine carbon emissions.  
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Key points and results 

I consider the following to be the key points and results of this research work: 

- Identifies 3.4 million individual lakes, totalling 3.2 x 106 km2 (2.2% of the global land 

area). 

- While displaying high overall accuracy, the lake delineation model significantly 

underestimates the extent of small lakes (omission rates of 19.3% and 23.7% for lakes 

inside and outside floodplains, respectively) and overestimates the extent of large lakes 

(commission rates of by 22.3% and 11.6%, respectively).  

- The great majority of lakes are small (< 1 km2), but most of the global lake area is 

attributed to large lakes (> 100 km2). 

- The estimates of lake number and area resulting from this study align closely with 

HydroLAKES (Messager et al. 2016), another free-to-access dataset, confirming in the 

h[l_[m[h}i ef_d_ed that two other existing studies (Verpoorter et al. 2014 and Downing et 

al. 2010) yielded substantial overestimates.  

- Global lake area increased from the 1980s-90s to the 2000s and from the 2000s to 2010s, 

most of this expansion stemming from the expansion of glacier- and permafrost-fed lakes 

as well as by artificial reservoir building.  

- Small lakes (< 1 km2) showed the highest temporal variability in extent compared to 

larger lakes. 

- Estimates that natural lakes emit 194 Tg C yr�1 of CO2  and 7.2 Tg C yr-1 of CH4. These 

new figures are smaller than previous estimates because most previous models relied on 

Q[hfeehj[h [j Wb+}i ikh\WY[ mWj[h [nj[dj ZWjWi[j) m^_Y^ el[h[ij_cWj[Z ]beXWb bWa[ ikh\WY[

area.  

- Due to the increase in global lake area, carbon emissions from natural lakes increased by 

3.02 Tg C yr�1 for CO2 and +0.31 Tg C yr�1 for CH4, most of these increases stemming 

from small lakes. 

Originality and significance 

Will the work be of significance to the field and related fields? How does it compare to the 

established literature? If the work is not original, please provide relevant references. 

This study is a significant and valuable contribution to the literature, and the conclusions are 

original. It will likely become a baseline dataset for many subsequent studies, thus enabling the 

advancement of our understanding of the role of lake in regional and global hydrological and 

biogeochemical cycles, as well as the impact of human activities of lake ecosystems and the 

services they provide globally. I congratulate the authors for their substantial effort and resulting 

contribution. 

This work represents a substantial step forward compared to the established literature, foremost 

because it quantifies the spatio-temporal dynamics of lake surfaces over the past four decades. 

Whereas other studies have quantified inland water dynamics as a whole (e.g., Pekel et al. 20164
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which was used by this study, the coarser dataset by Klein et al. 20175, Pickens et al. 20206, and 

most recently Pickens et al. 20227), what sets this study apart is that it aims to focus exclusively 

on the dynamics of lakes as individual entities (delineating the shoreline of individual lakes 

rather than continuous grids of surface water cover). This matters because lacustrine ecosystems 

differ fundamentally from other inland waters like rivers, seasonally inundated floodplains and 

other types of wetlands z in their hydrology, biogeochemistry, biodiversity, and their 

contribution to people and society.  

In terms of a static dataset of lake polygons, this study is also an advancement compared to the 

two most established studies/datasets on the topic: HydroLAKES8 and GLOWABO9 (I do not 

include the GLWD10 here as it can fairly be considered as a product from a previous generation).  

It is an advancement over HydroLAKES for three main reasons: 

1. It has a higher resolution and thus provides a more comprehensive accounting of small 

lakes. 

2. The lake polygon dataset provides a more temporally integrated view of lake extent 

globally because it is derived from Earth observation data over decade. By contrast, the 

bulk of HydroLAKES polygons, geographically (< 60N), were delineated from a short 

satellite mission (SRTM) over 11 days in February 2000. 

3. It is likely more spatially consistent than HydroLAKES. HydroLAKES results from the 

compilation and harmonization from over five original data sources at different temporal 

and spatial resolutions while all polygons in GLAKES were delineated with the same 

processes using a common data source (despite differences among Landsat sensors over 

time).   

It is also an advancement over GLOWABO, despite GLOWABO including lakes down to 0.002 

km2 (9 x 30-m pixels), for three main reasons: 

- GLOWABO was never publicly released. Therefore, its application was limited and it 

underwent little external validation. 

- GLOWABO polygons were also extracted from Landsat imagery but only from the year 

2000 ± 3 year, thus representing a snapshot in time rather than a long-term picture of lake 

extent.  

- The summary statistics provided by GLOWABO suggest that it substantially 

overestimates global lake cover, at least by a factor of two. This is probably due to the 

lack of discrimination between lakes, rivers, and wetlands in that dataset (at least no 

mention of such a distinction was made in Verpoorter et al. 20149). 
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Validity

Does the work support the conclusions and claims, or is additional evidence needed? 

Overall, this study relies on high-quality data sources and implements proven methods 

implemented in previous studies (for the deep-learning model1 and for the carbon emission 

upscaling2). I commend the authors for their effort. However, several points deserve additional 

justification and clarification. 

1. I am unclear about the nature of the labels used in training the deep learning 

model/supervised classification. The use of robust and reproduceable labels is obviously 

foundational to the validity of the model outputs, particularly given that the authors do not 

use independent data sources to validate it. From my understanding, the authors created the 

labels by masking land in the GSWO (<30% and <5% of water cover frequency out of the 

valid observations during the past four decades inside and outside floodplains, respectively) 

and masking ocean and river pixels (using the OSMWL and GRWL datasets, respectively), 

while retaining pixels overlapping with HydroLAKES polygons. Following this first step, 

j^[ Wkj^ehi YedZkYj[Z {[nj[di_l[ l_ikWb [nWc_dWj_edi WdZ d[Y[iiWho cWdkWb feijfheY[ii_d]

corrections were performed to ensure that all extracted lake boundaries (i.e., the lake mask 

vectorization) matched well with the wat[h,bWdZ _dj[h\WY[i _iebWj[Z ed j^[ BNRJ cWfi{

(P18L420). The extent of manual postprocessing corrections is not entirely clear in this 

description: was every lake polygon/label checked? Of those, how many were manually 

corrected? And based on what criterion? For instance, in mapping tree crowns, Brandt et al.3

manually delineated individual tree crowns based on j^[ \ebbem_d] Yh_j[h_W7 {jme YedZ_j_edi

had to be fulfilled for a crown to be marked during the manual labelling process: (a) the 

NDVI value had to be clearly higher than the surrounding (only trees have green leaves in 

j^[ Zho i[Wied') WdZ &X' W i^WZem ^WZ je X[ i[[d|+ Dd j^[ YWi[ e\ bWa[i) i_c_bWh Y^Wbb[d][i

exist, what level of permanence did the authors consider to qualify as characterizing 

water/land interfaces? In areas of extremely dense lake coverage where differentiating 

between rivers and lakes is arduous (e.g., across the Canadian Shield), and where the GRWL 

tends not to include river channels, how did the authors delineate individual lakes (vs. 

clusters of lakes)? 

For the sake of reproducibility, I encourage authors to provide intermediate products of this 

analysis, including the initial mask pre- manual corrections and the final labels/polygons 

used in training the dataset. 

2. Related to my previous point, what the lake polygons represent hydrologically should be 

more explicitly defined. Importantly, is the intent that the polygons represent the average or 

maximum lake extents? Do the polygons represent permanent lakes or are seasonal lakes 

also included (and what maximum degree of seasonality is included)? Because lake extent 

dynamics are only analyzed within the delineated polygons, I assume that the polygons 

represent their maximum extent. If the polygons are an all-time maximum, I recommend that 
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the overall statistics of the area of lakes and comparisons with other datasets (e.g., Extended 

Data Fig. 3) be based on the probability-weighted area rather than on the maximum extent. 

For example, I was really surprised to see >150 more lakes with a surface area >100km2 in 

GLAKES than in HydroLAKES as most of these lakes are rather well-known. Only when I 

inspected the polygons did I realized that many of those large lakes are >100 km2 because it 

is apparently their maximum extent which was represented.  

3. The omission and commission rates are quite high for small and large lakes, respectively. 

However, the reasons for and implications of this limitation are not discussed. I am not 

familiar with the inner workings of the deep learning model employed in this study, but 

would it be possible to train two separate models that would be catered for differently-sized 

lakes? At least, a quantitative estimate of the uncertainties in the predictions would 

strengthen this study. 

4. Multiple studies have previously highlighted the outsized role of small lakes for several 

global processes and this study adds a salient piece to the puzzle. Nonetheless, I suggest that 

the findings from this study regarding the role of small lakes need to be caveated in two 

main ways: 

a. It makes sense that small lakes display higher relative temporal variability (smaller 

volume to area ratio, greater sensitivity to catchment, etc.). However, it is important to 

highlight potential biases in quantifying the amplitude of this variability that are due to 

scale. Because the size of individual pixels is large compared to the total area of small 

lakes, the default/random variability in extent of small lakes is higher. In a lake 

spanning 0.05 km2, a single 900-m2 pixel going from wet to dry leads to a ~2% 

change. I wonder how similar the variability in extent would be between small and 

large lakes if it were evaluated with equal relative pixel sizes (e.g., 5 m for a 0.05 km2

lake and 5 km for a 50 km2 lake).  

b. The outsized role of small lakes in driving carbon emissions may be largely driven by 

the fact that reservoirs were excluded from the calculations. My guess is that the 

inclusion of emissions from large reservoirs may change this finding. I suggest that 

this be mentioned. Moreover, all sections discussing the carbon emission estimates 

should ki[ j^[ j[hc {dWjkhWb bWa[i| hWj^[h j^Wd `kij {bWa[i| &Wi j^[ bWjj[h h[\[hi je Xej^

lakes and reservoirs by default in the manuscript; P4L70). The reporting of the 

findings would thus be clearest to readers who may not read the entire piece (i.e., most 

readers), avoiding that this work be miscited. This is not currently clear in the abstract 

for example.  
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Data & methodology, appropriate use of statistics and treatment of uncertainties 

Are there any flaws in the data analysis, interpretation and conclusions? Do these prohibit 

publication or require revision? Is the methodology sound? Does the work meet the expected 

standards in your field? Is there enough detail provided in the methods for the work to be 

reproduced? 

There are no major flaws in the data analysis, interpretation and conclusions that would prohibit 

publication, though see my previous and subsequent remarks which I believe warrant revisions. 

This work meets standards in the field in terms of data and methodology, but its explanation and 

treatment of uncertainties could be further strengthened.  

Data sources  

To my knowledge, the data sources used in this study are some of the best available datasets for 

this application. The only exception to this statement is the OpenStreetMap Water Later 

(OSMWL) dataset, whose provenance is largely undocumented and quality yet to be 

demonstrated. Nonetheless, I am confident that using (or producing) a better dataset would not 

fundamentally change the conclusions of this study. 

Explanation of methodology and treatment of uncertainties 

- The main text currently contains no discussion on sources of uncertainty, I highly 

encourage that a substantial paragraph or section be dedicated to the main sources and 

extents of uncertainty affecting this study. For instance, discussions on the difficulty of 

disentangling lakes from temporarily inundated floodplains or agricultural fields would be 

needed.  

- Overall, the deep learning model deserves to be explained more clearly and at greater 

length. Additional explanations should be provided as to how the deep learning model 

functions and a table of hyperparameters should be provided in the supplementary material. 

Additional information on why some decisions were taken is needed (see my specific 

comments further on), which could be complemented by information on the sensitivity of 

model outputs to these decisions.  

- An assessment of the spatial distribution of uncertainties would be valuable. In which 

regions does the model perform better or worse? This could be implemented through 

spatial cross-validation.  

- Currently, the labels used for assessing the model performance are only partly independent, 

as they were created through the same semi-automatic process using the same data source 

(GSWO). Adding a truly independent validation, based on a different sensor and/or higher 

resolution imagery (e.g., using Sentinel data as was most recently done by Pickens et al.7), 

would strengthen the evaluation of the model performance.  

- The evaluation of model performance (Extended Data Table 1) is only provided at the 

pixel level whereas this study also produced a polygon dataset. To better grasp 

uncertainties, I encourage the authors to provide a polygon-based performance assessment 
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(omission and commission at the lake entity level as well as measures of fit and bias 

between test polygons and output polygons). 

Dataset formatting  
I opened and visualized the dataset with no difficulty. It fits the description provided in the 

manuscript. The documentation is clear. Although it may not be in its final form, I suggest that 

the authors also provide a license for the data, and that the database be available as a Shapefile 

and/or geopackage to enable a greater range of users to access these data.  

Conclusions 

Do you find that the conclusions and data interpretation are robust, valid and reliable? 

Provided that the findings on lacustrine emissions be more explicitly re-framed as that of natural 

lakes, I believe that the conclusions and data interpretation are robust, valid and reliable. 

Presentation 

The manuscript is written clearly overall, with minor edits needed (detailed in the following 

section).  

The figures are very informative and aesthetically pleasing. Some minor edits are needed for the 

legends and captions to be clear, complete and accurate. 

Miscellaneous comments and suggested improvements 

Please find below suggestions, many minor, for strengthening this research work during 

revisions: 

- P2L29 {[nfb_Y_j [nj[dji WdZ Y^Wd][i|7 j^_i h[bWj[i XWYa je my previous comment on the 

c[Wd_d] e\ j^[ BG<F@N febo]edi+ {[nfb_Y_j| [nj[dj _i dej Yb[Wh) is the dataset about 

average or maximum extent?   

- P2L30: {GWa[ Wh[W _dYh[Wi[Z WYheii Wbb i_n Yedj_d[dji|) Wd [nfb_Y_j c[dj_ed e\ j^[ ZWj[i

used in the study here would be useful. 

- P2L32 {global lake areas| WdZ {lWh_WX_b_j_[i|+ D X[b_[l[ j^Wj Xej^ e\ j^[i[ i^ekbZ X[

singular.  

- K/G027 {Jkh \_dZ_d]i _bbkijhWj[ j^[ [c[h]_d] heb[i e\ icWbb bWa[i _d h[]kbWj_d] beYWb

_dbWdZ mWj[h lWh_WX_b_j_[i WdZ ]h[[d^eki[ ]Wi [c_ii_edi+| Ohe results suggest that small 

bWa[i Zed}j edbo h[]kbWj[ local inland water (extent?), but also the global dynamics of 

surface water extent and greenhouse gas emissions. 

- To be specific, the authors could refer to carbon emissions rather than greenhouse gas 

emissions, as N2O was not studied here (despite its role as a GHG11).  

- K0G067 {xkdZ[hf_d l_jWb [Yeioij[c \kdYj_ed WdZ i[hl_Y[i| \eh j^[ iWa[ e\ j^ehek]^d[ii)

please provide a citation.  

- P3L41: ReebmWo) M+ D+) FhW[c[h) =+ H+) G[dj[hi) E+ ?+) H[hY^Wdj) >+ E+) J}M[_bbo) >+ H+)

& Sharma, S. (2020). Global lake responses to climate change. Nature Reviews Earth & 
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Environment, 1(8), 388-403. Would be more adequate (global scale) for this statement 

than J}=[_hd[

The following study would also be relevant to this statement: 

Grant, L., Vanderkelen, I., Gudmundsson, L., Tan, Z., Perroud, M., Stepanenko, V. M., 

Debolskiy, A. V., Droppers, B., Janssen, A. B. G., Woolway, R. I., Choulga, M., 

Balsamo, G., Kirillin, G., Schewe, J., Zhao, F., del Valle, I. V., Golub, M., Pierson, D., 

HWhYr) M+) x O^_[ho) R+ &/-/.'+ <jjh_Xkj_ed e\ ]beXWb bWa[ ioij[ci Y^Wd][ je

anthropogenic forcing. Nature Geoscience 2021, 1y6. https://doi.org/10.1038/s41561-

021-00833-x 

- P3L57: {Estimates of j^[ ]beXWb [nj[dj e\ bWa[i Wh[ WlW_bWXb[| mekbZ X[ W ceh[ [nWYj

description of these datasets. 

- K1G327 {Cem[l[h) j^[i[ WlW_bWXb[ ]beXWb Wii[iic[djix| _j _i dej [dj_h[bo [nfb_Y_j _d j^_i

fWhW]hWf^ m^Wj {j^[i[ Wii[iic[dji| h[\[h je+ Kb[Wi[ YbWhify.

- K1G4.7 {R[ ki[Z Z[[f b[Whd_d] je _Z[dj_\o bWa[i icWbb[h j^Wd j^[ c_d_ckc cWff_d] kd_j

\eh Wbb fh[l_eki ]beXWb bWa[ ZWjWi[ji &-+. ac�'+| Q[hfeehj[h [j Wb+9 describe mapping lakes 

down to 0.002 km2 (nine Landsat pixels). 

- K1G5.7 {?[[f b[Whd_d] cWa[i _j feii_Xb[ je Z[j[Yj bWa[i Wi icWbb Wi -+-0 ac2

(corresponding to approximately 33 Landsat image pixeli'x|+ O^_i cWo X[ Zk[ je co

misunderstanding of what is involved in the deep learning algorithm, but I am not clear 

about how deep learning itself enables detecting small lakes. This statement deserves 

additional explanation/justification. 

- Figure 1: This is a nicely done and informative figure. Good job! For panel b, given that a 

degree square has a substantially different surface area depending on latitude, I 

recommend that the lake extents be expressed as limnicity (% land area covered by lakes) 

rather than absolute area (km2).  

- P6L103: For ease of reading, I suggest simply using the actual years (1980-90s, 2000s, 

and 2010s) throughout the manuscript rather than P1, P2 and P3. 

- P10L189: It is not clear from the methods whether this estimate is determined with the 

total area of the polygons (that would mean the maximum water extent based on my 

observation of the dataset, and would thus potentially represent an overestimate) or the 

probability-weighted area over a given period.   

- Figure 4. I suggest using the same color set for small, medium and large lakes here as in 

panels a and b of Figure 3. 

- P12L226: Very interesting finding! 

- P12L235: The following citations are quite relevant here for discussion: 

o Keller, P. S., Marcé, R., Obrador, B. et al. Global carbon budget of reservoirs is 

overturned by the quantification of drawdown areas. Nature Geoscience. 14, 402y

408 (2021). https://doi.org/10.1038/s41561-021-00734-z
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o Johnson, M. S., Matthews, E., Bastviken, D., Deemer, B., Du, J., & Genovese, V. 

(2021). Spatiotemporal methane emission from global reservoirs. Journal of 

Geophysical Research: Biogeosciences, 126, e2021JG006305. 

https://doi.org/10.1029/2021JG006305

o Bridget R. Deemer, John A. Harrison, Siyue Li, Jake J. Beaulieu, Tonya DelSontro, 

Nathan Barros, José F. Bezerra-Neto, Stephen M. Powers, Marco A. dos Santos, J. 

Arie Vonk, Greenhouse Gas Emissions from Reservoir Water Surfaces: A New 

Global Synthesis, BioScience, Volume 66, Issue 11, 1 November 2016, Pages 949y

964, https://doi.org/10.1093/biosci/biw117

- K./G/027 {Jkh Z[jW_b[Z cWff_d] e\ j^[ ZodWc_Yi e\ 0+1 c_bb_ed bWa[i YWd fej[dj_Wlly be 

used to better characterize regional-to-global hydrological budgetsx| < Xh_[\ c[dj_ed

could also be made of the possibilities for a more thorough assessment of the causes of 

surface water extent variations given that the present study is (understandably, given its 

scope) cursory in its assessment of the effects of climatic and anthropogenic influences. 

- P15L349: Here it is worth pointing out as an assurance to the reader that Pekel et al. 

demonstrated remarkable continuity in the accuracy of the GSWO among sensors and, 

consequently, through time, which is paramount to the validity of this analysis. 

- P15L353: How was the lower limit of 33 pixels determined? Was a sensitivity analysis 

conducted in terms of model performance with higher and lower size limits? How does 

performance change towards that lower limit of 0.03 km2 (versus for all small lakes 

together)? 

- P17L407: It seems that the reference for this dataset is incorrect. Ref 49 points to 

TWcWpWa_) ?+ [j Wb+ < ^_]^ÜWYYkhWYo cWf e\ ]beXWb j[hhW_d [b[lWj_edi+ B[ef^oi_YWb

Research  Letters 44, 5844-5853 (2017).  

However, this reference does not include any reference to OSMWL. I believe that the 

authors may be referring to Yamazaki, D., Ikeshima, D., Sosa, J., Bates, P. D., Allen, G. 

H., & Pavelsky, T. M. (2019). MERIT Hydro: a high-resolution global hydrography map 

based on latest topography dataset. Water Resources Research, 55, 5053y 5073. 

https://doi.org/10.1029/2019WR024873  

And the following dataset: http://hydro.iis.utokyo.ac.jp/~yamadai/OSM_water/index.html

- P17L409: How were the thresholds of 5% and 30% for non-floodplain and floodplain 

regions determined? 

- P18L426: I believe that the correct mehZ mekbZ X[ {YecfWh[Z je| hWj^[h j^Wd {m_j^| _d

{\beeZfbW_di i^em[Z Z_ij_dYj_l[ fWjj[hdi m_j^ Wbb ej^[h bWa[ h[]_edix|

- P18L428: It makes sense that additional region types were identified, yet their 

relationship to the normal and floodplain region types (and the multiple uses of the term 

region or region type) _i kdYb[Wh WdZ j^[h[ _i de h[\[h[dY[ [bi[m^[h[ e\ j^[i[ {region sub-

types| _d j^[ cWdkiYh_fj &_d j^[ \_]kh[i eh _d j^[ f[h\ehcWdY[ h[fehj_d]'+ How are model 

uncertainties distributed among those regions?  
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- P18L438: were the regions allocated by formal stratified random sampling? What is the 

size distribution of labels (Extended Data Fig. 1 suggests that they are of different sizes)? 

- P19L446: {Aeh [WY^ iWcfb[ h[]_ed) W lWh_[jo e\ fWjY^[i m[h[ hWdZecbo ][d[hWj[Z WdZ

used for model training, and the same local normalization method was also utilized for 

[WY^ fWjY^+| D Wc kdYb[Wh WXekj j^[ c[Wd_d] e\ j^_i i[dj[dY[+ D ik]][ij j^Wj patches, 

regions (including region types and sub-types), and labels be more clearly defined and 

differentiated. Normalization was also not mentioned beforehand. A workflow diagram 

could help the readers to grasp this analysis, as it is crucial to the quality of the model.  

- P19L461: please define MIoU in the manuscript itself. 

- P21L498: It seems from Extended Data Fig. 1 that the model systematically 

underpredicts label area. I suggest reporting mean percent bias for the normal and 

floodplain models and addressing this pattern in the text.  

- P22L518: The GLWD is a minor component of HydroLAKES. The vast majority of lake 

polygons \hec 23�N je 3-�I are from the Shuttle Radar Topography Mission (SRTM) 

Water Body Data (SWBD), and all lakes in Canada (62% of all lakes in 

the database) are from CanVec. This clause may be corrected or removed. 

- P22G2/47 {j^[ ijWj_ij_Yi \eh bWa[i icWbb[h j^Wd -+. ac/ &_\ Wdo m[h[ WlW_bWXb[' m[h[

h[fh[i[dj[Z Xo lWbk[i [njhWfebWj[Z \hec bWh][h bWa[i| I mentioned it in a previous 

comment, but I was under the impression that GLOWABO provided statistics for lakes at 

least down to 0.01 km2 if not 0.002 km2. 

- P22L538: {Moreover, we found a substantial number of missing lakes in eastern Canada 

and Scandinavia in the HydroLAKES dataset and lake overestimations with varying 

degrees in other regions (Extended Data Figs. 3b & 4); these errors could be due to 

uncharacterized seasonal or interannual dynamics and other unsourced uncertainties from 

the inherited datasets+|

o In its current form, the first clause of this sentence is not entirely clear. Figure 3b 

suggests that HydroLAKES overestimates lake density and area compared to 

GLAKES in eastern Canada and Scandinavia (although the current sentence 

structure suggests the opposite) but underestimates lake prevalence in several 

other regions compared to GLAKES (foremost in Siberia and along major river 

floodplains e.g., Mississippi, Amazon, and Ganges-Brahmaputra).  

o Regarding the second clause of the sentence, I recommend caution in 

characterizing the discrepancies between HydroLAKES and GLAKES as 

necessarily errors.  

& In Canada, many lakes that are present in HydroLAKES but absent from 

GLAKES do exist. Canadian data in HydroLAKES was sourced from 

CanVec, which itself was built by digitizing topographic maps that, in my 

experience, are rather reliable, particularly in southern regions. I expect that 

GLAKES is unable to detect a lot of smaller and shallower lakes because 

their water surface is frozen/snow-covered for 4-9 months/year and heavily 
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vegetated for the other months of the year (see example maps below, which 

fall within the frame of Figure 4 and show HydroLAKES outlines and 

GSWO). Many lakes in this region are transitioning to wetlands, so some may 

also be dry for part of the year.  

& In Siberia above 60N, the underestimation of lake prevalence by 

HydroLAKES is real. This underestimation stems from the fact that polygons 

in this region were generated from the MODerate resolution Imaging Spectro-

radiometer (MODIS) MOD44W Collection 5 water mask, which has a 

resolution of only 250-m. A considerable proportion of surface water bodies 

X[jm[[d .- WdZ /2 ^W &w 1 f_n[bi' m[h[ dej Z[j[Yj[Z _d j^_i h[]_ed Zk[ je j^[

coarse pixel size of the MODIS instrument (each pixel is ~6.25 ha in area)12. 

& The overall higher number of small lakes in GLAKES compared to 

HydroLAKES South of 60N may also stem from two other reasons: 

� a size discontinuity in the SWBD that was used to produce HydroLAKES 

in this region. The minimum size threshold used by technicians for 

digitizing a waterbody was a length of 600 m (and a width of 90 m). The 

largest lake missing due to this constrain is theoretically a round lake of 

570 m in diameter spanning ~25 ha, and the proportion of omitted lakes 

increases with decreasing lake area. 

� The inclusion of additional seasonal waterbodies, including some that 

cannot really qualify as lakes, particularly in river floodplains (e.g., 

lake_id 69 is > 2,000 km2 but appears to result from a flood), and of 

flooded fields for agriculture (lake_id 410210 are human-flooded fields).  

o A broader point with these examples is that, while GLAKES may not be always 

right (and lakes found in HydroLAKES may thus not be errors), is that a strength 

of GLAKES is its global coherence/consistency (as I pointed out in previous 

sections), compared to datasets that result from aggregating multiple datasets. 

This is worth highlighting.  
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- P23L553: The area of each pixel is 900 m2

- P23L563: In Pekel et al. 2016, changes in water occurrence between epochs is matched 

by month (see quote from the original publication below) to avoid artefacts stemming 

from unequal detection among months and satellite coverage. Is the current computation 

approach immune from this issue? 

"Change in water occurrence intensity between two epochs (16 March 1984 to 31 

December 1999, and 1 January 2000 to 10 October 2015) was also produced (Extended 

Data Fig. 6a). This is derived from homologous pairs of months (that is, the same months 

Source: Esri,
DigitalGlobe,
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contain valid observations in both epochs). The occurrence difference between epochs 

was computed for each pair and differences between all homologous pairs of months 

were then averaged to create the surface water occurrence change intensity map. Areas 

where there are no pairs of homologue months could not be mapped. The averaging of 

the monthly processing mitigates variations in data distribution over time (that is, both 

seasonal variation in the distribution of valid observations, temporal depth and frequency 

of observations through the archive) and provides a consistent estimation of the water 

occurrence change. This map shows where surface water occurrence increased, decreased 

or remained invariant between the two epochs." 

- P24L579: Here and elsewhere in the manuscript, it would be worth caveating that lakes 

identified with this method _i ceijbo \eYki[Z ed {bWa[i j^Wj h[Y[djbo &fheXWXbo m_j^_d j^[

bWij \[m Z[YWZ[i|' Z[jWY^[Z \hec ]bWY_[hi Zk[ je ]bWY_Wb h[jh[Wj as well as larger 

supraglacial lakes that are persistent enough to be visible on multi-o[Wh ceiW_Yi+|) Wi

explained in Shugar et al.13

- K/1G2507 {j^[ f[hY[dj Wh[W e\ f[hcW\heij within lake polygon boundaries mWi .-$|;

- P24L587: GEODAR authors report including 23,680 dam points (often, multiple dams 

can be associated with a single reservoir) and 20214 reservoir polygons. How was the 

intersection conducted to extract 24,514 reservoirs in GLAKES? 

- P25L595: Please provide a table summarizing the equations used.  

- P25L603: What was the data source used to determine air temperature? 

- P25L610: Does this imply that lakes were not classified among the logarithmic size 

classes for computing CH4 emissions? Please clarify. 

- P26L628: By combining, do you mean that you computed the product of the probability-

weighted lake areas and lake-specific CO2/CH4 areal fluxes, then summed across lakes? 

- Extended Data Fig. 1. Label area unit should be km2, not km3

- Extended Data Fig. 4. In light of my previous comment on possible issues with GLAKES 

in Canada, I recommend altering the language of the title of this figure to a more neutral 

tone about comparing. 

- Extended Data Fig. 8. Please indicate the meaning of the box plot components in the 

legend. 

- Extended Data Figure 9. A few suggestions below the comparison to be more 

informative: 

o For the different estimates to be more comparable, I recommend either writing the 

minimum size of lakes included in each study or maybe showing these as 2D plots 

showing the total lake area/number determined in each study on one axis and the 

estimated emission on the other axis. Alternatively, different bar plots could be 

colored depending on which baseline lake dataset was used.  

o I am not an expert in biogeochemistry, but do all these studies include the same 

types of fluxes (diffusive and/or ebullitive? See Deemer et al.11)? 
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o Finally, the error bars represent different intervals (e.g., Monte-Carlo approach for 

Holgerson et al. to produce a 95% interval, vs. a min-max fluxes for this study) so 

this should be explained in the caption.  

Please indicate any particular part of the manuscript, data, or analyses that you feel is 

outside the scope of your expertise, or that you were unable to assess fully. 

Deep learning algorithms and biogeochemistry are not part of my primary area of expertise 

I enjoyed reading this piece and hope that my comments and suggestions will be helpful to the 

authors. Best of luck for continuing to improve this valuable study. 
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Dear Editor and reviewers: 

Thank you for your letter and for the reviewers’ comments on our manuscript 

(manuscript number: NCOMMS-21-48587). These comments are very valuable and 

helpful for revising and improving our manuscript. We have addressed these comments 

carefully and have made revisions according to reviewers’ suggestions one by one.  

Response to the reviewer 1: 

General comments: 

Point: I quite liked this paper and find it well suited for Nat. Comms. It has broad 

implications (geographic and biogeochemical) and the approach taken well justified in my 

view. It takes a multi-decadal perspective to show that, over the past 40 years or so, the 

surface area occupied by very small lakes has increased and that of large lakes (actually 

mostly just the Aral sea) has decreased. The manuscript is divided into two quite distinct 

sections, one purely hydrological (lake mapping) and the other exploring the consequences of 

the changes in lake surface area on lake greenhouse gas emissions. In both cases, I thought 

the manuscript did quite a good job. Nevertheless, I feel the robustness of some of the 

assertions made need to be explored more fully. 

Response: Thanks for your encouraging comments. We have made itemized revisions to 

address your concerns. 

Specific comments: 

Point 1: My main concern in this section is the stability of the detection/classification 

algorithm through time. It is difficult to imagine that the quality of the satellite images 

haven’t changed over the 40 years. I did not look up the GSWO data set in details on which 

the present analysis is based but it would seem necessary to me to show that the temporal 

trend in lake coverage is not due to the deep learning algorithm performing differently in the 

different decades examined. I would therefore recommend parsing the validation separately in 

the different decades. Incidentally, some details of the specific deep learning approach used 

here (the U-Net model as applied by Brandt et al.) should be given and not simply referenced.

Response 1: Thanks for your insightful suggestion. For the first point, the deep-learning 

classification algorithm was performed on the GSWO dataset that spanning the whole 

study period (i.e.,1984-2020) to generate our GLAKES dataset, which was then used for 

the calculation of the probability-weighted area of each lake for the three periods (i.e., 

1980-90s, 2000s, and 2010s). Therefore, there is no need to concern about the 

discrepancy in the performance of the U-Net model along time since we only used one 
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set of global lake boundaries to calculate the surface area changes among different 

periods.

For the second point, according to the documentation of Pekel et al. (2016), extensive 

validation of the GSWO dataset has been conducted at global scale, over the whole study 

period and among all involving Landsat sensors. The results demonstrated the high 

accuracy of the surface water delineation in the GSWO datasets (1<% false water area 

detections and <5% missed water area) and, consequently, the ability to afford 

comparable, continuous and consistent mapping spatially, temporally and across sensors. 

The above explanation has been added to the description section of the GSWO dataset 

in our revised manuscript (lines 383 to 388), as an assurance to readers that GSWO 

achieved high accuracy throughout different time periods, to prove the validity of our 

temporal change-related analysis. 

As for the U-Net model, we have added more details for your information: “Deep 

learning has been widely used in many areas (Krizhevsky, Sutskever and Hinton 2012, 

Hinton et al. 2012, Sutskever, Vinyals and Le 2014, LeCun, Bengio and Hinton 2015), 

and are proven to be a powerful and creative tool in detecting features of interests from 

satellite images (Ma et al. 2017, Weiss, Jacob and Duveiller 2020, Reichstein et al. 2019). 

A recent inspiring deep learning application in remote sensing image processing was 

documented by Brandt et al. (Brandt et al. 2020), who detected tree crowns by 

combining the U-Net model with submeter high-resolution satellite images. The U-Net 

model used in Brandt et al. (Brandt et al. 2020) is a typical semantic segmentation 

technique that performs pixel-wise classification within an image for precise 

segmentation (Yu et al. 2018, Ronneberger, Fischer and Brox 2015). Compared to the 

conventional classification tasks, U-Net yields not only the label category of a specific 

image, but also its corresponding location. Upon the application of U-Net, Brandt et al. 

(Brandt et al. 2020) managed to map more than 1.8 billion non-forest tree crowns (>3 

m2) in the West African Sahara and the Sahel, somewhat overturning the previous 

stereotype of trees scarcity in these dryland regions. Here, we modified the U-Net model 

developed by Brandt et al. (Brandt et al. 2020) and transferred its application to global 

lake mapping. We expect a well-trained U-Net model to perform well when classifying 

lakes and rivers using GSWO images, as lakes and rivers are already highly 

distinguishable in visual examinations (Extended Data Fig. 3). 

Building upon a fully convolutional neural network (Long, Shelhamer and Darrell 2015), 

the U-Net model composes of various and hierarchical convolution layers that are 

widely used in semantic segmentation field for feature detection (LeCun et al. 2015, 

Ronneberger et al. 2015, Liu 2018), vital for the extraction and segmentation of lakes 

from rivers. The convolution layer extracts features from an image in the previous layer 

and results in a less redundant output image called feature map. Generally, the features 
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learned by convolution layers transition from simple to more abstract ones as the level 

of the convolution layers increase (Zeiler and Fergus 2014, LeCun et al. 2015, Ribeiro, 

Lazzaretti and Lopes 2018), and these features are determined by the convolution 

kernels (i.e., an array of weights) that are learned automatically through 

backpropagation. Except for convolution layers, there are various structures that are 

also essential in the modified U-Net architecture of Brandt et al. (Brandt et al. 2020), 

including activation function (enabling nonlinear classification), batch normalization 

(stabilizing and accelerating the training process), pooling (reducing data dimension and 

computation complexity), up-convolution (restoring the size of feature maps for precise 

localization) as well as concatenation (combing the higher-level feature map with a 

lower-level one to better learn representation). In addition, the U-Net model adopts the 

overlap-tile strategy, which makes it possible to perform a seamless segmentation for 

extremely large images without losing information about the divided border regions 

(Ronneberger et al. 2015). This makes U-Net particularly applicable to our goal of pixel-

wise lake classification through the GSWO images at a global scale.  

Specifically, the U-Net model comprises two major parts: a contracting path for feature 

interpretation and a near symmetric expanding path for location identification, leading 

to a u-shaped architecture that enables pixel-to-pixel classification (Ronneberger et al. 

2015). In the contracting path, the input feature map undergoes four repeated blocks for 

downsampling, consisting of two 3x3 convolution layers (each accomplished with a 

rectified linear unit (ReLU) activation function), a batch normalization layer and a 2x2 

max-pooling layer. Notably, the feature channels double after each downsampling 

process and then half after each upsampling process in the expanding path. Likewise, 

the expanding path consists of four comparable blocks for upsampling. The difference is 

that once a 2x2 up-convolution and batch normalization are conducted on the feature 

map, a concatenation will be performed with its cropped feature map from the 

corresponding contracting path, and together they go through two 3x3 convolutions 

activated by ReLU. At last, a 1x1 convolution layer is used to produce the final 

classification map.”

Point 2: Incidentally, some points are made that I feel should be even more underlined 

forcefully. For example, their lake global coverage of is very close to that estimated by 

Downing et al. (2006) if we only consider the overlapping size classes. It is also very similar 

to Feng et al. (2015) estimate. However, it is much lower than the impossibly high 

GLOWABO numbers. 

Response 2: Thanks for this comment. According to our statistics on Extended Data Fig. 

4, if we consider all lakes contained in the two datasets, the lake estimated by Downing 
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et al. (2006) is 87.7 times than the GLAKES dataset in number and 32.9% larger in 

area. It’s true that the area and numbers of these two datasets will be much closer (52.4% 

higher in numbers and 4.5% lower in the area) if we compare only lakes with areas >0.1 

km². As a comparison, the lakes documented in HydroLAKES dataset are 5.2% lower in 

numbers and 5.1% lower in area than GLAKES. Therefore, our results are very close to 

both the dataset of Downing et al. (2006) and HydroLAKES in the area if only the 

overlapping size classes are included. Nevertheless, our results show closer proximity to 

HydroLAKES dataset in numbers and both in area and numbers if all lakes are 

examined. 

In terms of the estimate of Feng et al. (2015), we are sorry that we did not find such an 

article. Could you please provide the link? We will then make a comparison with their 

study.

As for the GLOWABO dataset, the reasons why the numbers of lakes are extremely 

high may partly be because the author did not discriminate the rivers from lakes 

(reminded by reviewer 3). In such a case, the dataset may contain different types of 

water bodies instead of only pure lakes, which may result in exceptionally high values of 

area and numbers compared with other global lake datasets.  

Point 3: There is no doubt that small lakes emit per unit area much more than larger lakes and 

the manuscript makes an important that the areal expansion of small lakes disproportionately 

affects the global lake emission numbers. However, I felt there was too much reliance on a 

single study (Holgerson and Raymond) and would have like some sensitivity analysis done on 

that. The authors actually acknowledge that (line 622) but there are many published 

relationships between GHG emissions and lake size (e.g. Rasilo et al. 2014) and a comparison 

of results with different such equations would enhance the robustness of their conclusions. 

Similarly, the occurrence of several negative CO2 fluxes if a single equation is applied to all 

lakes is problematic. While there are cases of negative CO2 fluxes in lakes, they are not 

particularly related to lake size but rather to eutrophication. Nevertheless, I appreciate that 

they ultimately used the average flux within binned log classes. 

Response 3: Thanks for this valuable comment. We agree that the empirical equations 

used in Holgerson and Raymond (2016) in applying all lakes may be problematic. 

Further, we think this may also be applicable to global CH4 emissions. Therefore, we 

kept the method for calculating the CH4 emissions the same as that of calculating CO2

emissions and updated relevant results (i.e., using the average flux within binned 

logarithmic size classes). Considering only the emissions from lakes > 0.1km2 (which 

were the common size range for lakes in GALKES and GLOWABO dataset), we can 

clearly find out that our former version of the global CH4 estimate is evidently 
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overestimated compared to that of Holgerson and Raymond (2016), given that the lake 

area used in our study is smaller than that of Holgerson and Raymond (2016), but we 

9I9BGH5@@K K=9@8 5 :5E @5E;9E 9A=FF=CB I5@H9 "+%) IF (%& 3;O/OKEN'), even though the 

equations used to calculate the CH4 emissions are from their study.  On the contrary, the 

magnitude of global CO2 emission and updated global CH4 emission values are 

reasonable compared to that of Holgerson and Raymond (2016), the discrepancy 

between which mainly resulted from the deviations in lake area used for calculations.   

In terms of the different methods to calculate global lake carbon emissions, we read 

many relevant papers. We find that researcher has paid much more attention to the CH4

emissions than CO2 and the relevant papers on the former prevail against the latter one, 

especially in recent years. Nevertheless, among all these articles, some were based on 

regional scale which are not suitable for global upscaling (Rasilo, Prairie and Del 

Giorgio 2015, Ran et al. 2021, Borges et al. 2022, Sánchez-Carrillo et al. 2022), some did 

not provide relevant equations or average flux within binned logarithmic size classes for 

direct estimation of diffusive emission (Tranvik et al. 2009, Bastviken et al. 2011, 

Raymond et al. 2013, Rosentreter et al. 2021, Zheng et al. 2022), some offered equations 

with several key variables hard to obtain for global lakes (Deemer and Holgerson 2021, 

Zheng et al. 2022). These situations limited our selection for estimating global lake 

carbon emissions. In particular, DelSontro, Beaulieu and Downing (2018) first 

introduced binned water productivity classes in the field of carbon emission estimation 

for global lakes, which are reported to be better than methods utilizing lake size only. 

However, we tried their approach but couldn’t reproduce the same results as 

documented in their article for unknown reasons. We tried to contact them but didn’t 

receive the exact answers yet.  

Besides, we realize that it’s inappropriate to directly compare our result with previous 

estimations that contained 2 additional logarithmic size classes, as mentioned by 

reviewer 2. Therefore, we changed the overall logic as follows. To begin with, we 

discovered that our estimation was smaller than Holgerson and Raymond (2016) and 

discussed the reason (the use of overestimated lake surface area by ref (Holgerson and 

Raymond 2016), particularly for small lakes). Then, instead of direct comparisons, we 

compared the original result yielded by Holgerson and Raymond (2016) with previous 

studies, which indicated a good agreement with several other calculations when different 

methods or lake surface area datasets were used (Extended Data Fig. 9). Then we 

declared that since our estimating approach was from Holgerson’s study (with different 

global lake datasets for upscaling), our estimates on current lakes documented in 

GLAKS dataset should be reasonable, although uncertainty still existed (see limitation 

and uncertainty section).    
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Point 4: Reference not cited in their manuscript: 1.Rasilo, T., Prairie, Y. T. & Giorgio, P. A. 

Large-scale patterns in summer diffusive CH4 fluxes across boreal lakes, and contribution to 

diffusive C emissions. Global Change Biol 21, 1124–1139 (2014). 

Response 4 Thanks for this suggestion. We have added this reference to the following 

sentence in the newly added “uncertainty and limitation” section in Supplementary Note 

3: “Besides, incorporation of other relevant drivers such as the water body type, water 

depth, water productivity, sediments as well as ecoclimate zone would also enhance the 

representativeness of the average emission rates for more accurate global estimates 

(Rasilo et al. 2015, Wik et al. 2016, DelSontro et al. 2018, Deemer and Holgerson 2021)” 

Response to the reviewer 2: 

General comments: 

Point: This manuscript presents an interesting spatio-temporal analysis of a new high quality 

lake dataset, with insights on changes in global lake area over the past 4 decades. The results 

generally align with previous global scale analyses of both surface water and greenhouse gas 

emissions, reaffirming the well-established disproportionate roles of small water bodies in 

surface water hydrology and biogeochemistry. This analysis goes further than similar 

previous efforts to distinguish patterns with more nuance - natural lakes vs reservoirs, 

separating patterns within and outside glacier and permafrost regions. Although I don’t have 

the expertise to evaluate the method used to distinguish glacier and permafrost affected lakes, 

I found this is an interesting aspect of the study. Additionally, datasets on population density 

and type of drainage basin were used to provide further insights on different decadal patterns. 

There is room for improvement in terms of clarity and accuracy. Some of the interpretations 

in comparison to other datasets are not always supported with appropriate evidence – in 

particular the minimum lake size in existing datasets is smaller than in this new dataset 

(contradicting some statements), which also seems to affect the comparison of ghg emission 

estimates. The paper would also be much stronger with a clearer operational definition of 

lakes to help explain the assumptions and applicability of the classification model, and enable 

appropriate re-use of the data. 

A potential important advancements from this paper is the creation of a new spatially explicit 

high resolution global lake dataset – although the 2014 GLOWABO dataset from Verpoorter 

et al is higher resolution, it is not easily findable or readily accessible, and also not multi-

temporal. The data availability statement says the data will be provided, but there are not 

enough details provided to assess whether it will be shared with adherence to FAIR principles 

(https://www.go-fair.org/fair-principles/). 
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Response: Thanks for your insightful comments. We have taken these comments 

seriously and made revisions accordingly.

Main suggestions for improvement: 

Point 1: A clearer description of how “lakes” are operationally defined would improve this 

manuscript and provide a helpful foundation for future users of the GLAKES dataset. 

Although it is established in the introduction that lakes and rivers have distinct hydrology and 

biogeochemical processes, the criteria for how this distinction is made based on surface water 

extent/shape/geometry could be specified in more detail. The roles that other features such as 

wetlands play in surface water extent & variability is somewhat overlooked (eg. ~line 52-54) 

– is the underlying assumption that all surface water can be classified as lake vs river, or is the 

distinction lake vs. non-lake? Despite such complications, the analysis presented for upscaling 

GHG emissions is a good example for why it is valuable to distinguish lentic and lotic 

waterbodies in surface water datasets - is it possible to elaborate on other appropriate 

potential future uses of GLAKES given the assumptions used for the model and to classify the 

training data (~lines 240-244)?  

Response 1: Thanks for this valuable comment. We have made a clear definition of 

“lakes” and “rivers” along with their distinctive features in our revised manuscript. In 

addition, since our U-Net models were based on binary classification, the classification 

results would either be lake or non-lake. However, in our definition “lakes” actually 

contain various types of water bodies, including permanent waters, small ephemeral 

water bodies, “core portion” of water bodies in floodplains, tidal flat surrounded by 

lakes, and parts of wetlands as you mentioned, as well as human-transformed water 

bodies (reservoirs and some large agricultural fields (not much) ). Please see the 

following newly added paragraph for detailed information (lines 448 to 464). 

“Here, lakes and rivers mainly indicate lentic and lotic water systems that are visible 

from space, including both permanent and seasonal waters. Lakes and rivers generally 

exhibit different features on GSWO images. Compared to lakes that usually have flat 

and oval outlines, rivers are typically long, meander and narrow in shape, which makes 

them distinguishable in most cases (see Supplementary Note 3 to explore exceptions). 

For seasonal water bodies, we tend to address those located around rivers and 

meanwhile span a large scale (such as floodplains), while keeping the small ephemeral 

water bodies as lakes. In addition, we also identify tidal flats surrounded by lakes and 

parts of wetlands as lakes because they are hard to separate from lakes via satellite 

observations (Tootchi, Jost and Ducharne 2019). Here we use “parts of” because 

wetlands are usually covered with vegetation during the growing season, and are thus 

beyond the capture of the GSWO images (or optical remote sensing images). GLAKES 
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also contains constructed impounded water bodies (i.e., reservoirs) that are closely 

related to human activities. Notably, some agricultural fields are also included in our 

dataset, although the proportion may not be large, and further segregation is under 

process (see Supplementary Note 3). Last, we do not take into account lakes directly 

connected to the seas as the hydrological conditions, and human interventions are 

intricate in those regions. ” 

Thank you for your comment on the other appropriate potential future uses of 

GLAKES. We think one of the most important applications is to characterize regional-

to-global hydrological budgets, as the changes in evaporation and water storage induced 

by lake size variability were often ignored in past studies. This point has been discussed 

in the manuscript (lines 246 to 252). 

Point 2: The novelty of GLAKES in comparison to previous datasets seems a little 

overstated. Specifically, compared to GLOWABO (Verpoorter et al 2014), which is described 

as having a minimum lake size of 0.002 km2, with the smallest objects based on filtering 

anything smaller than 9 pixels. This contradicts statements that GLAKES is the first global 

lake dataset to include lakes smaller than 0.1 km2 without statistical extrapolation (lines 72-

73; lines 527-530; lines 545-547). 

Response 2: Thanks for your suggestions. We’re aware that the GLOWABO dataset has 

extracted lakes as small as 0.002 km2 in size. However, the GLOWABO dataset is not 

publicly available, and the total lake area and number documented seem peculiarly 

high, which raises our concern about their data quality. Nevertheless, our description of 

“the first global lake dataset to include lakes smaller than 0.1 km2 without statistical 

extrapolation” is inappropriate here. Actually, we are “the first global lake dataset to 

include lakes smaller than 0.1 km2 that is publicly available without statistical 

extrapolation”. Revisions have been made accordingly on places where similar 

descriptions occurred. 

In lines 73-75 of the revised manuscript, the statement was written as “We used deep 

learning to identify lakes smaller than the minimum mapping unit for global lake 

datasets that are publicly available (0.1 km²).”. 

In lines 82-85 of the revised manuscript, we changed the clause as “Deep learning makes 

it possible to detect lakes as small as 0.03 km2 (corresponding to approximately 33 

Landsat image pixels), which greatly improves the minimum mapping unit and 

mitigates the issues of mis-accounted small lakes in previous lake datasets that are 

accessible in public.”. 
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In lines 527-530 of the original manuscript, the sentence “Notably, in all these previous 

datasets, the statistics for lakes smaller than 0.1 km2 (if any were available) were 

represented by values extrapolated from larger lakes based on the assumption of power-

law distributions for global lake numbers and areas” was deleted. 

In lines 708-714 of the revised manuscript, changes have been made to relevant 

expression as “The overestimation of Downing et al. (2006) is likely due to the reason 

that the statistics derived for lakes <0.1 km2 were not determined from explicit lake 

mapping but from extrapolated values. In contrast, the overestimation of the 

GLOWABO dataset (Verpoorter et al. 2014) probably resulted from the inclusion of 

non-lake polygons such as rivers, given that the disentanglement of lakes from rivers 

was never mentioned in their documentation. As for Lehner and Döll (2004), similarly, 

their estimation of small lakes may be constrained by the underlying data sources 

composing GLWD.”. 

Point 3: Statements about comparisons to other lake GHG estimates should be reconsidered 

(lines 187- 201). Making these comparisons is obviously complicated because of the 

differences in underlying data on surface water extent datasets and different categorizations 

used for size classes (as mentioned), however as written there appear to be some 

misleading/confusing statements. 

3a. The abstract concludes GLAKES leads to higher GHG emissions (line 34) however the 

comparison to Holgerson and Raymond 2016 (line 190) shows smaller estimates than 

previous, which seems contradictory. Extended data figure 9 also shows emission estimates 

from the present study are smaller than most other estimates. Is the conclusion about higher 

emissions from lake area increases about changes over time between the periods analyzed 

(not differences with previous datasets)? If so this could be stated more clearly. 

3b. The lake surface area estimates from Holgerson and Raymond include more than 2 

additional logarithmic size classes smaller than the minimum size in GLAKES - 0.0001 to 

0.001 km2 (from statistical extrapolation), and 0.001-0.01 km2 (based on Verpoorter et al 

2014 for >0.002 km2 and estimated for 0.001-0.002 km2). While it is certainly possible that 

the surface area extents for these smaller classes are overestimated, they are not included in 

GLAKES at all and therefore would be an obvious source of the difference (~line 191). The 2 

other more recent studies included in Extended Fig 9 (DelSontro et al 2018 and Li et al 2020) 

both use GLOWABO without extrapolation beyond the lower limit of 0.002 km2, however 

neither appear to be in better agreement (line 194-195) with the GLAKES emission estimates 

compared to Holgerson and Ramyond 2016. 

3c. The CO2 estimate of 194 Tg C is compared to combined number for both CO2 and CH4 

in Holgerson and Raymond (should be only 571 Tg from CO2 not 583 on line 190). 
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Response 3: Thanks for this valuable comment. As for 3a, what this line wants to express 

is that the increase in lake area among different time periods results in the increase in 

lacustrine carbon emission among the corresponding periods. Sorry for this misleading 

description, we have changed it to “The identified lake area increase over time led to 

higher lacustrine carbon emissions, mostly attributed to small lakes.” 

As for 3b, we realize that it’s inappropriate to directly compare our result with previous 

estimations that contained 2 additional logarithmic size classes. Therefore, we have 

changed the overall logic as follows. To begin with, we discovered that our estimation 

was smaller than Holgerson and Raymond (2016) and discussed the possible reason (the 

use of overestimated lake surface area by ref (Holgerson and Raymond 2016), 

particularly for small lakes). Then, instead of directly comparing, we compared the 

original result yielded by Holgerson and Raymond (2016) with previous studies, which 

indicated a good agreement with several other calculations when different methods or 

lake surface area datasets were used (Extended Data Fig. 9). Then we declared that since 

our estimating approach was from Holgerson’s study (with different global lake datasets 

for upscaling), our estimates on current lakes documented in GLAKS dataset should be 

reasonable, although uncertainty still existed (see limitation and uncertainty section).    

In terms of 3c, thanks for pointing out this mistake. The CO2 emissions value has been 

corrected as 571 3;O/OKEN'. 

Point 4: The paper would be improved with at least a brief description of the U-Net model to 

explain why it is applicable for distinguishing lakes from rivers/other surface water features, 

especially for readers less familiar with such classification models. Is it possible to be more 

specific about what kind of features make lakes and rivers highly distinguishable in visual 

examinations (line 401-402), and explain why that might justify using the U-Net model for 

this kind of classification problem? 

Response 4 Thanks for this valuable suggestion. As we mentioned in response 1: 

“compared to lakes that usually have flat and oval outlines, rivers are typically long, 

meander and narrow in shape, which makes them distinguishable in most cases.”. In 

addition, we have added more details of the U-Net model and illustrated why it’s 

suitable for such kind of classification problem. 

“Deep learning has been widely used in many areas (Krizhevsky et al. 2012, Hinton et al. 

2012, Sutskever et al. 2014, LeCun et al. 2015), and are proven to be a powerful and 

creative tool in detecting features of interest from satellite images (Ma et al. 2017, Weiss 

et al. 2020, Reichstein et al. 2019). A recent inspiring deep learning application in 

remote sensing image processing was documented by Brandt et al. (Brandt et al. 2020), 

who detected tree crowns by combining the U-Net model with submeter high-resolution 
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satellite images. The U-Net model used in Brandt et al. (Brandt et al. 2020) is a typical 

semantic segmentation technique that performs pixel-wise classification within an image 

for precise segmentation (Yu et al. 2018, Ronneberger et al. 2015). Compared to the 

conventional classification tasks, U-Net yields not only the label category of a specific 

image, but also its corresponding location. Upon the application of U-Net, Brandt et al. 

(Brandt et al. 2020) managed to map more than 1.8 billion non-forest tree crowns (>3 

m2) in the West African Sahara and the Sahel, somewhat overturning the previous 

stereotype of trees scarcity in these dryland regions. Here, we modified the U-Net model 

developed by Brandt et al. (Brandt et al. 2020) and transferred its application to global 

lake mapping. We expect a well-trained U-Net model to perform well when classifying 

lakes and rivers using GSWO images, as lakes and rivers are already highly 

distinguishable in visual examinations (Extended Data Fig. 3). 

Building upon a fully convolutional neural network (Long et al. 2015), the U-Net model 

composes of various and hierarchical convolution layers that are widely used in 

semantic segmentation field for feature detection (LeCun et al. 2015, Ronneberger et al. 

2015, Liu 2018), vital for the extraction and segmentation of lakes from rivers. The 

convolution layer extracts features from an image in the previous layer and results in a 

less redundant output image called feature map. Generally, the features learned by 

convolution layers transition from simple to more abstract ones as the level of the 

convolution layers increase (Zeiler and Fergus 2014, LeCun et al. 2015, Ribeiro et al. 

2018), and these features are determined by the convolution kernels (i.e., an array of 

weights) that are learned automatically through backpropagation. Except for 

convolution layers, there are various structures that are also essential in the modified U-

Net architecture of Brandt et al. (Brandt et al. 2020), including activation function 

(enabling nonlinear classification), batch normalization (stabilizing and accelerating the 

training process), pooling (reducing data dimension and computation complexity), up-

convolution (restoring the size of feature maps for precise localization) as well as 

concatenation (combing the higher-level feature map with a lower-level one to better 

learn representation). In addition, the U-Net model adopts the overlap-tile strategy, 

which makes it possible to perform a seamless segmentation for extremely large images 

without losing information about the divided border regions (Ronneberger et al. 2015). 

This makes U-Net particularly applicable to our goal of pixel-wise lake classification 

through the GSWO images at a global scale.  

Specifically, the U-Net model comprises two major parts: a contracting path for feature 

interpretation and a near symmetric expanding path for location identification, leading 

to a u-shaped architecture that enables pixel-to-pixel classification (Ronneberger et al. 

2015). In the contracting path, the input feature map undergoes four repeated blocks for 

downsampling, consisting of two 3x3 convolution layers (each accomplished with a 
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rectified linear unit (ReLU) activation function), a batch normalization layer and a 2x2 

max-pooling layer. Notably, the feature channels double after each downsampling 

process and then half after each upsampling process in the expanding path. Likewise, 

the expanding path consists of four comparable blocks for upsampling. The difference is 

that once a 2x2 up-convolution and batch normalization are conducted on the feature 

map, a concatenation will be performed with its cropped feature map from the 

corresponding contracting path, and together they go through two 3x3 convolutions 

activated by ReLU. At last, a 1x1 convolution layer is used to produce the final 

classification map.”

Point 5: I think the identification/ description of the 5 categories of sample regions (lines 

430-436) is a strength of the analysis – the discussion could be improved by describing how 

well the model performs in each of those categories. Is it possible to show an example of each 

of the 5 types of sample region, or at least label the region types shown in Extended data fig 

2? What is the size range of the sample regions used to create the training data? 

Response 5 Thanks for this valuable suggestion. Examples illustrating the 5 categories 

of sample regions are presented in the revision (also see below). In addition, we re-

calculated the error matrix listed in Table S4 for each region type individually to assess 

the model’s performance, the table of which is also presented in the revision (also see 

below). First of all, it should be noted that the region type was only the 

representativeness of the major hydrological features of the lakes within the region 

bound, where lakes with distinctive features may also co-exist. In practice, not all five 

categories of sample regions were included in the Normal Model and Floodplain Model 

(see Table S4). Specifically, the Normal model consisted of type 1 (“lakes with 

middle/high occurrence”, HO), 2 (“lakes with low occurrence”, LO), 3 (“large lakes”, 

LL) and 4 (“lakes alongside river”, AR), since the type 5 (“lakes within floodplains”, WF) 

was not the target of the Normal Model. On the other hand, the Floodplain Model was 

made up of types 1, 3, 4 and 5. The reason why types 1, 3 and 4 were included for model 

interpretation was that the main patterns described by types 1, 3 and 4 were also 

observable within the regions defined by type 5, while type 2 was excluded because of 

the relatively high occurrence threshold (i.e., 30%) applied for the Floodplain Model.  

Overall, the accuracy of the former three categories (HO, LO, and LL) was higher than 

that of the remaining two categories (AR and WF), probably owing to the relatively 

intricate hydrological conditions of the last two types of regions. Here the largest 

omission errors (19.6%) of the Normal Model originated from AR, which probably 

resulted from the missed detection of oxbow lakes that were hardly distinguishable from 

rivers. There was additional and comparative omission lying in the Floodplain Model, 
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i.e., WF (12.8%), where the occurrence patterns were extremely complicated, and the 

exact floodplain extents were hard to depict. It is noteworthy that the deviation of the 

scatter points representing the region type AR was not evident for either model in 

Extended Data Fig. 2b, although exhibiting large omission errors. This is because their 

containing lake area was generally small and thus, their scatter points were hidden in 

the lower-left region of the scatter plot with dense scatter concentration. Similarly, 

commission errors were relatively low in almost all region types, especially compared to 

omission errors, confirming the model’s conservative strategy in delineation for all 

region types analyzed. 

In addition, the size distribution of the sample regions is appended in the Extended Data 

Fig. 2a (see below). Overall, the logarithmic sizes of these regions were approximated to 

a normal distribution, both in terms of the Normal model and Floodplain Model, while 

the total number of the former was ~1.7 times of the latter. In addition, the size of most 

sample regions was at the order of magnitude of 102 ~ 103 km2, with a median area of 

5.91×102 km2 for the Normal Model and 5.69×102 km2 for the Floodplain Model. 
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Extended Data Fig. 3 | Image pairs revealing the performance of the deep-learning 

algorithm in predicting lake extents using the test set. The right panels show the 

predicted lake extents; the correct classification (Label + Prediction), omission errors 

(Label only), and commission errors (Prediction only) are color-coded. The left panels 

are the input images sourced from the GSWO dataset and are independent of the labels 

used for algorithm training and validation. The lower right annotations represent the 

abbreviations for the five region types: “lakes with middle/high occurrence” (HO), 

“lakes with low occurrence” (LO), “large lakes” (LL), “lakes alongside rivers” (AR) and 

“lakes within floodplains” (WF). For specific accuracy statistics, please refer to 

Extended Data Fig. 2 and Extended Data Table 1. 
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Extended Data Fig. 2 | Development and validation of the deep-learning algorithm for 

predicting lake extents. (a) Spatial distribution of the sample regions selected for 

training, validation, and testing, along with size range of the sample regions. 

Table S4 | Accuracy assessments of our developed deep-learning algorithm for different 

region types. 

Error matrix for the GLAKES dataset estimated using independent test labels for the 

Normal Model and Floodplain Model, listing the accuracy levels derived for different 

region types. Note that only pixel-based results are presented here as the polygon-based 

results are largely biased by the prevalence of small lake polygons in almost all region 

types, and thus cannot reflect the true deviations among different region types. 

Point 6: Data availability statement does not provide enough detail to evaluate how dataset 

will be archived, made available or how to access. Should be revised with adherence to FAIR 

Type Index Type Name Omission (%) Commission (%) 

Normal 

1 High Occurrence (HO) 12.4 0.3 

2 Low Occurrence (LO) 8.5 1.6 

3 Large Lakes (LL) 3.3 0.2 

4 Alongside Rivers (AR) 19.6 5.0 

- All 5.4 0.5 

Floodplain 

1 High Occurrence (HO) 8.0 1.9 

3 Large Lakes (LL) 4.2 0.3 

4 Alongside Rivers (AR) 12.6 1.9 

5 Within Floodplains (WF) 12.8 2.7 

- All 9.6 1.9 
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principles (https://www.go-fair.org/fair-principles/), e.g. publishing the dataset in a repository 

that issues a unique identifier. 

Response 6 Thanks for this valuable suggestion. We have read the FAIR principles 

carefully and revised our dataset accordingly to make it more adherent to the FAIR 

principles. The relevant data can be temporally accessed through the following link 

https://drive.google.com/drive/folders/12wQKJ_ME_E_lJHT3mt2WC5vEcMNM-

pIl?usp=sharing. The final dataset will be uploaded to the zenodo platform 

(https://zenodo.org/) upon publication of this manuscript. 

Point 7: It would help the reader if the time scale of variability (decadal?) was stated more 

prominently (e.g. line 1480149, caption for Fig 4), especially since seasonal and interannual 

fluctuations are mentioned in the introduction. Consider rephrasing “dynamics” to 

“changes” or “trends” in surface water extent, given the well documented but complicated 

relationships between GHG emissions and changes in water level possible on much shorter 

timescales (eg https://doi.org/10.5194/bg-9-2459-2012, https://doi.org/10.1672/07-98.1, 

https://doi.org/10.1002/2015JG003283, https://doi.org/10.3390/atmos10050269). The 

manuscript would also be stronger if the discussion addressed how the results may be affected 

by changes/dynamics at those shorter timescales, for example frozen lakes becoming only 

seasonally ice-covered. 

Response 7: 

Thanks for this valuable suggestion. First of all, the time scale of variability here 

indicates decadal or long-term variability. We have specified the exact time scale of 

temporal changes wherever necessary as well. In addition, “dynamics” have been 

rephrased to “changes” or “trends” when it relates to carbon emissions and mainly 

indicates long-term interannual variations. As for the impacts of changes at shorter 

timescales on our current results, we added two paragraphs below for discussion (one 

for long-term lake area changes and another for decadal carbon emission changes).

“In temporal change analysis, owing to the constraint of the valid observations of 

Landsat images, this study mainly focused on the changes of lake extent at decadal scale. 

However, lake dynamics at shorter timescales could also be evident. Pickens et al. 

discovered that only 23% of the total area of open surface water was permanent without 

ice cover within 2019, while permanent water covered by seasonal ice/snow constituted 

41% of the total area, and the remaining 36% was made up of seasonal waters 

regardless of ice coverage (Pickens et al. 2022). Furthermore, such seasonal patterns of 

water/land/ice transition may witness substantial changes during the whole study period 

owing to the impact of climate change, including intensifying reductions in ice cover 

duration and variated changes in wetting/drying trends (Magnuson et al. 2000, Sharma 
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et al. 2019, Greve et al. 2014, Roderick et al. 2014, Woolway et al. 2020). These changes 

at a shorter timescale may impose divergent impacts on our decadal change analysis of 

lake surface area. The impacts of seasonal water/land transition along with its trend 

were minimal as they have already been incorporated into the occurrence map and thus 

the calculation of probability-weighted lake area each period. However, the negligence of 

lake ice coverage (in the GSW MWH dataset, ice was flagged as invalid observations) 

might lead to a conservative extraction of the lake outlines as well as an underestimation 

of the water occurrence value. Given that the extension of the ice-free season was 

reported to exhibit an increasing trend (Woolway et al. 2020, Wang et al. 2022), the 

underestimation of probability-weighted lake area might be less severe in the more 

recent period, indicating that there might be a slight overestimation of the calculated 

lake area changes over different periods in places covered with ice.  

In addition, in calculating the changes over three periods, we kept the average flux 

values constant, considering only the long-term carbon emission changes that were 

brought by the lake area variations over different time periods. Nevertheless, the 

transfer of carbon gases from the aquatic environment to the atmosphere is a highly 

dynamic process, which could also be modulated by lake dynamics (such as ice 

phenology and water/land transitions) at shorter timescales (Chamberlain et al. 2016, 

Deemer et al. 2016, Holgerson and Raymond 2016, Wik et al. 2016, DelSontro et al. 2018, 

Keller et al. 2021). It has been reported that CO2 and CH4 accumulate under the ice, and 

subsequently vent a substantial amount to the atmosphere during the spring melt, 

during which CH4 oxidation may co-occur, although this is probably not applicable to 

oligotrophic lakes or completely frozen lakes (Bastviken et al. 2004, Kortelainen et al. 

2006, Michmerhuizen, Striegl and McDonald 1996, Utsumi et al. 1998). Considering the 

trend of global warming over the study period, the ice-free seasons for most lakes 

extended and some permanently frozen lakes became seasonally ice-covered, leading to a 

further boost in global carbon emissions (Natchimuthu, Panneer Selvam and Bastviken 

2014, Sharma et al. 2019, Wik et al. 2016). Besides, the seasonal drying and wetting of 

lakes was also an important carbon emission source. Studies have revealed complex 

relationships between water level and aquatic carbon emissions and identified dry 

aquatic sediments as significant carbon gas hot pots (Chamberlain et al. 2016, Keller et 

al. 2021, Marcé et al. 2019, Tangen and Bansal 2019), which we also did not account for. 

Given the variated wetting/drying trends across different regions globally (Greve et al. 

2014, Roderick et al. 2014, Woolway et al. 2020), the overall impact on long-term carbon 

emission changes is hard to quantify, and more data are required for systematic 

evaluations.” 
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Other/minor suggestions: 

Point 1: Line 30 – maybe specify “all six continents analysed” since Antarctica is excluded. 

Response 1 Thanks for this comment. The statement was corrected as “From the 

beginning period (1984-1999) to the end (2010-2019), lake area increased across all six 

continents analyzed, with a net change of +46,278 km2, and 56% of the expansion was 

attributed to reservoirs.”. 

Point 2: Line 64 – should “water productivity” be “primary productivity” ? 

Response 2 Yes, the “water productivity” should be “primary productivity”.

Point 3: Line 82 - How was 0.03 km2 threshold determined for minimum size? Are lakes 

smaller than 0.03 km2 not present in GSW, not captured by the model, or excluded for other 

reasons? It seems somewhat overstated to say improved resolution “solves” issues associated 

with mis-accounted small lakes in previous datasets since lakes/surface water can be mis-

classified for reasons other than spatial resolution (e.g. optical complexity, forest canopy, 

mixed pixels, shadows). 

Response 3 Thanks for this comment. First of all, lakes smaller than 0.03 km2 are 

observable in GSW owing to the high spatial resolution (30m). As for whether those 

lakes are able to be extracted by the model, it largely depends on the size threshold of 

the samples used to train the models. In practice, we first predefined the cutting 

threshold of samples as 0.03 km2 according to our visual observations. The main 

objectives were to exclude small polygon residuals generated during this sample 

extraction procedure as well as to screen out small isolated agricultural fields. Then the 

lake samples with sizes above this threshold were trained by the models to extract their 

underlying features and yield predictions. The results would be impacted by the value of 

the cutting threshold during this process, as we observed a vast amount of tiny lakes 

with size <0.03 km2 unable to be detected by models. Of course, there were indeed some 

lakes below the threshold that were extracted by our models, which were then further 

screened out during our post-processing procedure so that our remaining lake polygons 

were all >0.03 km2. Therefore, actually, all lake samples were set to be >0.03 km2.  

Nevertheless, it’s acknowledged that the setting of a pre-defined fixed cutting threshold 

for lake samples was probably the major reason for the relatively high omission errors 

(23.5% for Normal Model and 21.2% for Floodplain Model) for small lakes (especially 

those around 0.03km2). This could be induced by the influence of the negative samples. 

Specifically, in the process of sample preparation, we applied a filter to screen out all 

lakes with a size <0.03km2. In fact, the difference between lakes just exceeding the size 
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threshold and those approximating the thresholds (e.g., 0.031km2 and 0.029 km2) was 

probably minor. Therefore, the setting of a fixed cutting threshold for samples may 

somewhat “confuse” the model, in a way that some lakes were interpreted as true lakes 

(because they were marked by our labels) while the others with similar features may be 

identified by the model as non-lakes (due to the lack of overlaying labels), thus leading 

to a certain extent of missed detections of small lakes around the size of the cutting 

threshold (0.03 km2). 

We further examined the error matrix of small lakes with a finer division of size range 

(see below). Here the reason why we could obtain results with a size <0.03 km2 (below 

our cutting threshold of samples) was because the U-Net model learned features at the 

patch level (512*512 pixels), where some lakes with area >0.03 km2 across multiple 

patches would be split into smaller pieces that might below 0.03 km2 and interpreted by 

our models. As seen in the table, the omission and commission errors generally 

decreased as the lake size increased. The errors were extremely high for lakes with a size 

<0.03 km2 in both models, with omission errors of >50% and commission errors 

of >15%. The accuracy was much higher when considering lakes with a size >0.1 km2

(the lower size limit for most global lake datasets), where the corresponding omission 

and commission values dropped to below 20% and 5%, respectively. Nevertheless, 

although lakes with size ranges of 0.03-0.05 km2 still faced high omission issues, the 

commission errors declined suddenly from >15% to ~5%. In practice, we treasured 

commission errors more than omission errors so as to ensure that the detected portion of 

our GLAKES polygons was generally “true” and thus could be placed with more 

confidence in further analysis. Therefore, we kept the size threshold as 0.03km2 to 

include more lakes in our dataset without much compromise on misclassification. 

Table S3 | A further investigation of the accuracy of our developed deep-learning 

algorithm in subdivided small lake groups. 

Error matrix for the GLAKES dataset estimated using independent test labels for the 

Normal Model and Floodplain Model, listing the accuracy levels derived for subdivided 

size groups of small lakes. Both pixel-based and polygon-based results are included for 

assessments. Likewise, the polygon-based omission and commission values presented 

below represent the average of the corresponding values of all lake polygons being 

assessed. 



20 

Of course, we acknowledged that a better solution might be the inclusion of samples 

with size <0.03 km2 in model training, followed by a result-oriented determination of 

cutting threshold for lake predictions (i.e., finding out a threshold where the accuracy 

for lakes below the certain size threshold was unacceptable, if possible). Nevertheless, 

despite being troubled by the relatively high omission errors for small lakes, our 

GLAKES dataset showed marked improvements over previous global lake datasets, 

considering its advantages in global coverage (60°S-80°N), high spatial resolution 

(~30m), long-term changes (four decades), spatiotemporal consistency (uniform 

mapping of global lakes instead of aggregation from different lake datasets), overall 

accuracy (overall accuracy >98.7% and MIoUs >88.7%), and the delineation of small 

lakes (lower limit as 0.03 km2).. Besides, the lake change analysis was performed only 

within the boundaries defined by our GLAKES dataset (see below); therefore, the 

associated impacts of the classification errors (particularly the omission errors) should 

be limited. Of course, there was still room for improvement in our GLAKES dataset. An 

example was the above-mentioned inclusion of lakes <0.03km2 in model training, along 

with a statistics-based decision of the cutting threshold for predicted lake polygons, 

which may be considered in our next version of GLAKES in the future.

In addition, we changed the statement “solves the issues of mis-accounted small lakes in 

previous lake datasets” to “mitigates the issues of mis-accounted small lakes in previous 

lake datasets that are accessible in public”.   

Point 4: Line 88 – Isn’t the GSWO dataset limited to 80 deg N? Consider specifying max 

northern extent, and/or include latitude range where dataset is described in methods. 

Response 4: Thanks for this suggestion, we have added the latitude range to the 

corresponding methodology section. The description of the GSWO dataset is now 

Size 
Pixel-based Polygon-based 

Omission (%) Commission (%) Omission (%) Commission (%)

Normal 

<0.01 km2 85.3 76.6 91.4 88.1 

0.01-0.03 km2 52.6 17.4 54.9 22.3 

0.03-0.05 km2 50.5 3.6 51.5 3.7 

0.05-0.1 km2 34.5 3.1 35.0 3.0 

0.1-1 km2 18.9 2.3 22.2 2.5 

Floodplain 

<0.01 km2 81.4 73.0 88.6 86.1 

0.01-0.03 km2 51.4 21.1 53.7 25.2 

0.03-0.05 km2 51.2 6.7 52.8 6.8 

0.05-0.1 km2 31.3 6.4 32.0 6.4 

0.1-1 km2 17.0 4.7 19.5 4.8 
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presented as “The GSWO dataset provides global (from 60°S to 80°N) documentation of 

the location and frequency of water occurrences over nearly four decades (1984-2019) 

and was generated using 30-m-resolution Landsat images (Pekel et al. 2016).”. 

Point 5: It would help the reader to explain why P1 is two decades and P2 and P3 are each 

one decade. In Figure 2, it is somewhat confusing what dates/date ranges are being compared 

in top and bottom panels - It may be more clear to give beginning and end year of each range. 

Response 5: Thanks for this suggestion. Actually, the exact time period of P1 is 1984-

1999, which is altogether 16 years. The reason why P1 covers 16 years while the 

remaining periods span only 10 years is mainly due to the number of valid observations 

from Landsat imagery. As we can see, the coverage of Landsat-5 is limited at its first 

stage and gradually increases over time (Pekel et al. 2016). For example, the Landsat 

images of America and western Europe are available as early as 1984-1985, while the 

first year of imaging would be 1987-1991 for many places in Asia, let alone places like 

Siberia and New Zealand where the first observation year is later than 1995 (Pekel et al. 

2016, Wulder et al. 2016). Since the launch of Landsat-7 in 1999, the number of valid 

observations has almost reached twice with extended global coverage (Pekel et al. 2016, 

Wulder et al. 2016). Therefore, in our study, the first time period is set as 16 years (1984-

1999) instead of 10 to include more regions where data are not available at the first stage. 

Then P2 (2000-2009) and P3 (2010-2019) cover 10 years respectively, the length of which 

is enough for near-global cross period comparisons (Extended Data Fig. 6).

To make the period range more clear, we have specified the beginning and end year at its 

first occurrence, which is presented below: “We examined global lake dynamics across 

three periods (1980-90s: 1984-1999, 2000s: 2000-2009, and 2010s: 2010-2019) (Fig. 2) by 

comparing the water probability-weighted area within lake boundaries as defined by 

our GLAKES dataset (see Methods).”. 

Point 6: Line 143 & elsewhere – clarify if “global inland regions” are used interchangeably 

with the 1 deg grid cells. 

Response 6: Yes, “global inland regions” and “1°×1° grid cells” are interchangeable. 

Actually, they both indicated grid cells that spatially intersected with our GLAKES 

polygons, as we mentioned, “we examined global lake changes across three periods by 

comparing the area within lake boundaries as defined by our GLAKES dataset)”. We 

have clarified this in the revised manuscript. 

Point 7: Line 144 – maybe specifying “net” area increase if that is what is meant here 
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Response 7: Thanks for this suggestion, we have corrected it as indicated.

Point 8: Line 147 – consider modifying sub-heading to specify what patterns small lakes 

have an outsized role in. 

Response 8: Thanks for this suggestion. We have changed it to “The outsized role of 

small lakes in global lake size variability.” 

Point 9: Line 163 – unclear whether the “small lake-dominated regions” referenced here is 

about areas with just many small lakes or areas where small lakes dominate the variability. 

(As written I interpret as the former, but the referenced figure and rest of the paragraph seem 

to be about the latter.) 

Response 9: Sorry for the confusion, we have merged this sentence with the previous one 

to make it clearer (lines 162 to 167): “The changes in small lakes showed dominant 

contributions (>50%) in approximately half of the examined inland regions (49.9% of 

the grid cells from 1980-90s to 2000s, and 50.1% from 2000s to 2010s) (Fig. 3c); such 

small lake-dominated regions were spread across the entire globe in both low-populated 

regions and areas with high chances of human disturbance (Extended Data Fig. 8).”  

Point10: Line 166 – unclear what ‘dynamic amplitude’ means here 

Response 10: The ‘dynamic amplitude’ meant the magnitude or range of the relative 

area changes for lakes in each population density group, as demonstrated in (Extended 

Data Fig. 8). To avoid confusion, the statement has been rephrased as: “Furthermore, 

decadal lake area variations generally increased with regional population density, and 

the variation range was much higher for small lakes than for medium and large lakes, 

indicating the potential role of human activities in shaping small lakes.”

Point 11: Extended data Figure 8 – consider adding a reference line at y = 0 

Response 11: Thanks for this suggestion, the reference line is added as suggested.

Point 12: Were the normal and floodplain models both applied globally, or was there a 

criteria/dataset used for distinguishing normal and floodplain areas? 

Response 12: Thanks for this comment. It should be noted that lakes from Normal 

Model and Floodplain Model were combined to generate our final version of global lake 

polygons (the “GLAKES” dataset). In practice, since both the Normal Model and 
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Floodplain Model yielded lake predictions at global coverage, we applied pre-defined 

river buffer zones to determine whether the extracted lake polygons from the Normal 

Model or Floodplain Model should be used for our final GLAKES dataset. Specifically, 

for buffer zones flagged as “floodplain”, lake polygons (within these buffer zones) 

extracted from the Floodplain Model were selected as a part of GLAKES dataset, while 

the corresponding outputs from the Normal Model were discarded. On the contrary, for 

all remaining areas (including buffer zones flagged as “normal” and areas outside the 

river buffer zones), lake polygons from the Normal Model were included in our final 

dataset. The basic principle for the determination of the exact flag (“normal” or 

“floodplain”) for each buffer zone is to measure the extent of seasonally flooded non-

lake and non-river waters within the buffer zone. To begin with, a 1km buffer was 

applied to each vectorized polygon of global rivers documented in the GRWL Mask 

V01.01 product (https://zenodo.org/record/1297434#.YrvEzj5ByUk). Within each buffer, 

the area of seasonally flooded non-lake and non-river waters was calculated by summing 

the area of all GSWO pixels with occurrence <75% (to exclude the permanent and near-

permanent water), except for those already being defined as rivers (by GRWL mask) 

and lakes (by rasterized HydroLAKES polygons). Finally, buffer zones where the ratio 

of their containing flooded area to the corresponding buffer area exceeded the flooding 

threshold were flagged as “floodplain”. In this study, the flooding threshold was set as 

0.1 through trial and error. We have added the above explanation in our revised 

manuscript to inform readers how the two models were combined together to obtain our 

GLAKES dataset (see lines 601 to 623).

Point 13: Extended data figure 9a – error bar on Marotta et al 2008 appears misaligned. 

Response 13: Thanks for this comment. According to Marotta et al. (2008), the carbon 

emissions of global lakes were estimated using two different piston velocity, which 

K=9@898 **& 3;O/OKEN' 5B8 -,& 3;O/OKEN', respectively. The former estimation was 

regarded as the final result since it was put in the abstract, while the less conservative 

CB9 CB@K 5DD95E98 =B G<9 :=B5@ 8=F7HFF=CB% 3<9E9:CE9$ J9 899A98 G<9 I5@H9 **& 3;O/OKEN'

as the final estimation, while the less conservative estimation served as the upper bound, 

which was the reason why the error bar appeared like this. 

Point 14: Typo in caption for Fig 4? Line 189 says the emissions estimates were calculated 

following methods in ref 23 (Holgerson and Raymond 2016) but caption for Fig 4 says 

method is from ref 22 (Oertli et al 2002, about species area relationships) 

Response 14: Sorry for this type of mistake. The reference should be Holgerson and 

Raymond (2016).
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Point 15: Line 233-235 should also discuss or at least reference DelSontro et al 2018 (ref 24) 

which addresses eutrophication/productivity effects on emissions. 

Response 15: Thanks for this suggestion. We have added this important reference to the 

revised statement “Besides, incorporation of other relevant drivers such as the water 

body type, water depth, water productivity, sediments as well as ecoclimate zone would 

also enhance the representativeness of the average emission rates for more accurate 

global estimates (Rasilo et al. 2015, Wik et al. 2016, DelSontro et al. 2018, Deemer and 

Holgerson 2021).”

Point 16: Line 383 – is there evidence that these lake area changes are actually caused by 

human interventions without other natural variability? consider rephrasing “impacts of human 

interventions” to something like relationship with or co-occurrence with human populations. 

Response 16: Thanks for this valuable comment. It may be assertive to declare that 

these lake area changes are solely caused by human interventions based on our current 

analysis. Natural factors may also take profound roles in modulating such variations, 

which requires further analysis. Based on your suggestion, this sentence has been 

changed to “We used the Gridded Population of the World (GPW) dataset to investigate 

the relationship between human population and lake area changes.”.

Point 17: Line 444 – how was “coverage of all possible hydrological conditions” determined? 

Response 17: Thanks for this comment. Actually, the assertion “all possible hydrological 

conditions” is not accurate. As we mentioned, we defined 5 types of samples that 

presented different features, i.e., “1) relatively static lakes that exhibited high/moderate 

water occurrence (HO); 2) highly dynamic lakes with relatively low water occurrence 

(LO); 3) lakes spanning large spatial scales that were challenging to interpret using 

models due to the relatively large sizes of the lake objects relative to the sizes of the 

modeled patches (LL); 4) lakes located alongside rivers that required more attention to 

be distinguished from rivers (AR); and 5) lakes within floodplains that often combined 

to form lake clusters (WF).” Based on visual explorations, we think those scenarios 

generally represent the features of the most common lakes, although it should be 

admitted that the hydrological conditions are very complicated in some regions, and 

thus the “coverage of all possible hydrological conditions” is impracticable. Therefore, 

the words have been changed to “the coverage of all typical hydrological conditions”.
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Point 18: Line 465 – should “flood” be floodplain? 

Response 18: Yes, “flood” should be “floodplain”. 

Point 19: Lines 478-484 – can this part be explained more clearly? (or examples shown in 

extended figures?) 

Response 19: Thanks for this suggestion. We have added examples in Extended Data Fig. 

11 to better illustrate the procedure regarding the removal of river residuals (see below). 

Figure a and c represent situations where the target GLAKES polygons (those overlayed 

by river mask datasets) are covered by the HydroLAKES polygons while those in figure 

6 5B8 8 5E9 BCG% 0B 588=G=CB$ G<9 5E95 E5G=C :CE G5E;9G DC@K;CBF =FL &%- =B :=;HE9F 5 5B8 6$

while the corresponding values are < 0.8 in figures c and d.

Extended Data Fig. 11 | Post-processing of river residual removal and the corresponding 

results. (a) Target GLAKES polygons covered by HydroLAKES polygons with an area 

ratio 0.8; (b) Target GLAKES polygons not covered by HydroLAKES polygons with 

an area ratio 0.8; (c) Target GLAKES polygons covered by HydroLAKES polygons 

with an area ratio <0.8; (d) Target GLAKES polygons not covered by HydroLAKES 

polygons with an area ratio <0.8. For (a)-(d), the left figures represent the GLAKES 

polygons before residuals removal and how they spatially overlay with river masks 

(GEWL/OSMWL), while the right figures indicate the results after the residual removal 

post-processing procedure by utilizing the area ratio before/after river masks and the 

spatial relationship with HydroLAKES. 
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Point 20: Line 539 – found the wording here confusing, whether “missing” lakes in eastern 

Canada and Scandinavia were commission or omission errors in GLAKES. 

Response 20: Thanks for this comment. The underestimation or overestimation of lakes 

could either originate from the inherent constraint of both GLAKES and HydroLAKES 

datasets. Now the relevant sentences have been rewritten as: “Moreover, we found a 

substantial number of missing lakes in eastern Canada and Scandinavia in our dataset 

compared to HydroLAKES, as well as lake overestimations with varying degrees in 

other regions, such as Siberia and major river floodplains (Extended Data Figs. 4b & 5). 

These discrepancies could be raised for many reasons, either to be responsible for the 

inherent limitation of the GLAKES or otherwise HydroLAKES. One example is the 

inability of GLAKES (or GSWO) to capture lakes that are seasonally ice-covered 

throughout a year and heavily vegetated in the remaining month, which is typical for 

some small and shallow lakes in places like Canada Shield. The large values of GLAKES 

could also be partially explained by the inclusion of some agricultural fields (used to be 

lakes) or accidentally large floodplains. On the contrary, for HydroLAKES, the 

constraint of its composing dataset (e.g., MODIS MOD44W water mask and SRTM 

Water Body Data) in detecting small lakes may be the possible reason for the lake 

underestimation in some regions. Overall, both GLAKES and HydroLAKES have their 

own strengths and limitations in terms of lake coverage, but what distinguishes 

GLAKES is its global consistency (not mosaic from different datasets), higher resolution 

(better characterizes water/land interface), the reflection of multidecadal lake extent 

(not snapshot on short time period) as well as the inclusion of smaller lakes (<0.1 km2).”

Point 21: Line 603 – what is the source of the air temperature data? 

Response 21:  The air temperature data for each lake was retrieved on the basis of the 

ERA5-Land monthly averaged air temperature at 2m. Nevertheless, as reviewer 1 

suggested, we have changed the approach for calculating CH4 emissions. Now the 

method for calculating CH4 emissions is the same as that for CO2 emissions. Therefore, 

the air temperature data is no longer needed anymore. Detailed illustration is presented 

below. 

In our previous submission, the CH4 emissions were not computed by directly 

multiplying the size-dependent mean flux estimates from Holgerson and Raymond (2016) 

with the total lake area of each logarithmic size class. We actually utilized multiple 

equations from Holgerson and Raymond (2016) to estimate flux and carbon emission for 

each lake, and sum them all to obtain the global lake emissions. This process, however, 

we thought might have some issues. As reviewer 1 said, the occurrence of negative 

carbon fluxes might reflect that the empirical equations used in Holgerson and 
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Raymond (2016) in applying all lakes were problematic. This could both result from the 

fact that these lakes might be more closely related to water productivity (or other factors) 

instead of lake size, or the empirical equations in calculating carbon emissions had large 

uncertainties for lakes outside the geographic range (i.e., 30°N-70°N) of the in-situ 

samples used to construct the empirical equations.   

Reviewer 1 recommended the use of the average flux within binned logarithmic size 

classes. Although this comment was mainly for CO2 emissions, we thought it was also 

applicable to CH4 emissions, though uncertainty still existed (see Supplementary Note 3). 

Overall, we kept the method for calculating the CH4 emissions the same as that of 

calculating CO2 emissions and updated relevant results. Considering only the emissions 

from lakes > 0.1km2 (which were the common size range for lakes in GALKES and 

GLOWABO dataset), we could clearly find out that our former version of the global 

CH4 estimate was evidently overestimated compared to that of Holgerson and Raymond 

(2016), given that the lake area used in our study was smaller than that of Holgerson and 

Raymond (2016), but we eventually yielded a far larger emission value (5.3 vs 2.0 

3;O/OKEN'), even though the equations used to calculate the CH4 emissions were from 

their study. In contrast, the magnitude of global CO2 emission and updated global CH4

emission values were reasonable compared to that of Holgerson and Raymond (2016), 

the discrepancy between which mainly resulted from the deviations in the lake area used 

for calculations.  

Point 22: Line 616-618 – consider including newer references for work on reservoir ghg 

emissions eg. https://doi.org/10.1093/biosci/biw117, https://doi.org/10.1029/2019JG005600. 

Response 22: Thanks for this suggestion. As for the estimation of carbon emission 

section, after a review of Holgerson and Raymond (2016), we discovered that they only 

excluded the in-situ samples of CH4/CO2 fluxes of reservoirs but combined the natural 

lake area with reservoir area in global upscale (i.e., they used GLOWABO dataset which 

did not distinguish between natural lakes and reservoirs). This indicated that they 

actually regarded reservoirs as natural lakes in terms of carbon emission estimation, 

like several other studies (Raymond et al. 2013, DelSontro et al. 2018, Li et al. 2020). 

Therefore, we decided to add the reservoir area into the total lake area and update our 

new results, while we informed readers that the waterbody type (natural lakes vs 

reservoirs) matters in carbon emission estimates for global lakes in Supplementary Note 

3: “Nevertheless, previous studies had revealed that methane emissions in different 

water body type might be driven by different processes, which would inevitably impact 

the final estimation results (Deemer et al. 2016, Hayes et al. 2017, Deemer and Holgerson 

2021)”. After incorporating the reservoir area into the total lake area, the contribution 



28 

of small lakes to total emission decreased, given the relatively large size of reservoirs. 

Nevertheless, the roles of small lakes in modulating lacustrine carbon emissions were 

still evident, considering the small proportion of lake surface area. Please refer to the 

section “New estimates of lacustrine carbon emissions” for more detailed updated 

results (lines 171 to 217). 

As for the listed two references, they were very informative and have been added to the 

above paragraph.  

Response to the reviewer 3: 

General Comments: 

Summary 

This study introduces a new dataset named GLAKES, which depicts the surface extent 

dynamics of 3.4 million lakes at the global scale from the 1980s to present day. The authors 

delineated individual lake polygons by adapting a deep-learning model to conduct a 

supervised classification of existing grids of long-term (1984-2019) surface water occurrence. 

The deep learning model outputs were enhanced by removing delineated water bodies that 

substantially overlap with river channels and seawater. With this new dataset of lake 

polygons, changes in global lake density and area were then computed between three time 

periods (1980-90s, 2000s, and 2010s). The authors estimate that lakes expanded across all 

continents over the past four decades, mostly due to artificial reservoir building, and that 

small lakes account for most of the variability in global lake area. Leveraging these estimates, 

this study also determines that global carbon emissions from natural lakes increased over the 

same time periods, most of which attributed to small lakes. 

Outstanding features 

I consider the following to be the outstanding features of this research work: 

- Leverages state-of-the-art data sources and models to create a near-comprehensive dataset of 

individual lakes, delineating lakes down to 0.03 km2 in surface area (compared to 0.1 km2 for 

the most widely used lake polygon dataset at present, HydroLAKES). 

- Provides the first spatially-explicit estimate, to the reviewer’s knowledge, of global 

longterm lake extent dynamics. 

- Updates estimates of global carbon emissions from natural lakes, predicting a net increase in 

lacustrine emissions over time. 

- Confirms the outsized role of small lakes in global lacustrine carbon emissions. 

Key points and results 

I consider the following to be the key points and results of this research work: 

- Identifies 3.4 million individual lakes, totalling 3.2 x 106 km2 (2.2% of the global land 

area). 

- While displaying high overall accuracy, the lake delineation model significantly 

underestimates the extent of small lakes (omission rates of 19.3% and 23.7% for lakes inside 

and outside floodplains, respectively) and overestimates the extent of large lakes (commission 
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rates of by 22.3% and 11.6%, respectively). 

- The great majority of lakes are small (< 1 km2), but most of the global lake area is attributed 

to large lakes (> 100 km2). 

- The estimates of lake number and area resulting from this study align closely with 

HydroLAKES (Messager et al. 2016), another free-to-access dataset, confirming in the 

reviewer’s opinion that two other existing studies (Verpoorter et al. 2014 and Downing et al. 

2010) yielded substantial overestimates. 

- Global lake area increased from the 1980s-90s to the 2000s and from the 2000s to 2010s, 

most of this expansion stemming from the expansion of glacier- and permafrost-fed lakes as 

well as by artificial reservoir building. 

- Small lakes (< 1 km2) showed the highest temporal variability in extent compared to larger 

lakes. 

& 3OPGJ?PCO PF?P K?PQN?I I?HCO CJGP )0, >E 2 SNU) LD 2;* ?KB /'* >E 2 SN&) LD 25,' >FCOC

new figures are smaller than previous estimates because most previous models relied on 

Verpoorter et al.’s surface water extent dataset, which overestimated global lake surface area. 

- Due to the increase in global lake area, carbon emissions from natural lakes increased by 
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from small lakes. 

Originality and significance 

Will the work be of significance to the field and related fields? How does it compare to the 

established literature? If the work is not original, please provide relevant references. 

This study is a significant and valuable contribution to the literature, and the conclusions are 

original. It will likely become a baseline dataset for many subsequent studies, thus enabling 

the advancement of our understanding of the role of lake in regional and global hydrological 

and biogeochemical cycles, as well as the impact of human activities of lake ecosystems and 

the services they provide globally. I congratulate the authors for their substantial effort and 

resulting contribution. 

This work represents a substantial step forward compared to the established literature, 

foremost because it quantifies the spatio-temporal dynamics of lake surfaces over the past 

four decades. Whereas other studies have quantified inland water dynamics as a whole (e.g., 

Pekel et al. 2016, which was used by this study, the coarser dataset by Klein et al. 2017, 

Pickens et al. 2020, and most recently Pickens et al. 2022), what sets this study apart is that it 

aims to focus exclusively on the dynamics of lakes as individual entities (delineating the 

shoreline of individual lakes rather than continuous grids of surface water cover). This 

matters because lacustrine ecosystems differ fundamentally from other inland waters like 

rivers, seasonally inundated floodplains and other types of wetlands — in their hydrology, 

biogeochemistry, biodiversity, and their contribution to people and society. In terms of a 

static dataset of lake polygons, this study is also an advancement compared to the two most 

established studies/datasets on the topic: HydroLAKES and GLOWABO (I do not include the 

GLWD here as it can fairly be considered as a product from a previous generation). 

It is an advancement over HydroLAKES for three main reasons: 

1. It has a higher resolution and thus provides a more comprehensive accounting of small 

lakes. 

2. The lake polygon dataset provides a more temporally integrated view of lake extent 



30 

globally because it is derived from Earth observation data over decade. By contrast, the bulk 

of HydroLAKES polygons, geographically (< 60N), were delineated from a short satellite 

mission (SRTM) over 11 days in February 2000. 

3. It is likely more spatially consistent than HydroLAKES. HydroLAKES results from the 

compilation and harmonization from over five original data sources at different temporal and 

spatial resolutions while all polygons in GLAKES were delineated with the same processes 

using a common data source (despite differences among Landsat sensors over time). 

It is also an advancement over GLOWABO, despite GLOWABO including lakes down to 

0.002 km2 (9 x 30-m pixels), for three main reasons: 

- GLOWABO was never publicly released. Therefore, its application was limited and it 

underwent little external validation. 

- GLOWABO polygons were also extracted from Landsat imagery but only from the year 

2000 ± 3 year, thus representing a snapshot in time rather than a long-term picture of lake 

extent. 

- The summary statistics provided by GLOWABO suggest that it substantially overestimates 

global lake cover, at least by a factor of two. This is probably due to the lack of 

discrimination between lakes, rivers, and wetlands in that dataset (at least no mention of such 

a distinction was made in Verpoorter et al. 2014). 

Response: Thanks for your meticulous and exhaustive comments. We’re encouraged by 

your dedication and enthusiasm for the scientific scope. We have read these comments 

carefully and made revisions accordingly, hoping that we have addressed all your 

concerns.

Main suggestions for improvement: 

Point 1: I am unclear about the nature of the labels used in training the deep learning 

model/supervised classification. The use of robust and reproduceable labels is obviously 

foundational to the validity of the model outputs, particularly given that the authors do not use 

independent data sources to validate it. From my understanding, the authors created the labels 

by masking land in the GSWO (<30% and <5% of water cover frequency out of the valid 

observations during the past four decades inside and outside floodplains, respectively) and 

masking ocean and river pixels (using the OSMWL and GRWL datasets, respectively), while 

retaining pixels overlapping with HydroLAKES polygons. Following this first step, the 

authors conducted “extensive visual examinations and necessary manual postprocessing 

corrections were performed to ensure that all extracted lake boundaries (i.e., the lake mask 

vectorization) matched well with the water/land interfaces isolated on the GSWO maps“ 

(P18L420). The extent of manual postprocessing corrections is not entirely clear in this 

description: was every lake polygon/label checked? Of those, how many were manually 

corrected? And based on what criterion? For instance, in mapping tree crowns, Brandt et al.3 

manually delineated individual tree crowns based on the following criteria: “two conditions 
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had to be fulfilled for a crown to be marked during the manual labelling process: (a) the 

NDVI value had to be clearly higher than the surrounding (only trees have green leaves in the 

dry season), and (b) a shadow had to be seen”. In the case of lakes, similar challenges exist, 

what level of permanence did the authors consider to qualify as characterizing water/land 

interfaces? In areas of extremely dense lake coverage where differentiating between rivers 

and lakes is arduous (e.g., across the Canadian Shield), and where the GRWL tends not to 

include river channels, how did the authors delineate individual lakes (vs. clusters of lakes)? 

For the sake of reproducibility, I encourage authors to provide intermediate products of this 

analysis, including the initial mask pre- manual corrections and the final labels/polygons used 

in training the dataset. 

Response 1 Thanks for this comment. In the manual postprocessing process, the lake 

sample polygons were visually checked from one sample region to another till all were 

finished, where some lakes in hydrologically complex regions were paid more attention, 

such as those in the large river basins and floodplain zones. As for the criteria of manual 

revision, we mainly performed it on the following two cases: (1) river residuals resulting 

from the absent coverage of the corresponding river masks and (2) river-connected lakes 

that required further division from river channels. Of all sample polygons, Case 1 

polygons frequently occurred, which could take up ~10% of the total lake samples and 

thus require careful inspection. On the contrary, the percentage of Case 2 polygons was 

minor (maybe far less than 1%).  

In terms of characterizing water/land interfaces, it was mainly determined by the 

occurrence values of the underlying GSWO map. Pixels within lake outlines have 

occurrence values of > 5% (and 30% for Floodplain Model), while pixels outside lake 

outlines exhibited very low occurrence values (< 5% for Normal Model and 30% for 

Floodplain Model). Actually, this has been considered in our automatic sample 

extraction approach such that most lake samples fulfilled this requirement, and we 

usually did not revise their boundaries. Exceptions were those directly connected to 

rivers as specified above that required further manual editions.  

The Canadian Shield was an interesting region, as you mentioned, from two aspects. On 

the one hand, some lakes formed a similar shape to rivers (long and narrow). On most 

occasions, we would deem them as lakes if they did not extend to a very far region and 

were not covered by river masks. For those extremely long polygons, there were 

possibilities that they would be divided into several pieces on model predictions, from 

their thin and narrow areas. On the other hand, some lakes were connected to form a 

cluster. Taken together, we tended to consider them as individual lakes since they 

hydrologically linked to each other for a long period, and more importantly, segregation 

between them was hard and lacked uniform criteria. Similarly, some of them were likely 

to break into pieces from their thin and narrow places in model predictions.  
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Lastly, relevant intermediate products will be provided upon publication of this 

manuscript.  

Point 2: Related to my previous point, what the lake polygons represent hydrologically 

should be more explicitly defined. Importantly, is the intent that the polygons represent the 

average or maximum lake extents? Do the polygons represent permanent lakes or are seasonal 

lakes also included (and what maximum degree of seasonality is included)? Because lake 

extent dynamics are only analyzed within the delineated polygons, I assume that the polygons 

represent their maximum extent. If the polygons are an all-time maximum, I recommend that 

the overall statistics of the area of lakes and comparisons with other datasets (e.g., Extended 

Data Fig. 3) be based on the probability-weighted area rather than on the maximum extent. 

For example, I was really surprised to see >150 more lakes with a surface area >100km2 in 

GLAKES than in HydroLAKES as most of these lakes are rather well-known. Only when I 

inspected the polygons did I realized that many of those large lakes are >100 km2 because it 

is apparently their maximum extent which was represented. 

Response 2: Sorry for any confusion. As we described in the method section, the lake 

polygons extracted from the U-Net models were supposed to reflect the maximum water 

extent (specifically, occurrence >5% for major lakes and >30% for lakes in floodplain 

ideally) over the period of 1984-2019 with both permanent lakes and seasonal lakes 

included.  

In terms of whether to use the probability-weighted area or maximum extent of 

GLAKES for comparison, we thought both had their own issues. The use of maximum 

extent, as you mentioned, was likely to result in an overestimation of the lake area, 

especially for large lakes. However, the use of probability-weighted areas would also lead 

to an underestimation, especially for seasonal lakes. This’s because all global lake 

datasets being compared also constituted a large proportion of seasonal water pixels. If 

the probability-weighted area were applied for GLAKES, an occurrence-based 

weighting factor (0-1) should be multiplied by the unit area of each pixel (30m*30m) to 

obtain the actual pixel area, which, however, was not done in all the other global lake 

datasets. In the other datasets, the actual area for seasonal water pixels was counted as 

the same as the permanent water pixels, regardless of the large discrepancy in occurring 

frequency. In sum, since all the five global lake datasets were generated from different 

methods and with different objectives, it’s tough to apply the completely uniform 

criteria for comparison. What we compared here was actually the total lake area 

bounded by the lake polygons of each dataset (if provided). We have underscored this 

point in the revised manuscript to avoid misinterpretation (lines 679 to 682).  
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Point 3: The omission and commission rates are quite high for small and large lakes, 

respectively. However, the reasons for and implications of this limitation are not discussed. I 

am not familiar with the inner workings of the deep learning model employed in this study, 

but would it be possible to train two separate models that would be catered for differently-

sized lakes? At least, a quantitative estimate of the uncertainties in the predictions would 

strengthen this study.  

Response 3: First of all, we’re sorry to discover that some mistakes were made in the 

Extended Data Table 1, the new version of which is presented below. Compared to the 

former version, the commission errors significantly declined among almost all size 

classes of the two models, while the change of omission errors was minor. In this 

situation, the commission errors of large lakes were no longer high (~0.1%). 

Nevertheless, the omission errors of small lakes were still evident, which may probably 

be induced by the influence of the negative samples. Specifically, in sample preparation, 

we applied a filter to screen out all lakes with a size of <0.03km2. In fact, the difference 

between lakes just exceeding the size threshold and those approximating the thresholds 

(e.g., 0.031km2 and 0.029 km2) was probably minor. Therefore, the setting of a fixed 

cutting threshold for samples may somewhat “confuse” the model, in a way that some 

lakes were interpreted as true lakes (because they were marked by our labels) while the 

others with similar features may be identified by the model as non-lakes (due to the lack 

of overlaying labels), thus leading to a certain extent of missed detection of small lakes 

around the size of the cutting threshold (0.03 km2).  

We further examined the error matrix of small lakes with a finer division of size range 

(see below). Note that the reason why we could obtain results with size <0.03km2 (below 

our cutting threshold of samples) was because the U-Net model learns features at patch 

level, where some lakes with area >0.03km2 across multiple patches would be split into 

smaller pieces that might below 0.03km2 and interpreted by our models. As seen in the 

table, the omission and commission errors generally decreased as the lake size increased. 

The errors were extremely high for lakes with sizes <0.03 km2 in both models, with 

omission error of >50% and commission error of >15%. The accuracy was much higher 

when considering lakes with sizes >0.1 km2 (the bottom size threshold for most global 

lake datasets), where the corresponding omission and commission values dropped to 

below 20% and 5%, respectively. Nevertheless, although lakes with the size range of 

0.03-0.05 km2 still faced high omission issues, the commission error declined suddenly 

from >15% to ~5%. In practice, we treasured commission error more than omission 

error to ensure that the detected portion of our GLAKES polygons was generally “true” 

and thus could be placed with more confidence in further analysis. Therefore, we kept 

the size threshold as 0.03km2 to include more lakes in our dataset without much 

compromise on misclassification.
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As for the second question, we thought the use of two separate models to train lakes of 

different sizes was not necessary. On the one hand, the lake size has already been 

considered in our model by specifying an individual region type to capture the 

characteristics of large lakes, and the accuracy of large lakes presented in the updated 

Extended Data Table 1 was generally satisfying. On the other hand, as we stated above, 

the high omission values of small lakes mainly resulted from the setting of a fixed cutting 

threshold, which could not be well improved by just utilizing two separate models. A 

better solution may be the inclusion of samples with sizes <0.03 km2 in model training, 

followed by a result-oriented determination of the cutting threshold for lake predictions 

(i.e., finding out a threshold where the accuracy for lakes below the certain size 

threshold was unacceptable, if possible). Nevertheless, despite being troubled by the 

relatively high omission errors for small lakes, our GLAKES dataset showed marked 

improvements over previous global lake datasets, considering its advantages in global 

coverage (60°S-80°N), high spatial resolution (~30m), long-term changes (four decades), 

spatiotemporal consistency (uniform mapping of global lakes instead of aggregation 

from different lake datasets), overall accuracy (overall accuracy >98.7% and 

MIoUs >88.7%), and the delineation of small lakes (lower limit as 0.03 km2).. Besides, 

the lake change analysis was performed only within the boundaries defined by our 

GLAKES dataset (see below); therefore, the associated impacts of the classification 

errors (particularly the omission errors) should be limited. Of course, there was still 

room for improvement in our GLAKES dataset. An example was the above-mentioned 

inclusion of lakes <0.03km2 in model training, along with a statistics-based decision of 

the cutting threshold for predicted lake polygons, which may be considered in our next 

version of GLAKES in the future. 

Extended Data Table 1 | Accuracy assessments of our developed deep-learning algorithm 

at different lake-size classes. 

Error matrix for the GLAKES dataset estimated using independent test labels for the 

Normal Model and Floodplain Model, listing the accuracy levels derived for different 

lake size groups.  
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Table S3 | A further investigation of the accuracy of our developed deep-learning 

algorithm in subdivided small lake groups. 

Error matrix for the GLAKES dataset estimated using independent test labels for the 

Normal Model and Floodplain Model, listing the accuracy levels derived for subdivided 

size groups of small lakes. Both pixel-based and polygon-based results are included for 

assessments. Likewise, the polygon-based omission and commission values presented 

below represent the average of the corresponding values of all lake polygons being 

assessed. 

Point 4: Multiple studies have previously highlighted the outsized role of small lakes for 

several global processes and this study adds a salient piece to the puzzle. Nonetheless, I 

suggest that the findings from this study regarding the role of small lakes need to be caveated 

in two main ways: 

a. It makes sense that small lakes display higher relative temporal variability (smaller volume 

to area ratio, greater sensitivity to catchment, etc.). However, it is important to highlight 

potential biases in quantifying the amplitude of this variability that are due to scale. Because 

Size Omission 

(%) 

Commission 

(%) 

MIoU 

(%) 

Overall Accuracy 

(%) 

Normal 

Small (0.03-1 km2) 23.5 2.5 

94.0 99.3 
Medium (1-100 km2) 4.2 0.4 

Large (>100 km2) 1.1 0 

All 5.4 0.5 

Floodplain 

Small (0.03-1 km2) 21.2 5.0 

88.7 98.7 
Medium (1-100 km2) 7.3 1.7 

Large (>100 km2) 9.4 0.2 

All 9.6 1.9 

Size 
Pixel-based Polygon-based 

Omission (%) Commission (%) Omission (%) Commission (%)

Normal 

<0.01 km2 85.3 76.6 91.4 88.1 

0.01-0.03 km2 52.6 17.4 54.9 22.3 

0.03-0.05 km2 50.5 3.6 51.5 3.7 

0.05-0.1 km2 34.5 3.1 35.0 3.0 

0.1-1 km2 18.9 2.3 22.2 2.5 

Floodplain 

<0.01 km2 81.4 73.0 88.6 86.1 

0.01-0.03 km2 51.4 21.1 53.7 25.2 

0.03-0.05 km2 51.2 6.7 52.8 6.8 

0.05-0.1 km2 31.3 6.4 32.0 6.4 

0.1-1 km2 17.0 4.7 19.5 4.8 
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the size of individual pixels is large compared to the total area of small lakes, the 

default/random variability in extent of small lakes is higher. In a lake spanning 0.05 km2, a 

single 900-m2 pixel going from wet to dry leads to a ~2% change. I wonder how similar the 

variability in extent would be between small and large lakes if it were evaluated with equal 

relative pixel sizes (e.g., 5 m for a 0.05 km2 lake and 5 km for a 50 km2 lake). 

b. The outsized role of small lakes in driving carbon emissions may be largely driven by the 

fact that reservoirs were excluded from the calculations. My guess is that the inclusion of 

emissions from large reservoirs may change this finding. I suggest that this be mentioned. 

Moreover, all sections discussing the carbon emission estimates should use the term “natural 

lakes” rather than just “lakes” (as the latter refers to both lakes and reservoirs by default in the 

manuscript; P4L70). The reporting of the findings would thus be clearest to readers who may 

not read the entire piece (i.e., most readers), avoiding that this work be miscited. This is not 

currently clear in the abstract for example. 

Response 4: Thanks for your encouraging comment on our work. As suggested, we used 

the Tibetan Plateau as a case study to investigate the impact of the size scale on the 

estimation of relative area changes of lakes. We resampled the water occurrence map as 

300m and compared it with the results derived from 30m (see the figure below). It can 

be seen that the probability-weighted lake area at different spatial resolutions of the 

occurrence map generally agreed well, with a concentrated distribution along the 1:1 

line (subplots a/b), indicating that the impact of resampling on lake area estimation was 

minor. Furthermore, we calculated the relative area change rate for lakes within the size 

range of 0.5-1.5 km2 at the resolution of 30m and compared it with those between 50-150 

km2 at the 300m resolution scale (fig. c). As is presented, the relative area change rate for 

lakes between 50-150 km2 concentrated within ±10%, while the relative area change rate 

for lakes between 0.5-1.5 km2 span across -103 ~ 103, the range of which was far larger 

than the former lake group. Therefore, it’s clear that small lakes still exhibited higher 

variations in relative change rate when evaluating under equal relative pixel sizes. In 

addition, as we mentioned, “small lakes supplied a disproportionately large contribution 

to global lake expansion, representing 46.2% of the net areal increase from 1980-90s to 

2010s.”. We also demonstrated that “the changes in small lakes showed dominant 

contributions (>50%) in approximately half of the examined inland regions (49.9% of 

the grid cells from 1980-90s to 2000s, and 50.1% from 2000s to 2010s)”. These 

contributions were all assessed on the basis of the absolute area (change) that would not 

be influenced by the size scale issue. Based on the above analysis, we could state that our 

conclusion about the outsized role of small lakes in driving global lake area changes was 

robust and reasonable.

As for the estimation of carbon emission section, after a review of Holgerson and 

Raymond (2016),  we discovered that they only excluded the in-situ samples of CH4/CO2
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larger lakes (50-150 km2) even when evaluating under the equal relative pixel scale (30m 

vs. 300m).

Point 5: The main text currently contains no discussion on sources of uncertainty, I highly 

encourage that a substantial paragraph or section be dedicated to the main sources and extents 

of uncertainty affecting this study. For instance, discussions on the difficulty of disentangling 

lakes from temporarily inundated floodplains or agricultural fields would be needed. 

Response 5: Thanks for this valuable suggestion. We have added a section called 

“uncertainty and limitation” with substantial content for discussion (lines 777 to 788 

and Supplementary Note 3).  

“Several uncertainties or limitations should be acknowledged in this study, both during 

the process of lake mapping along with related change analysis of lake area and carbon 

emissions. In lake mapping, these could be further categorized into the following major 

sources: lake definition, auxiliary datasets, U-Net model, and post-processing. The 

temporal change of probability-weighted lake area among different time periods, 

otherwise, may be influenced by seasonal lake dynamics. As for the estimation of global 

carbon emissions as well as their long-term change, the accuracy of our results were 

closely related to the representativeness of the average emission rates used for global 

upscaling, the impacts of lake dynamics at shorter timescales, and the quantification of 

emissions through the different pathway (for CH4).  

First of all, our global lake coverage did not include ocean-connected lakes and those 

beyond the latitude range of the GSWO dataset (i.e., 60°S-80°N). In addition, as 

illustrated above, the features of lakes and rivers could be well distinguished by the 

model in most regions. Nevertheless, there were lakes that had similar shapes as rivers 

but were usually short in length, such as some lakes in the Canadian Shield and oxbow 

lakes alongside rivers. This may be responsible for the relatively high omissions of the 

region type AR. In addition, a variety of reservoirs were actually built upon river 

channels, which were probably identified as rivers and thus resulted in missed detection. 

To solve this issue, we replaced the U-Net predictions of the on-river reservoirs (defined 

by GRWL) with those yielded from the automatic extraction method used in sample 

preparation.  

Besides, the disentanglement of lakes from floodplains was also challenging as the 

definition of floodplain extent was ambiguous and arduous. Here we used a globally 

uniform threshold (30% occurrence) to depict the lake/floodplain interface alongside 

rivers, which may cause bias on a regional scale. Besides, in post-processing procedures, 

the floodplain buffers were restricted by the presence and accuracy of the GRWL layer, 
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leading to negligence of floodplains outside the 1km river buffers and those resulting 

from the absence of the underlying GRWL mask. Equally challenging was the division 

between natural lakes and agricultural fields. First of all, given the inherent constraint 

of the GSWO dataset, not all paddy fields were mapped (Pekel et al. 2016). Besides, the 

size threshold of 0.03 km2 helped screen out some small and isolated agricultural fields. 

In addition, compared to natural lakes, a vast proportion of agricultural fields exhibit 

regular shapes, grided textures, and low occurrence in GSWO maps, serving as a basic 

principle for discrimination from natural lakes. However, since the focus of this study 

was mainly the partition of lentic and lotic water systems, these human-transformed 

water bodies were temporarily considered as lakes in our GLAKES dataset.  

The setting of a pre-defined fixed cutting threshold was the major reason for the 

relatively high omission errors for small lakes (especially those around 0.03km2). This 

could be induced by the influence of the negative samples. Specifically, in the process of 

sample preparation, we applied a filter to screen out all lakes with sizes <0.03km2. In 

fact, the difference between lakes just exceeding the size threshold, and those 

approximating the thresholds (e.g., 0.031km2 and 0.029 km2) were probably minor. 

Therefore, the setting of a fixed cutting threshold for samples may somewhat “confuse” 

the model, in a way that some lakes were interpreted as true lakes (because they were 

marked by our labels) while the others with similar features may be identified by the 

model as non-lakes (due to the lack of overlaying labels), thus leading to a certain extent 

of missed detections of small lakes around the size of the cutting threshold (0.03 km2). 

Under such circumstances, a better solution may be the inclusion of samples with sizes 

<0.03 km2 in model training, followed by a result-oriented determination of the cutting 

threshold for lake predictions (i.e., finding out a threshold where the accuracy for lakes 

below the certain size threshold was unacceptable, if possible).  

Uncertainty and limitation could also result from the auxiliary dataset, such as the river 

mask and water occurrence map used for lake mapping. According to the developing 

procedure of the GSWO map, only waters that were visible from space (i.e., Landsat 

observation) without any overlaying obstacles were able to be included in the final 

surface water mapping. This could lead to missed detection of frozen lakes and 

vegetated wetlands and thus an underestimation of lake coverage in regions like the 

Canadian Shield and Scandinavia. In addition, it could be observed that inconsistencies 

between the GSW occurrence map and the GRWL and OSMWL river masks existed in 

many regions. On the one hand, the coverage of GRWL and OSMWL for many large 

rivers was inadequate compared to that of the occurrence map. Application of these 

river masks for river exclusion would lead to a large number of river residuals that 

required further elimination (especially through manual revision). On the other hand, a 

small percent of lakes also had the risk of being masked mistakenly due to such 



40 

inconsistencies. Nevertheless, the overall accuracy of the utilized river masks was 

generally satisfactory, and the impact of dataset inconsistency could be reduced by using 

the area ratio before and after- the river mask, as mentioned above.     

The capability of the U-Net models in differentiating large rivers with broad river 

widths from lakes would be constrained by the scale of the patches that served as the 

basic unit for feature learning. An enlargement of the patch size could partially solve 

this problem but would greatly increase the GPU memory as well. The 512 x 512 pixel 

was the largest scale that was applicable in our study given our maximum GPU RAM of 

24 GB. Hence, we utilized auxiliary river masks in label generation as well as the post-

processing process for exclusion of the remaining rivers, although this introduced new 

uncertainty as stated before.  

In temporal change analysis, owing to the constraint of the valid observations of 

Landsat images, this study mainly focused on the changes in lake extent at a decadal 

scale. However, lake dynamics at shorter timescales could also be evident. Pickens et al. 

discovered that only 23% of the total area of open surface water was permanent without 

ice cover within 2019, while permanent water covered by seasonal ice/snow constituted 

41% of the total area, and the remaining 36% were made up of seasonal waters 

regardless of ice coverage (Pickens et al. 2022). Furthermore, such a seasonal pattern of 

water/land/ice transition may witness substantial changes during the whole study period 

owing to the impact of climate change, including an intensifying reduction in ice cover 

duration and variated changes in wetting/drying trends (Magnuson et al. 2000, Sharma 

et al. 2019, Greve et al. 2014, Roderick et al. 2014, Woolway et al. 2020). These changes 

at a shorter timescale may impose divergent impacts on our decadal change analysis of 

lake surface area. The impact of seasonal water/land transition along with its trend was 

minimal as they have already been incorporated into the occurrence map and thus the 

calculation of probability-weighted lake area each period. However, the negligence of 

lake ice coverage (in the GSW MWH dataset, ice was flagged as invalid observation) 

might lead to a conservative extraction of the lake outlines as well as an underestimation 

of the water occurrence value. Given that the extension of the ice-free season was 

reported to exhibit an increasing trend (Woolway et al. 2020, Wang et al. 2022), the 

underestimation of the probability-weighted lake area might be less severe in the more 

recent period, indicating that there might be a slight overestimation of the calculated 

lake area changes over different periods in places covered with ice.  

In this study, the method we used had already been applied in a previous study to 

calculate lacustrine carbon emissions (Holgerson and Raymond 2016). It was calculated 

by multiplying the average emission rate (flux) of different lake size classes by the total 

lake area accounting for corresponding size bins. However, the average emission rates 
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were aggregated from finite in-situ measurements that may not reflect the true global 

distribution (Rosentreter et al. 2021, DelSontro et al. 2018), which limited the accuracy 

of our global estimates. In particular, the empirical size-dependent flux values listed in 

Holgerson and Raymond (2016) were derived from in situ lake samples with certain 

geographic dependencies (e.g., the majority of sampled lakes were located within the 

range of 30°N-70°N), which may cause uncertainty when upscaling for global lakes. 

Besides, the incorporation of other relevant drivers such as the water body type, water 

depth, water productivity, sediments as well as ecoclimate zone would also enhance the 

representativeness of the average emission rates for more accurate global estimates 

(Rasilo et al. 2015, Wik et al. 2016, DelSontro et al. 2018, Deemer and Holgerson 2021). 

Using the water body type as an example, here we combined the total area of reservoirs 

and natural lakes to obtain the global estimation results, without more discrete 

classification, as in several other studies (Raymond et al. 2013, DelSontro et al. 2018, Li 

et al. 2020). Nevertheless, previous studies have revealed that methane emissions in 

different water body types might be driven by different processes, which would 

inevitably impact the final estimation results (Deemer et al. 2016, Hayes et al. 2017, 

Deemer and Holgerson 2021). 

In addition, in calculating the changes over three periods, we kept the average flux 

values as constant, considering only the long-term carbon emission changes that were 

brought by the lake area variations over different time periods. Nevertheless, the 

transfer of carbon gases from the aquatic environment to the atmosphere is a highly 

dynamic process, which could also be modulated by lake dynamics (such as ice 

phenology and water/land transitions) at shorter timescales (Chamberlain et al. 2016, 

Deemer et al. 2016, Holgerson and Raymond 2016, Wik et al. 2016, DelSontro et al. 2018, 

Keller et al. 2021). It has been reported that CO2 and CH4 accumulate under the ice, and 

subsequently vent a substantial amount to the atmosphere during the spring melt, 

during which CH4 oxidation may co-occur, although this is probably not applicable to 

oligotrophic lakes or completely frozen lakes (Bastviken et al. 2004, Kortelainen et al. 

2006, Michmerhuizen et al. 1996, Utsumi et al. 1998). Considering the trend of global 

warming over the study period, the ice-free seasons for most lakes extended, and some 

permanently frozen lakes became seasonally ice-covered, leading to a further boost to 

global carbon emissions (Natchimuthu et al. 2014, Sharma et al. 2019, Wik et al. 2016). 

Besides, the seasonal drying and wetting of lakes was also an important carbon emission 

source. Studies have revealed complex relationships between water level and aquatic 

carbon emissions and identified dry aquatic sediments as significant carbon gas hot 

spots (Chamberlain et al. 2016, Keller et al. 2021, Marcé et al. 2019, Tangen and Bansal 

2019), which we also did not account for. Given the variated wetting/drying trends 

across different regions globally (Greve et al. 2014, Roderick et al. 2014, Woolway et al. 
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2020), the overall impact on long-term carbon emission changes is hard to quantify, and 

more data are required for systematic evaluations.  

While our study only paid attention to the diffusive CH4 flux, CH4 ebullition was 

deemed the dominant CH4 emission pathway (Bastviken et al. 2004). However, the data 

availability of direct in-situ ebullition rate measurements as well as their high 

spatiotemporal variability hamperes the systematic assessments of CH4 ebullition on a 

global scale (Beaulieu, McManus and Nietch 2016, Holgerson and Raymond 2016). 

Nevertheless, although the accuracy of our global-scale carbon emission estimates would 

be impacted by the above-mentioned factors, the main objective of this section is to 

highlight the essential roles of small lakes in driving lacustrine carbon emissions, which 

remain robust.”    

Point 6: Overall, the deep learning model deserves to be explained more clearly and at 

greater length. Additional explanations should be provided as to how the deep learning model 

functions and a table of hyperparameters should be provided in the supplementary material. 

Additional information on why some decisions were taken is needed (see my specific 

comments further on), which could be complemented by information on the sensitivity of 

model outputs to these decisions. 

Response 6: Thanks for this valuable suggestion. We have added more details of the U-

Net model and illustrated how it worked and why it’s suitable for such kind of 

classification problem. 

“Deep learning has been widely used in many areas (Krizhevsky et al. 2012, Hinton et al. 

2012, Sutskever et al. 2014, LeCun et al. 2015), and are proven to be a powerful and 

creative tool in detecting features of interest from satellite images (Ma et al. 2017, Weiss 

et al. 2020, Reichstein et al. 2019). A recent inspiring deep learning application in 

remote sensing image processing was documented by Brandt et al. (Brandt et al. 2020), 

who detected tree crowns by combining the U-Net model with submeter high-resolution 

satellite images. The U-Net model used in Brandt et al. (Brandt et al. 2020) is a typical 

semantic segmentation technique that performs pixel-wise classification within an image 

for precise segmentation (Yu et al. 2018, Ronneberger et al. 2015). Compared to the 

conventional classification tasks, U-Net yields not only the label category of a specific 

image, but also its corresponding location. Upon the application of U-Net, Brandt et al. 

(Brandt et al. 2020) managed to map more than 1.8 billion non-forest tree crowns (>3 

m2) in the West African Sahara and the Sahel, somewhat overturning the previous 

stereotype of trees scarcity in these dryland regions. Here, we modified the U-Net model 

developed by Brandt et al. (Brandt et al. 2020) and transferred its application to global 

lake mapping. We expect a well-trained U-Net model to perform well when classifying 
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lakes and rivers using GSWO images, as lakes and rivers are already highly 

distinguishable in visual examinations (Extended Data Fig. 3). 

Building upon a fully convolutional neural network (Long et al. 2015), the U-Net model 

composes of various and hierarchical convolution layers that are widely used in 

semantic segmentation field for feature detection (LeCun et al. 2015, Ronneberger et al. 

2015, Liu 2018), vital for the extraction and segmentation of lakes from rivers. The 

convolution layer extracts features from an image in the previous layer and results in a 

less redundant output image called feature map. Generally, the features learned by 

convolution layers transition from simple to more abstract ones as the level of the 

convolution layers increase (Zeiler and Fergus 2014, LeCun et al. 2015, Ribeiro et al. 

2018), and these features are determined by the convolution kernels (i.e., an array of 

weights) that are learned automatically through backpropagation. Except for 

convolution layers, there are various structures that are also essential in the modified U-

Net architecture of Brandt et al. (Brandt et al. 2020), including activation function 

(enabling nonlinear classification), batch normalization (stabilizing and accelerating the 

training process), pooling (reducing data dimension and computation complexity), up-

convolution (restoring the size of feature maps for precise localization) as well as 

concatenation (combing the higher-level feature map with a lower-level one to better 

learn representation). In addition, the U-Net model adopts the overlap-tile strategy, 

which makes it possible to perform a seamless segmentation for extremely large images 

without losing information about the divided border regions (Ronneberger et al. 2015). 

This makes U-Net particularly applicable to our goal of pixel-wise lake classification 

through the GSWO images at a global scale.  

Specifically, the U-Net model comprises two major parts: a contracting path for feature 

interpretation and a near symmetric expanding path for location identification, leading 

to a u-shaped architecture that enables pixel-to-pixel classification (Ronneberger et al. 

2015). In the contracting path, the input feature map undergoes four repeated blocks for 

downsampling, consisting of two 3x3 convolution layers (each accomplished with a 

rectified linear unit (ReLU) activation function), a batch normalization layer and a 2x2 

max-pooling layer. Notably, the feature channels double after each downsampling 

process and then half after each upsampling process in the expanding path. Likewise, 

the expanding path consists of four comparable blocks for upsampling. The difference is 

that once a 2x2 up-convolution and batch normalization are conducted on the feature 

map, a concatenation will be performed with its cropped feature map from the 

corresponding contracting path, and together they go through two 3x3 convolutions 

activated by ReLU. Finally, a 1x1 convolution layer is used to produce the final 

classification map.” 
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The key hyperparameters that were adjusted in our study are presented in the table 

below. We have tried different sets of hyperparameters to assess the model’s 

performance, and the set of hyperparameters presented below was determined for the 

final model. We’re sorry that since many of the former results were not saved, we could 

not provide relevant sensitivity analysis to assess how our model would be impacted by 

these hyperparameters. Nevertheless, we have already tested the performance of the 

final model from many aspects (see “Accuracy assessments and comparisons” section 

and Supplementary Note 2) and have proved its applicability in global lake mapping. 

This has already met our expectations since the main focus of this study is not the 

accuracy of specific algorithms, but the broader applications in global lake mapping.  

Table S1 | Keep hyper-parameters that were tested and adjusted in the U-Net Model. 

The set of hyperparameter values applied for the final model is also presented.

Point 7 : An assessment of the spatial distribution of uncertainties would be valuable. In 

which regions does the model perform better or worse? This could be implemented through 

spatial cross-validation. 

Response 7: Thanks for this valuable suggestion. The spatial distributions of the 

omission and commission errors of each patch in the test set are presented below. 

Overall, the omission error was generally higher than the commission errors in most 

places regardless of the model type, with the median omission error being 15.76% and 

14.05% and median commission errors being 1.25% and 1.71% for the Normal Model 

or Floodplain Model, respectively. Spatially, the high omission errors (>20%) in terms of 

Normal Model are mainly distributed in Alaska, Siberia, and the Amazon basin. We also 

revealed that most of these omissions happed in region type 4 (i.e., “lakes alongside 

river”), the major omission source of the Normal Model. In addition, Alaska and Siberia 

also contributed the most in terms of the number of high omission patches for the 

Floodplain Model. High omissions also occurred in several other large river floodplains, 

such as the Ganges River in India and the LaPlata-Parana River in South America. On 

the other hand, the commission error of the majority of test patches (> 90% for both 

Hyperparameters Setting 

Optimizer Adadelta 

Loss function Tversky: " = 0.5, # = 0.5 

Batch size 16 

Iteration Normal model: 750;  

Floodplain model: 600 

Epoch 250 

Patch size 512 × 512 
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models) was below 10%, while only a few left high commission patches distributed 

sparsely and irregularly across the globe.  The related changes have been made in 

Supplementary Note 2 and Fig. S2. 

Fig. S2 | Validation of the deep-learning algorithm across the globe. Accuracy 

assessments (omission/commission errors) for each sample region across the globe based 

on independent test labels, where the Normal Model and the Floodplain Model are 

evaluated separately.  

Point 8: Currently, the labels used for assessing the model performance are only partly 

independent, as they were created through the same semi-automatic process using the same 

data source (GSWO). Adding a truly independent validation, based on a different sensor 

and/or higher resolution imagery (e.g., using Sentinel data as was most recently done by 

Pickens et al.7), would strengthen the evaluation of the model performance. 

Response 8: Thanks for this suggestion. Theoretically, applying an independent test set 

on the basis of other sources instead of GSWO may be a more proper alternative for the 

performance assessment of the U-Net models. However, the lake polygons depicted in 

our GLAKES dataset were a record of lake variations during the past four decades 

(1984-2019). Except for GSWO, it seemed that there’s no such dataset that covered the 

lake changes during such a long period, such as the Global surface water dynamics 

dataset (1999-2020) from Pickens et al. (2020), the Global 3-second/1-second Water Body 

Map dataset (1990-2010) from Yamazaki, Trigg and Ikeshima (2015), the GIEMS-2 

dataset (1992-2015, 0.25°×0.25°) from Prigent, Jimenez and Bousquet (2020) and so on. 

Similarly, the application of sentinel images mentioned above was also constrained by 

the mismatch of the observation period. Therefore, we maintained our test set for 

evaluation of the model performance in the absence of a better option. 
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Point 9: The evaluation of model performance (Extended Data Table 1) is only provided at 

the pixel level whereas this study also produced a polygon dataset. To better grasp 

uncertainties, I encourage the authors to provide a polygon-based performance assessment 

(omission and commission at the lake entity level as well as measures of fit and bias between 

test polygons and output polygons). 

Response 9: Thanks for this suggestion. We have added the polygon-based performance 

assessment in Table S2, Table S3 and Fig. S1. As shown in Fig. S1, our prediction also 

agreed well with the label area at the polygon base. Notably, the Percent Bias (PBIAS) 

here remained the same as the pixel-based assessment results, considering the 

implication of PBIAS. In addition, we calculated the omission and commission errors for 

each pair of lake polygons, and the averaged results are presented in TableS2 and Table 

S3. Overall, we observed generally larger omission errors for both models compared to 

the pixel-based evaluation, in particular for small lakes where the mean omission errors 

exceeded 30%. In addition, here, the average omission errors for size group “all” were 

actually biased by the prevalent occurrence of small lakes and thus also appeared high. 

On the other hand, the commission errors remained low for both models (< 6% across 

all size groups), reaffirming the high accuracy of our models in terms of 

misclassification.   

Fig. S1 | Validation of the deep-learning algorithm at the lake-entity level. The predicted 

area for each lake polygon is compared against the corresponding label area at the lake 

entity level. Region types are also annotated.  

Table S2 | Accuracy assessments of our developed deep-learning algorithm at the lake-

entity level for lakes with different size classes. 
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Error matrix for the GLAKES dataset estimated using independent test labels for the 

Normal Model and Floodplain Model, listing the accuracy levels derived for different 

lake size groups at the lake-entity level. The omission and commission values presented 

below represent the average of the corresponding values of all lake polygons being 

assessed.

Table S3 | A further investigation of the accuracy of our developed deep-learning 

algorithm in subdivided small lake groups. 

Error matrix for the GLAKES dataset estimated using independent test labels for the 

Normal Model and Floodplain Model, listing the accuracy levels derived for subdivided 

size groups of small lakes. Both pixel-based and polygon-based results are included for 

assessments. Likewise, the polygon-based omission and commission values presented 

below represent the average of the corresponding values of all lake polygons being 

assessed. 

Point 10: I opened and visualized the dataset with no difficulty. It fits the description 

provided in the manuscript. The documentation is clear. Although it may not be in its final 

Size Omission (%) Commission (%) 

Normal 

Small (0.03-1 km2) 35.0 3.0 

Medium (1-100 km2) 8.3 1.0 

Large (>100 km2) 1.2 0 

All 32.6 2.8 

Floodplain 

Small (0.03-1 km2) 32.3 5.7 

Medium (1-100 km2) 10.6 3.4 

Large (>100 km2) 9.2 0.2 

All 30.4 5.5 

Size 
Pixel-based Polygon-based 

Omission (%) Commission (%) Omission (%) Commission (%)

Normal 

<0.01 km2 85.3 76.6 91.4 88.1 

0.01-0.03 km2 52.6 17.4 54.9 22.3 

0.03-0.05 km2 50.5 3.6 51.5 3.7 

0.05-0.1 km2 34.5 3.1 35.0 3.0 

0.1-1 km2 18.9 2.3 22.2 2.5 

Floodplain 

<0.01 km2 81.4 73.0 88.6 86.1 

0.01-0.03 km2 51.4 21.1 53.7 25.2 

0.03-0.05 km2 51.2 6.7 52.8 6.8 

0.05-0.1 km2 31.3 6.4 32.0 6.4 

0.1-1 km2 17.0 4.7 19.5 4.8 
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form, I suggest that the authors also provide a license for the data, and that the database be 

available as a Shapefile and/or geo-package to enable a greater range of users to access these 

data. 

Response 10: Thanks for this suggestion. The license has been added and the .shp format 

dataset will be provided upon the publication of this manuscript. We have also added 

several properties for each lake to describe the different geographic conditions (i.e., 

glacier-fed/non-glacier-fed, permafrost-fed/non-permafrost-fed, human-

regulated/natural formed, and endorheic/exoreic). Hope this can help readers with 

broader applications of the GLAKES dataset.

Miscellaneous comments and suggested improvements: 

Point 11: P2L29 “explicit extents and changes”: this relates back to my previous comment on 

the meaning of the GLAKES polygons. “explicit” extent is not clear, is the dataset about 

average or maximum extent? 

Response 11: Thanks for this suggestion. The lake polygons our dataset provided 

represent the maximum extent, while the lake changes throughout different time periods 

are presented using probability-weighted area. Therefore, the original statement has 

been replaced by “Here, we map 3.4 million lakes at a global scale, including their

explicit maximum extents and probability-weighted area changes over the past four 

decades.”. 

Point 12: P2L30: “Lake area increased across all six continents”, an explicit mention of the 

dates used in the study here would be useful. 

Response 12: Thanks for this comment. The relevant sentence has been rewritten as 

“From the beginning period (1984-1999) to the end (2010-2019), lake area increased 

across all six continents analyzed, with a net change of +46,278 km2, and 56% of the 

expansion was attributed to reservoirs.”.

Point 13: P2L32 “global lake areas” and “variabilities”. I believe that both of these should be 

singular. 

Response 13: Corrected as suggested. 

Point 14: P2L35: “Our findings illustrate the emerging roles of small lakes in regulating local 

inland water variabilities and greenhouse gas emissions.” The results suggest that small lakes 
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don’t only regulate local inland water (extent?), but also the global dynamics of surface water 

extent and greenhouse gas emissions. 

Response 14: Thanks for this suggestion. The statement has been reframed as “Our 

findings illustrate the emerging roles of small lakes in regulating not only local inland 

water variability, but also the global trends of surface water extent and carbon gas 

emissions.”

Point 15: To be specific, the authors could refer to carbon emissions rather than greenhouse 

gas emissions, as N2O was not studied here (despite its role as a GHG11). 

Response 15: Thanks for this suggestion, we have replaced all “greenhouse gas 

emissions” with “carbon emissions”. 

Point 16: P3L39: “…underpin vital ecosystem function and services” for the sake of 

thoroughness, please provide a citation. 

Response 16: Thanks for this suggestion. Two relevant references below have been 

added:  

1. Schallenberg, M. et al. Ecosystem services of lakes. Ecosystem services in New 

Zealand: conditions and trends. Manaaki Whenua Press, Lincoln, 203-225 (2013). 

2. Reynaud, A. & Lanzanova, D. A global meta-analysis of the value of ecosystem 

services provided by lakes. Ecological Economics 137, 184-194 (2017). 

Point 17: P3L41: Woolway, R. I., Kraemer, B. M., Lenters, J. D., Merchant, C. J., O’Reilly, 

C. M., & Sharma, S. (2020). Global lake responses to climate change. Nature Reviews Earth 

& Environment, 1(8), 388-403. Would be more adequate (global scale) for this statement than 

O’Beirne. The following study would also be relevant to this statement: Grant, L., 

Vanderkelen, I., Gudmundsson, L., Tan, Z., Perroud, M., Stepanenko, V. M., Debolskiy, A. 

V., Droppers, B., Janssen, A. B. G., Woolway, R. I., Choulga, M., Balsamo, G., Kirillin, G., 

Schewe, J., Zhao, F., del Valle, I. V., Golub, M., Pierson, D., Marcé, R., … Thiery, W. 

(2021). Attribution of global lake systems change to anthropogenic forcing. Nature 

Geoscience 2021, 1–6. https://doi.org/10.1038/s41561-021-00833-x 

Response 17: Thanks for this detailed suggestion. We replaced O’Beirne et al. (2017) 

with the two aforementioned references. 
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Point 18: P3L57: “Estimates of the global extent of lakes are available” would be a more 

exact description of these datasets. 

Response 18: Corrected as suggested.

Point 19: P4L65: “However, these available global assessments…” it is not entirely explicit 

in this paragraph what “these assessments” refer to. Please clarify. 

Response 19: We clarified as “these available global assessments of ecosystem 

parameters……” 

Point 20: P4L71: “We used deep learning to identify lakes smaller than the minimum 

mapping unit for all previous global lake datasets (0.1 km²).” Verpoorter et al.9 describe 

mapping lakes down to 0.002 km2 (nine Landsat pixels). 

Response 20: Thanks for this comment. We’re aware that the GLOWABO dataset has 

extracted lakes as small as 0.002 km2 in size. However, the GLOWABO dataset is not 

publicly available. We have revised this sentence “smaller than the minimum mapping 

unit for global lake datasets that are publicly available (0.1 km²)”. Revisions have been 

made accordingly on places where similar descriptions occur.

Point 21: P4L81: “Deep learning makes it possible to detect lakes as small as 0.03 km2

(corresponding to approximately 33 Landsat image pixels)…”. This may be due to my 

misunderstanding of what is involved in the deep learning algorithm, but I am not clear about 

how deep learning itself enables detecting small lakes. This statement deserves additional 

explanation/justification. 

Response 21: Thanks for this suggestion. The actual procedure is that at first we 

predefined the cutting threshold of samples as 0.03 km2 (33 pixels). Then the lake 

samples with sizes above this threshold were trained by the models to extract their 

underlying features and yield predictions. The results would be impacted by the value of 

the cutting threshold during this process, as we observed a vast amount of tiny lakes 

with size <0.03 km2 unable to be detected by models. Of course, there were indeed some 

lakes below the threshold that were extracted by our models, which were then further 

screened out during our post-processing procedure so that our remaining lake polygons 

were all >0.03 km2. In this way, we were able to “extract lakes as small as 0.03 km2 by 

using deep learning algorithm”.
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Point 22: Figure 1: This is a nicely done and informative figure. Good job! For panel b, given 

that a degree square has a substantially different surface area depending on latitude, I 

recommend that the lake extents be expressed as limnicity (% land area covered by lakes) 

rather than absolute area (km2). 

Response 22: Thanks for this encouraging comment and good suggestion. The grided 

lake extents were expressed as limnicity as suggested (see below). While expressing as 

lake area density was better than the absolute area, the overall global lake pattern was 

generally consistent with the previous result.

Fig. 1 | Spatial distribution of global lakes. Lakes with maximum surface area >0.03 km2

were mapped, showing (a) lake count (total number of lakes) and (b) lake area density 

(total lake area/grid area) per 1°×1° grid cell. The latitudinal and longitudinal lake 

profiles summarizing (by 1°) the lake count and lake area are shown on the right and 

bottom of (b). Statistics for small (<1 km2), medium (1-100 km2), and large (>100 km2) 

lakes are presented within each panel. 

Point 23: P6L103: For ease of reading, I suggest simply using the actual years (1980-90s, 

2000s, and 2010s) throughout the manuscript rather than P1, P2 and P3. 
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Response 23: Thanks for this suggestion, we replaced all “P1”, “P2”, “P3” with the 

actual years they indicated.

Point 24: P10L189: It is not clear from the methods whether this estimate is determined with 

the total area of the polygons (that would mean the maximum water extent based on my 

observation of the dataset, and would thus potentially represent an overestimate) or the 

probability-weighted area over a given period. 

Response 24: Thanks for this detailed suggestion. The total CO2 and CH4 emissions (Fig. 

4a, Extended Data Fig. 9) were estimated from the total area of the lake polygons, while 

the carbon emission changes over different periods were estimated based on the 

probability-weighted area (Fig. 4b). The reason why we used polygon area instead of 

probability-weighted area for comparison with the previous study was analogous to 

response 2. Please see response 2 for more information.

Point 25: Figure 4. I suggest using the same colour set for small, medium and large lakes here 

as in panels a and b of Figure 3. 

Response 25: Thanks for this detailed suggestion. The color set has been changed as 

suggested.

Point 26: P12L226: Very interesting finding!. 

Response 26: Thanks for this encouraging comment. 

Point 27: P12L235: The following citations are quite relevant here for discussion: 

o Keller, P. S., Marcé, R., Obrador, B. et al. Global carbon budget of reservoirs is 

overturned by the quantification of drawdown areas. Nature Geoscience. 14, 402–408 

(2021). https://doi.org/10.1038/s41561-021-00734-z 

o Johnson, M. S., Matthews, E., Bastviken, D., Deemer, B., Du, J., & Genovese, V. 

(2021). Spatiotemporal methane emission from global reservoirs. Journal of Geophysical 

Research: Biogeosciences, 126, e2021JG006305. https://doi.org/10.1029/2021JG006305 

o Bridget R. Deemer, John A. Harrison, Siyue Li, Jake J. Beaulieu, Tonya DelSontro, 

Nathan Barros, José F. Bezerra-Neto, Stephen M. Powers, Marco A. dos Santos, J. Arie 

Vonk, Greenhouse Gas Emissions from Reservoir Water Surfaces: A New Global 

Synthesis, BioScience, Volume 66, Issue 11, 1 November 2016, Pages 949–964, 

https://doi.org/10.1093/biosci/biw117 
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Response 27: Thanks for this suggestion. As we have already incorporated the reservoir 

area into estimation (see response 4 for more detailed information), we now changed the 

statement to “Nevertheless, we believe that the changes in CO2 and CH4 estimated 

herein represent conservative values, and the magnitudes of these changes will be higher 

when increased lacustrine eutrophication and expanded lakes in smaller size are 

incorporated into the gas exchange calculations (Beaulieu, DelSontro and Downing 2019, 

DelSontro et al. 2018, Davidson et al. 2018, Holgerson and Raymond 2016, Downing 

2010).”. These references you mentioned are all very informative, but are no longer 

needed after the revision.  

Point 28: P12L235: “Our detailed mapping of the dynamics of 3.4 million lakes can 

potentially be used to better characterize regional-to-global hydrological budgets…” A brief 

mention could also be made of the possibilities for a more thorough assessment of the causes 

of surface water extent variations given that the present study is (understandably, given its 

scope) cursory in its assessment of the effects of climatic and anthropogenic influences. 

Response 28: Thanks for the suggestion. We added the following clause to the context: 

“In addition, our dataset enabled a more thorough evaluation of the causes of the 

variations of surface water extent that may previously be constrained by the 

completeness or quality of global lake mapping (especially for small lakes), so as to gain 

a more comprehensive perception of the impacts of climate change and anthropogenic 

activities.”.

Point 29: P15L349: Here it is worth pointing out as an assurance to the reader that Pekel et al. 

demonstrated remarkable continuity in the accuracy of the GSWO among sensors and, 

consequently, through time, which is paramount to the validity of this analysis. 

Response 29: Thanks for this valuable suggestion. The statement has been revised as 

below: “Extensive validation of the GSWO dataset has been conducted at a global scale, 

over the whole study period and among all involving Landsat sensors. The results 

demonstrate the high accuracy of the surface water delineation in the GSWO datasets 

(1<% false water area detections and <5% missed water area) and, consequently, the 

ability to afford comparable, continuous, and consistent mapping spatially, temporally 

and across sensors.” 

Point 30: P15L353: How was the lower limit of 33 pixels determined? Was a sensitivity 

analysis conducted in terms of model performance with higher and lower size limits? How 
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does performance change towards that lower limit of 0.03 km2 (versus for all small lakes 

together)? 

Response 30: Thanks for this comment. In practice, we first predefined the cutting 

threshold of samples as 0.03 km2 according to our visual observations. The main 

objectives were to exclude small polygon residuals generated during this sample 

extraction procedure as well as to screen out small isolated agricultural fields. Then the 

lake samples with sizes above this threshold were trained by the models to extract their 

underlying features and yield predictions. As we stated above (Response 3), the setting of 

pre-define cutting threshold for lake samples should probably be responsible for the 

relatively high omission error for small lakes (especially those around 0.03km2). We also 

tested the performance of models toward the lower limit of 0.03km2 in Response 3: “As 

seen in the table, the omission and commission errors generally decreased as the lake 

size increased. The errors were extremely high for lakes with sizes <0.03 km2 in both 

models, with omission error of >50% and commission error of >15%. The accuracy was 

much higher when considering lakes with sizes >0.1 km2 (the bottom size threshold for 

most global lake datasets), where the corresponding omission and commission values 

dropped to below 20% and 5%, respectively. Nevertheless, although lakes with the size 

range of 0.03-0.05 km2 still faced high omission issues, the commission error declined 

suddenly from >15% to ~5%. In practice, we treasured commission error more than 

omission error to ensure that the detected portion of our GLAKES polygons was 

generally “true” and thus could be placed with more confidence in further analysis. 

Therefore, we kept the size threshold as 0.03km2 to include more lakes in our dataset 

without much compromise on misclassification.” Of course, as we stated above 

(Response 3), a better solution may be the inclusion of samples with sizes <0.03 km2 in 

model training, followed by a result-oriented determination of cutting threshold (i.e., 

finding out a threshold where the accuracy for lakes below the certain size threshold was 

unacceptable, if possible), which may be considered in our next version of GLAKES in 

the future. 

Point 31: P17L407: It seems that the reference for this dataset is incorrect. Ref 49 points to 

Yamazaki, D. et al. A high-accuracy map of global terrain elevations. Geophysical Research 

Letters 44, 5844-5853 (2017). However, this reference does not include any reference to 

OSMWL. I believe that the authors may be referring to Yamazaki, D., Ikeshima, D., Sosa, J., 

Bates, P. D., Allen, G. H., & Pavelsky, T. M. (2019). MERIT Hydro: a high-resolution global 

hydrography map based on latest topography dataset. Water Resources Research, 55, 5053– 

5073. https://doi.org/10.1029/2019WR024873 And the following dataset: 

http://hydro.iis.utokyo.ac.jp/~yamadai/OSM_water/index.html. 
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Response 31: Thanks for this detailed comment. Yes, the OSMWL referred to the 

indicated dataset http://hydro.iis.utokyo.ac.jp/~yamadai/OSM_water/index.html. The 

original reference has been replaced by the recommended reference in our revised 

manuscript.

Point 32: P17L409: How were the thresholds of 5% and 30% for non-floodplain and 

floodplain regions determined? 

Response 32: For non-floodplain regions, a threshold of 5% was set to mask land pixels 

and exclude low-confidence waters that may be caused by classification errors 

embedded in GSWO. As for lakes in floodplains, the occurrence threshold was set to 30% 

mainly because that 30% was large than the occurrence of long-term floodwaters that 

lasted for less than one season (i.e., 25%) each year. Therefore, the application of 30% as 

an occurrence threshold enabled the extraction of the ‘core’ portions of lakes and 

segmentation of these portions from the larger-scale floodwaters. Of course, it should be 

noted that there were no implicit values for the two thresholds. In contrast, 5% and 30% 

were only our definitions of the thresholds for lakes without and within floodplains, on 

the basis of visual inspections across the globe.  

To make the determination of thresholds more clear, relevant statements were revised 

below: “We used the GSWO map to mask land pixels and exclude low-confidence water 

pixels (some of which may be caused by the inherent classification errors of GSWO) 

with <5% occurrence (i.e., <5% of the Landsat observations were classified as water 

during the past four decades). Notably, in floodplains, the occurrence threshold was set 

to 30% instead of 5% to capture the ‘core’ portions of lakes and segment these portions 

from the larger-scale floodwaters (periodically occurring over a long time but lasting for 

less than one season (i.e., 25% occurrence) each year)."    

Point 33: P18L426: I believe that the correct word would be “compared to” rather than 

“with” in ”floodplains showed distinctive patterns with all other lake regions…”. 

Response 33: Thanks for this detailed suggestion. The expression “with” was corrected 

as “compared to”.

Point 34: P18L428: It makes sense that additional region types were identified, yet their 

relationship to the normal and floodplain region types (and the multiple uses of the term 

region or region type) is unclear and there is no reference elsewhere of these “region 

subtypes” in the manuscript (in the figures or in the performance reporting). How are model 

uncertainties distributed among those regions? 
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Response 34: Sorry for the previous vagueness of the relationship between the 

Normal/Floodplain Model and the five region types. First of all, we added figures 

exhibiting examples of the 5 categories of sample regions (see below). Note that the 

region type was only the representativeness of the major hydrological features of the 

lakes within the region bound, where lakes with distinctive features may also co-exist. In 

practice, not all five categories of sample regions were included in the Normal Model 

and Floodplain Model. Specifically, the Normal model consisted of type 1 (“lakes with 

middle/high occurrence”, HO), 2 (“lakes with low occurrence”, LO), 3 (“large lakes”, 

LL) and 4 (“lakes alongside river”, AR), since the type 5 (“lakes within floodplains”, WF) 

was not the target of the Normal Model. On the other hand, the Floodplain Model was 

made up of types 1, 3, 4 and 5. The reason why types 1, 3 and 4 were included for model 

interpretation was that the main patterns described by types 1, 3 and 4 were also 

observable within the regions defined by type 5, while type 2 was excluded because of 

the relatively high occurrence threshold (i.e., 30%) applied for the Floodplain Model.  

In addition, we re-calculated the error matrix listed in Table S4 for each region type 

individually and specified the region types of each scatter point in Extended Data Fig. 2 

to assess the model’s performance across different categories of region (see below). 

Overall, the accuracy of the former three categories (HO, LO, and LL) was higher than 

that of the remaining two categories (AR and WF), probably owing to the relatively 

intricate hydrological conditions of the last two types of regions. Here the largest 

omission errors (19.6%) of the Normal Model originated from AR, which probably 

resulted from the missed detection of oxbow lakes that were hardly distinguishable from 

rivers. There was additional and comparative omission lying in the Floodplain Model, 

i.e., WF (12.8%), where the occurrence patterns were extremely complicated, and the 

exact floodplain extents were hard to depict. It is noteworthy that the deviation of the 

scatter points representing the region type AR was not evident for either model in 

Extended Data Fig. 2, although exhibiting large omission errors. This is because their 

containing lake area was generally small and thus, their scatter points were hidden in 

the lower-left region of the scatter plot with dense scatter concentration. Similarly, 

commission errors were relatively low in almost all region types, especially compared to 

omission errors, confirming the model’s conservative strategy in delineation for all 

region types analyzed. 

Another important step was that the lakes from Normal Model and Floodplain Model 

were combined to generate our final version of global lake polygons (the “GLAKES” 

dataset). In practice, given that both the Normal Model and Floodplain Model yielded 

lake predictions at global coverage, we applied pre-defined river buffer zones to 

determine whether the extracted lake polygons from the Normal Model or Floodplain 

Model should be used for our final GLAKES dataset. Specifically, for buffer zones 



57 

flagged as “floodplain”, lake polygons (within these buffer zones) extracted from the 

Floodplain Model were selected as a part of GLAKES dataset, while the corresponding 

outputs from the Normal Model were discarded. On the contrary, for all remaining 

areas (including buffer zones flagged as “normal” and areas outside the river buffer 

zones), lake polygons from the Normal Model were included in our final dataset. The 

basic principle for the determination of the exact flag (“normal” or “floodplain”) for 

each buffer zone is to measure the extent of seasonally flooded non-lake and non-river 

waters within the buffer zone. To begin with, a 1km buffer was applied to each 

vectorized polygon of global rivers documented in the GRWL Mask V01.01 product 

(https://zenodo.org/record/1297434#.YrvEzj5ByUk). Within each buffer, the area of 

seasonally flooded non-lake and non-river waters was calculated by summing the area of 

all GSWO pixels with occurrence <75% (to exclude the permanent and near-permanent 

water), except for those already being defined as rivers (by GRWL mask) and lakes (by 

rasterized HydroLAKES polygons). Finally, buffer zones where the ratio of their 

containing flooded area to the corresponding buffer area exceeded the flooding 

threshold were flagged as “floodplain”. In this study, the flooding threshold was set as 

0.1 through trial and error. 
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Extended Data Fig. 3 | Image pairs revealing the performance of the deep-learning 

algorithm in predicting lake extents using the test set. The right panels show the 

predicted lake extents; the correct classification (Label + Prediction), omission errors 

(Label only), and commission errors (Prediction only) are color-coded. The left panels 

are the input images sourced from the GSWO dataset and are independent of the labels 

used for algorithm training and validation. The lower right annotations represent the 

abbreviations for the five region types: “lakes with middle/high occurrence” (HO), 

“lakes with low occurrence” (LO), “large lakes” (LL), “lakes alongside rivers” (AR) and 

“lakes within floodplains” (WF). For specific accuracy statistics, please refer to 

Extended Data Fig. 2 and Extended Data Table 1. 
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Extended Data Fig. 2 | Development and validation of the deep-learning algorithm for 

predicting lake extents. (b) The total lake count/area within each patch (512 × 512 pixels) 

from labels and predictions are compared, where region types are also annotated. 

Table S4 | Accuracy assessments of our developed deep-learning algorithm for different 

region types. 

Error matrix for the GLAKES dataset estimated using independent test labels for the 

Normal Model and Floodplain Model, listing the accuracy levels derived for different 

region types. Note that only pixel-based results are presented here as the polygon-based 

results are largely biased by the prevalence of small lake polygons in almost all region 

types, and thus cannot reflect the true deviations among different region types. 

Type Index Type Name Omission (%) Commission (%) 

Normal 

1 High Occurrence (HO) 12.4 0.3 

2 Low Occurrence (LO) 8.5 1.6 

3 Large Lakes (LL) 3.3 0.2 

4 Alongside Rivers (AR) 19.6 5.0 

- All 5.4 0.5 

Floodplain 

1 High Occurrence (HO) 8.0 1.9 

3 Large Lakes (LL) 4.2 0.3 

4 Alongside Rivers (AR) 12.6 1.9 

5 Within Floodplains (WF) 12.8 2.7 

- All 9.6 1.9 
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Point 35: P18L438: were the regions allocated by formal stratified random sampling? What is 

the size distribution of labels (Extended Data Fig. 1 suggests that they are of different sizes)? 

Response 35: Yes, the regions were allocated by the formal stratified random sampling. 

We have specified it in our revised manuscript. The histogram exhibiting the size 

distribution of sample regions (here should be sample regions instead of labels according 

to our new definition, see point 36) is appended in the Extended Data Fig. 2a (see below). 

Overall, the logarithmic sizes of these regions were approximated to a normal 

distribution, both in terms of the Normal model and Floodplain Model, while the total 

number of the former was ~1.7 times of the latter. In addition, the size of most sample 

regions was at the order of magnitude of 102 ~ 103 km2, with a median area of 5.91×102

km2 for the Normal Model and 5.69×102 km2 for the Floodplain Model. 

Extended Data Fig. 2 | Development and validation of the deep-learning algorithm for 

predicting lake extents. (a) Spatial distribution of the sample regions selected for 

training, validation and testing, along with size range of the sample regions. 

Point 36: P19L446: “For each sample region, a variety of patches were randomly generated 

and used for model training, and the same local normalization method was also utilized for 

each patch.” I am unclear about the meaning of this sentence. I suggest that patches, regions 

(including region types and sub-types), and labels be more clearly defined and differentiated. 

Normalization was also not mentioned beforehand. A workflow diagram could help the 

readers to grasp this analysis, as it is crucial to the quality of the model. 

Response 36: Thanks for this valuable suggestion. We have re-considered the 

relationship between these terms, and formal definitions are given to them accordingly. 

In our study, labels indicate the sample polygons produced from an automatic extraction 

of pre-processed GSWO layer as well as manual revision. Sometimes the corresponding 
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rasterized images covered from sample polygons are also called labels (e.g., Extended 

Data Fig. 3). In terms of regions (or sample regions), they refer to the rectangular 

boundaries (as presented in Extended Data Fig. 2a) covering labels. In addition, all 

regions are classified into 5 region types based on the dominating lake patterns exhibited 

within regions. Note that we do not use the term “normal regions” and “floodplain 

regions” anymore to differentiate them from the 5 categories of sample regions. In 

practice, we applied a pre-defined river buffer zone to determine whether the extracted 

lake polygons from the Normal Model or Floodplain Model were used for our final 

GLAKES dataset (see point 34). Patches are essentially small square areas with a fixed 

size of 512 × 512 pixels. A patch is the basic unit for the model to grasp the features of 

lakes. In general, the size of sample regions is too large for the U-Net model to analyze 

the lake features within the region boundaries. Instead, a variety of patches were 

randomly generated within each sample region, and the lake patterns within the patches 

were extracted and interpreted by the model. We have added the above explanation for 

some terms at their first occurrence to reduce ambiguity.  

In addition, the main content of “Normalization” has been introduced in our revised 

manuscript (lines 555 to 557 and Supplementary Note 1). Now the sentence “For each 

sample region, a variety of patches were randomly generated and used for model 

training, and the same local normalization method was also utilized for each patch” has 

been rewritten as: “In general, the size of sample regions were too large for the U-Net 

model to analyze the lake features within the region boundaries. Instead, a variety of 

patches (with a fixed size of 512 × 512 pixels) were randomly generated within each 

sample region, and the lake patterns within the patches were extracted and interpreted 

by the model. In addition, we applied the same local normalization method from Brandt 

et al. (2020) for each patch. That is, the occurrence raster within all patches was 

normalized first with the mean and standard deviation of the corresponding sample 

region, while local normalization was performed on 40% of the patches, where image 

values within these patches were changed to form a standard normal distribution. It’s 

essential as the omission and commission errors of lake classification would be impacted 

by the proportion of the local normalization patches. Nevertheless, we maintained the 

probability as 40% as it also suited well for our study”.  

The workflow is presented below. 
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Extended Data Fig. 1 | Flowchart for developing the GLAKES dataset. The complete 

workflow for the extraction of GLAKES lake polygons can be further divided into the 

following four modules. 1) Sample preparation: lake samples are generated and 

allocated to the training, validation and test sets for both Normal Model and Floodplain 

Model, where different region types representing variated lake features are considered. 

2) Model application: the two U-Net models are trained to learn different features of 

lakes from the GSWO map, and each yield a raw global lake classification map. 3) 

Floodplain identification: the floodplain buffer zones are determined to combine the 

outputs from the Floodplain Model and Normal Model. 4) Post-processing: the two 

global lake classification maps further undergo several post-processing steps and is 

combined to generate the final GLAKES lake polygons. 

Point 37: P19L461: please define MIoU in the manuscript itself. 

Response 37: Thanks for this suggestion. We have revised and added the following 

description of MIoU in our revised manuscript: “In addition, we also introduced the 

mean intersection over union (MIoU) to assist model evaluation (which was not used in 

Brandt et al. (2020)). MIoU is a widely used image segmentation performance indicator 

that fully considers true positives and false negatives (Zhao et al. 2021). Specifically, the 

IoU of each class was calculated as the area of overlap divided by the area of union 

between the labels and predictions of that class. Then, the IoU from different classes was 

averaged to estimate MIoU”.  
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Point 38: P21L498: It seems from Extended Data Fig. 1 that the model systematically 

underpredicts label area. I suggest reporting mean percent bias for the normal and floodplain 

models and addressing this pattern in the text. 

Response 38: Thanks for this suggestion. We have replaced the RMSE with Mean Bias 

Error (MBE) and Percent Bias (PBIAS) in Extended Data Fig. 2. As this comment 

indicated, our models systematically underpredicted label area, which was consistent 

with the results in Extended Data Table 1 that our models exhibited relatively high 

omission errors. Overall, the PBIAS was relatively low on the two models ( |PBIAS| < 

10%), while the PBIAS in terms of label count was smaller compared to that of label 

area.   

Extended Data Fig. 2 | Development and validation of the deep-learning algorithm for 

predicting lake extents. (b) The total lake count/area within each patch (512 × 512 pixels) 

from labels and predictions are compared, where region types are also annotated. 

Point 39: P22L518: The GLWD is a minor component of HydroLAKES. The vast majority 

LD I?HC MLISELKO DNLJ -.T= PL .(T: ?NC DNLJ PFC =FQPPIC <?B?N >LMLEN?MFS 9GOOGLK "=<>9#

Water Body Data (SWBD), and all lakes in Canada (62% of all lakes in the database) are 

from CanVec. This clause may be corrected or removed. 

Response 39: Thanks for this valuable suggestion. The corrected clause is presented as 

follows: “Based on the Shuttle Radar Topography Mission Water Body Data (for most 

@5?9F 69GJ99B +,M2 5B8 ,&M1#$ /5B497 ":CE G<9 A5>CE=GK C: 1CEG< .A9E=75B @5?9F#$ 5F

well as other lake datasets (see HydroLAKES documentation), the most widely used 
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global lake database HydroLAKES was developed, along with intensive automated and 

manual corrections.”. 

Point 40: P22L527: “the statistics for lakes smaller than 0.1 km2 (if any were available) were 

represented by values extrapolated from larger lakes” I mentioned it in a previous comment, 

but I was under the impression that GLOWABO provided statistics for lakes at least down to 

0.01 km2 if not 0.002 km2. 

Response 40: Thanks for this comment. There’s some problem with our statement here 

as the GLOWABO truly provided lake polygons with size < 0.1km2. Therefore, this 

clause has been removed.

Point 41: P22L538: “Moreover, we found a substantial number of missing lakes in eastern 

Canada and Scandinavia in the HydroLAKES dataset and lake overestimations with varying 

degrees in other regions (Extended Data Figs. 3b & 4); these errors could be due to 

uncharacterized seasonal or interannual dynamics and other unsourced uncertainties from the 

inherited datasets.” 

o In its current form, the first clause of this sentence is not entirely clear. Figure 3b 

suggests that HydroLAKES overestimates lake density and area compared to GLAKES 

in eastern Canada and Scandinavia (although the current sentence structure suggests the 

opposite) but underestimates lake prevalence in several other regions compared to 

GLAKES (foremost in Siberia and along major river floodplains e.g., Mississippi, 

Amazon, and Ganges-Brahmaputra). 

o Regarding the second clause of the sentence, I recommend caution in characterizing the 

discrepancies between HydroLAKES and GLAKES as necessarily errors. 

V 6K 2?K?B?% J?KS I?HCO PF?P ?NC MNCOCKP GK 5SBNL8173= @QP ?@OCKP DNLJ 48173=

do exist. Canadian data in HydroLAKES was sourced from CanVec, which itself 

was built by digitizing topographic maps that, in my experience, are rather reliable, 

particularly in southern regions. I expect that GLAKES is unable to detect a lot of 

smaller and shallower lakes because their water surface is frozen/snow-covered for 

4-9 months/year and heavily vegetated for the other months of the year (see example 

maps below, which fall within the frame of Figure 4 and show HydroLAKES 

outlines and GSWO). Many lakes in this region are transitioning to wetlands, so 

some may also be dry for part of the year. 

V 6K =G@CNG? ?@LRC .(:% PFC QKBCNCOPGJ?PGLK LD I?HC MNCR?ICKAC @S 5SBNL8173= GO

real. This underestimation stems from the fact that polygons in this region were 

generated from the MODerate resolution Imaging Spectroradiometer (MODIS) 
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MOD44W Collection 5 water mask, which has a resolution of only 250-m. A 

considerable proportion of surface water bodies between 10 and 25 ha (" 4 pixels) 

were not detected in this region due to the coarse pixel size of the MODIS 

instrument (each pixel is ~6.25 ha in area). 

V >FC LRCN?II FGEFCN KQJ@CN LD OJ?II I?HCO GK 48173= ALJM?NCB PL 5SBNL8173=

South of 60N may also stem from two other reasons: 

• a size discontinuity in the SWBD that was used to produce HydroLAKES in 

this region. The minimum size threshold used by technicians for digitizing a 

waterbody was a length of 600 m (and a width of 90 m). The largest lake missing 

due to this constrain is theoretically a round lake of 570 m in diameter spanning ~25 

ha, and the proportion of omitted lakes increases with decreasing lake area. 

• The inclusion of additional seasonal waterbodies, including some that cannot 

really qualify as lakes, particularly in river floodplains (e.g., lake_id 69 is > 

2,000 km2 but appears to result from a flood), and of flooded fields for 

agriculture (lake_id 410210 are human-flooded fields). 

o A broader point with these examples is that, while GLAKES may not be always right 

(and lakes found in HydroLAKES may thus not be errors), is that a strength of GLAKES 

is its global coherence/consistency (as I pointed out in previous sections), compared to 

datasets that result from aggregating multiple datasets. This is worth highlighting. 

Response 41: Thanks for this valuable comment with detailed explanations, which 

inspired us a lot about the discrepancies between GLAKES and HydroLAKES dataset. 

Based on this suggestion and the above-mentioned comments, now the relevant 

sentences have been rewritten as: “Moreover, we found a substantial number of missing 

lakes in eastern Canada and Scandinavia in our dataset compared to HydroLAKES, as 

well as lake overestimations with varying degrees in other regions, such as Siberia and 

major river floodplains (Extended Data Figs. 4b & 5). These discrepancies could be 

raised for many reasons, either to be responsible for the inherent limitation of the 

GLAKES or otherwise HydroLAKES. One example is the inability of GLAKES (or 

GSWO) to capture lakes that are seasonally ice-covered throughout the year and heavily 

vegetated in the remaining month, which is typical for some small and shallow lakes in 

places such as the Canada Shield. The large values of GLAKES could also be partially 

explained by the inclusion of some agricultural fields (used to be lakes) or accidentally 

large floodplains. In contrast, for HydroLAKES, the constraint of its composing dataset 

(e.g., MODIS MOD44W water mask and SRTM Water Body Data) in detecting small 

lakes may be the possible reason for the lake underestimation in some regions. Overall, 

both GLAKES and HydroLAKES have their own strengths and limitations in terms of 

lake coverage, but what distinguishes GLAKES is its global consistency (not mosaic 
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from different datasets), higher resolution (better characterizes water/land interface), 

the reflection of multidecadal lake extent (not snapshot on short time period) as well as 

the inclusion of smaller lakes (<0.1 km2).” 

Point 42: P23L553: The area of each pixel is 900 m2. 

Response 42: Corrected.

Point 43: P23L563: In Pekel et al. 2016, changes in water occurrence between epochs is 

matched by month (see quote from the original publication below) to avoid artefacts 

stemming from unequal detection among months and satellite coverage. Is the current 

computation approach immune from this issue? 

"Change in water occurrence intensity between two epochs (16 March 1984 to 31 December 

1999, and 1 January 2000 to 10 October 2015) was also produced (Extended Data Fig. 6a). 

This is derived from homologous pairs of months (that is, the same months contain valid 

observations in both epochs). The occurrence difference between epochs was computed for 

each pair and differences between all homologous pairs of months were then averaged to 

create the surface water occurrence change intensity map. Areas where there are no pairs of 

homologue months could not be mapped. The averaging of the monthly processing mitigates 

variations in data distribution over time (that is, both seasonal variation in the distribution of 

valid observations, temporal depth and frequency of observations through the archive) and 

provides a consistent estimation of the water occurrence change. This map shows where 

surface water occurrence increased, decreased or remained invariant between the two 

epochs." 

Response 43: This is a good question. Briefly speaking, our current computation 

approach would not face the same issue mentioned above, mainly due to the 

discrepancies in the underlying data used for the calculation of water occurrence. In fact, 

the method we used for occurrence calculation is generally inherited from Pekel et al. 

(2016), i.e., through normalizing the number of water presence (Nw) incidences against 

the number of valid observations (Nvo) within a period. However, the meaning of Nw and 

Nvo actually differed in our calculation compared to that of Pekel due to the lack of 

relevant information. Taking Nvo as an example, the Nvo in Pekel’s calculation 

represented the actual number of valid observations, which could be >1 within a month. 

However, such information (i.e., the number of valid observations for each month) was 

not provided by the author, which forced us to utilize alternative data for the calculation 

of occurrence. In practice, the Nvo was derived by using the GSW MWH data collection, 

where each pixel was assigned to one of the three values (0: no data, 1: non-water pixel, 
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and 2: water pixel). Compared to the Nvo from Pekel (which could be >1 within a month 

and thus varied among seasons), the value of Nvo obtained in our study would be either 0 

or 1 for any month (0 if the corresponding pixel value on the GSW MWH layer this 

month indicated 0, and 1 otherwise), regardless of the season and year. Therefore, the 

MWH layer-based calculation actually erased the seasonal variations embedded in the 

calculation approach of Pekel, which was the reason why our method was exempted 

from the indicated issue.  

Point 44: P24L579: Here and elsewhere in the manuscript, it would be worth caveating that 

lakes identified with this method is mostly focused on “lakes that recently (probably within 

the last few decades”) detached from glaciers due to glacial retreat as well as larger 

supraglacial lakes that are persistent enough to be visible on multi-year mosaics.”, as 

explained in Shugar et al.13. 

Response 44: Thanks for this kind reminder. We have added relevant content to inform 

readers about this issue, which appeared like this: “We identified glacier-fed lakes as 

lakes that spatially intersected with the 1-km buffers surrounding the glacier polygons 

obtained from the RGI 6.0 and IMBIE Rignot datasets, following the same method as 

Shugar et al. (2020). It should be noted that the main focus of this method is lakes 

experiencing recent detachment from glaciers within a few decades or large supraglacial 

lakes that are highly distinguishable on long-term satellite observations. ”.

Point 45: P24L583: “the percent area of permafrost within lake polygon boundaries was 

10%”? 

Response 45: Not exactly. The permafrost data we used here was gridded at 0.1 degrees. 

“The percent area >10%” indicated the 0.1°×0.1° grids whose inside permafrost 

coverage was>10%. The permafrost-fed lakes were then identified by applying spatial 

intersection with those selected grids with permafrost coverage >10%. To avoid 

confusion, the relevant sentence has been rewritten as below: “Likewise, a spatial 

intersection approach was applied to identify lakes that received water supply from 

permafrost (i.e., intersection with selected 0.1°×0.1° grids whose inside permafrost 

coverage was >10%, determined by using permafrost distribution data sourced from the 

National Snow and Ice Data Center) (Extended Data Fig. 6f).”.

Point 46: P24L587: GEODAR authors report including 23,680 dam points (often, multiple 

dams can be associated with a single reservoir) and 20214 reservoir polygons. How was the 

intersection conducted to extract 24,514 reservoirs in GLAKES? 
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Response 46: Thanks for this good question. This may be due to the fact that a single 

GeoDAR polygon may correspond to multiple GLAKES polygons. The generation of 

multiple GLAKES polygons within a single GeoDAR polygon may stem from both the 

discontinuity of the underlying GSWO data and the classification algorithm of our U-

Net model. The figure below demonstrates the two situations. As can be seen in the left 

portion of the figure, the GLAKES polygon was broken down into two pieces (indicated 

by the orange circle), where the underlying GSWO layer that connected the two 

GLAKES polygons was too slim (only 4 pixels in one column) to be captured by the U-

Net Model. As for the right portion of the figure, an evident gap could be observed in the 

place marked by the orange circle, which naturally resulted in the segmentation of the 

original reservoir into two parts.

Fig. Comparison of GLAKES (Black) and GeoDAR (Red) polygons. The underlying 

layer indicated water occurrence from the GSWO dataset. 

Point 47: P25L595: Please provide a table summarizing the equations used. 

Response 47: Thanks for this suggestion. We have changed the approach for calculating 

CH4 emissions. Now the method for calculating CH4 emissions is the same as that for 

CO2 emissions. Please see response 49 for detailed information.
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Point 48: P25L603: What was the data source used to determine air temperature? 

Response 48: The air temperature data for each lake was retrieved on the basis of the 

ERA5-Land monthly averaged air temperature at 2m. Nevertheless, as we mention in 

response 49, we have changed the approach for calculating CH4 emissions. Now the 

method for calculating CH4 emissions is the same as that for CO2 emissions. Therefore, 

the air temperature data is no longer needed anymore. Please see response 49 for 

detailed information.

Point 49: P25L610: Does this imply that lakes were not classified among the logarithmic size 

classes for computing CH4 emissions? Please clarify. 

Response 49: Thanks for this comment. In our previous submission, the CH4 emissions 

were not computed by directly multiplying the size-dependent mean flux estimates from 

Holgerson and Raymond (2016) with the total lake area of each logarithmic size class. 

We actually utilized multiple equations from Holgerson and Raymond (2016) to estimate 

flux and carbon emission for each lake, and sum them all to obtain the global lake 

emissions. This process, however, we thought might have some issues. As reviewer 1 said, 

the occurrence of negative carbon fluxes might reflect that the empirical equations used 

in Holgerson and Raymond (2016) in applying all lakes were problematic. This could 

both result from the fact that these lakes might be more closely related to water 

productivity (or other factors) instead of lake size, or the empirical equations in 

calculating carbon emissions had large uncertainties for lakes outside the geographic 

range (i.e., 30°N-70°N) of the in-situ samples used to construct the empirical equations.  

Reviewer 1 recommended the use of the average flux within binned logarithmic size 

classes. Although this comment was mainly for CO2 emissions, we thought it was also 

applicable to CH4 emissions, though uncertainty still existed (see Supplementary Note 3). 

Overall, we kept the method for calculating the CH4 emissions the same as that of 

calculating CO2 emissions and updated relevant results. Considering only the emissions 

from lakes > 0.1km2 (which were the common size range for lakes in GALKES and 

GLOWABO dataset), we could clearly find out that our former version of the global 

CH4 estimate was evidently overestimated compared to that of Holgerson and Raymond 

(2016), given that the lake area used in our study was smaller than that of Holgerson and 

Raymond (2016), but we eventually yielded a far larger emission value (5.3 vs 2.0 

3;O/OKEN'), even though the equations used to calculate the CH4 emissions were from 

their study. In contrast, the magnitude of global CO2 emission and updated global CH4

emission values were reasonable compared to that of Holgerson and Raymond (2016), 
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the discrepancy between which mainly resulted from the deviations in the lake area used 

for calculations.  

Point 50: P26L628: By combining, do you mean that you computed the product of the 

probability-weighted lake areas and lake-specific CO2/CH4 areal fluxes, then summed across 

lakes? 

Response 50: Thanks for this comment. As we stated in response 49, the global CO2

emissions and updated CH4 emissions were computed by directly multiplying the size-

dependent mean flux values from Holgerson and Raymond (2016) with the total lake 

area of each logarithmic size class, followed by summing across size classes.

Point 51: Extended Data Fig. 1. Label area unit should be km2, not km3. 

Response 51: Thanks for this detailed comment. The label area unit has been changed 

accordingly.

Point 52: Extended Data Fig. 4. In light of my previous comment on possible issues with 

GLAKES in Canada, I recommend altering the language of the title of this figure to a more 

neutral tone about comparing. 

Response 52: Thanks for this suggestion. We revised the full description as below: 

“Extended Data Fig. 5 | Examples showing the discrepancies of lake extents between our 

GLAKES dataset and the HydroLAKES dataset. (a) Inconsistent delineation of lake 

extents in eastern Canada, where many regions within the lake boundaries indicated by 

HydroLAKES show low (or zero) water occurrence, resulting in no detection in 

GLAKES dataset. (b) Divergent lakes mapping in northern Russia, where many water 

bodies with high water occurrence (>90%) are not included in HydroLAKES. In 

particular, a substantial number of lakes with surface area >0.03 km2 and <0.1 km2 (i.e., 

the lower limit for HydroLAKES) are mapped in GLAKES datasets. The background 

images are obtained from the GSWO dataset.”.

Point 53: Extended Data Fig. 8. Please indicate the meaning of the box plot components in 

the legend. 

Response 53: Thanks for this comment. The class “Small” indicates that only small lakes 

within each 1°×1° grid cell were used to calculate the relative area changes, while “All” 

means all lakes within each 1°×1° grid cell were applied for aggregation. 
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Point 54: Extended Data Figure 9. A few suggestions below the comparison to be more 

informative: 

o For the different estimates to be more comparable, I recommend either writing the 

minimum size of lakes included in each study or maybe showing these as 2D plots 

showing the total lake area/number determined in each study on one axis and the 

estimated emission on the other axis. Alternatively, different bar plots could be coloured 

depending on which baseline lake dataset was used. 

o I am not an expert in biogeochemistry, but do all these studies include the same types 

of fluxes (diffusive and/or ebullitive? See Deemer et al.11)? 

o Finally, the error bars represent different intervals (e.g., Monte-Carlo approach for 

Holgerson et al. to produce a 95% interval, vs. a min-max fluxes for this study) so this 

should be explained in the caption.xi 

Response 54: Thanks for this valuable comment. First of all, we colored the bar plots 

according to the baseline lake dataset used for emission calculations and specified the 

minimum lake unit as suggested. This’s a good suggestion, since the discrepancies in 

carbon emissions from different studies are not only originated from the specific 

approach for evaluation, but also highly dependent on the underlying lake area dataset 

used for upscaling. It’s helpful for variables control for better comparison. 

As for the flux type, we only calculated the diffusive CH4 emissions, as the data 

availability of direct in-situ ebullition rate measurements, as well as their highly 

spatiotemporal variability, hampered the systematic assessments of CH4 ebullition at a 

global scale (see Supplementary Note 3).  

Finally, the explicit meaning of the error bar for each study has also been added in the 

caption (see figure below).  
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Extended Data Fig. 9 | Comparisons of global lacustrine carbon emissions from 

Holgerson et al., 2016 with other previous estimates (Bastviken et al. 2004, Cole et al. 

2007, Duarte et al. 2008, Marotta et al. 2009, Tranvik et al. 2009, Bastviken et al. 2011, 

Raymond et al. 2013, Holgerson and Raymond 2016, DelSontro et al. 2018, Li et al. 

2020), and the estimated results by applying Holgerson’s method in our GLAKES lake 

dataset (this study). (a) CO2. (b) CH4. Note: 1) Estimations using different lake area 

datasets (Meybeck 1995, Jacob 2002, Lehner and Döll 2004, Sobek, Tranvik and Cole 

2005, Downing et al. 2006, Verpoorter et al. 2014) are marked by different colors. 2) The 

hatched and empty areas represent the statistics derived for lakes with surface area 

below and above 0.1 km2, where 0.1 km2 can be used to define the common size range 

without extrapolation for all lake datasets listed above. The filled areas denote results 

that are incapable of subdivision since the original studies did not provide relevant 

binned size information. 3) The minimum lake size threshold for Holgerson et al., 2016 is 

0.0001 km2, for Li et al., 2020 is 0.002 km2, for Bastviken et al., 2004 & Cole et al., 2007 

& Duarte et al., 2008 is unknown, for this study is 0.03 km2 and for the others is 0.001 

km2. 4) The error bars, if any, represent the lower and upper bounds of the estimations, 

although with different implications. Cole et al., 2007 & Marrotta et al., 2009: min-max; 

Raymond et al., 2013 & DelSontro et al., 2018: 95% confidence interval; Holgerson et al., 

2016 & this study: 25–75th percentiles; The others: unknown. 5) The emissions from 

both natural lakes and reservoirs are included in most studies except for Duarte et al., 

2008, Marotta et al., 2009, Tranvik et al., 2009 and Bastviken et al., 2004, where 

reservoirs are excluded.   
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Reviewer #2 (Remarks to the Author): 

The revised manuscript provides substantial additional context and clarifications that enhance and 

explain the findings. The authors should be commended for this effort in providing this dataset 

along with details on so many nuanced aspects of its creation. 

I was able to access the .gdb version of dataset at the google drive link and open it using open 

source software, however it appeared that the .shp format product listed in the readme file may 

have been missing. I assume the authors will also make this file available upon publication. 

Reviewer #3 (Remarks to the Author): 

The authors thoroughly addressed the (many) comments from the reviewers. I reiterate the 

importance of this work and recommend its publication, provided that my last remaining 

comments (minor, below) are addressed and that a last round of copy editing is conducted. 

Best regards, 

Mathis Loïc Messager 

- Several references are missing a title in the methods section: # 67, 69, 70, 71 

- In general, a last copy pass would be appropriate as some sentences are slightly difficult to 

understand. For instance: 

o L385: “involving Landsat sensors”. “all Landsat sensors involved” would be more appropriate. 

o “the U-Net model composes of various and hierarchical convolution layers”. Composes should be 

replaced with “is composed of” 

o L452 “For seasonal water bodies, we tend to address those located around rivers and meanwhile 

span a large scale (such as floodplains), while keeping the small ephemeral water bodies as lakes.” 

The meaning of “We tend to address” is not clear here. 

o L458 “and are thus beyond the capture of the GSWO images” is also difficult to understand. 

o “lakes smaller than 0.1 km2 that is publicly available without statistical extrapolation” should be 

written “lakes smaller than 0.1 km2 without statistical extrapolation that is publicly available” 

o “L82-85: “accessible in public” should be “publicly accessible” 

o “such seasonal patterns of water/land/ice transition may witness substantial changes” — 

“undergo” substantial changes would be correct 

o “including intensifying reductions in ice cover duration and variated changes in wetting/drying 

trends” is unclear, please reword 

- L162-167: Despite rewording, I think that “small lake-dominated regions” remains confusing. 

"Regions where lake variability is dominated by small lakes" would be more adequate. 

- The response to Point 1 from Reviewer 3 should be included in the manuscript’s Methods, 

particularly that on manual corrections. 

- A brief sentence mentioning response to Point 4 from Reviewer 3 would be informative. 

- Point 21 to Reviewer 3: I still don’t think that deep learning inherently makes it possible to 

detect smaller lakes. The resolution of the underlying dataset is really what enables detecting 

smaller lakes. Deep learning in this case seems to only enable distinguishing lakes from rivers. I 

think that this needs to be made clearer. 

- Extended Data Fig. 1: replace “vecter” with “vector” 

- Point 53 to Reviewer 3: sorry for being unclear. Please indicate the meaning of the boxplot edges 

and whiskers. 

- I forgot to mention, but somewhere in the manuscript, a mention should be made of the the 

global lake area, climate, and population dataset (GLCP; https://www.nature.com/articles/s41597-

020-0517-4). It provides lake surface area from from 1995 to 2015 for all HydroLAKES polygons 

based on the GSW MWH. Same limitations as HydroLAKES in terms of lake size limit, consistency, 



and they computed area based on a buffer around lake polygons, which means that they may have 

captured water coverage from other lakes, wetlands and rivers or missed greater spatial extents.
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# “lakes smaller than 0.1 km2 that is publicly available without statistical extrapolation” 

should be written “lakes smaller than 0.1 km2 without statistical extrapolation that is 

publicly available”. 

# “L82-85: “accessible in public” should be “publicly accessible”. 

# “such seasonal patterns of water/land/ice transition may witness substantial changes” — 

“undergo” substantial changes would be correct. 

# “including intensifying reductions in ice cover duration and variated changes in 

wetting/drying trends” is unclear, please reword. 

Response 2: Thanks for this detailed suggestion.  All suggested expressions (such as “all 

Landsat sensors involved”) have been accepted to replace the original one (such as 

“involving Landsat sensors”).  

The sentence “For seasonal water bodies, we tend to address those located around rivers 

and meanwhile span a large scale (such as floodplains), while keeping the small 

ephemeral water bodies as lakes.” has been changed as “For seasonal water bodies, we 
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implemented more carful examinations to those located around rivers and meanwhile 

span a large scale (such as floodplains), while keeping the small ephemeral water bodies 

as lakes.”  

The sentence “and are thus beyond the capture of the GSWO images” has been changed 

as “and thus cannot be captured by the GSWO images”.

The sentence “including intensifying reductions in ice cover duration and variated 

changes in wetting/drying trends” has been changed as “Furthermore, such seasonal 

patterns of water/land/ice transition may undergo substantial changes during the whole 

study period owing to the impact of climate change, where the ice cover duration 

experienced intensifying reductions and the wetting/drying trends variated in different 

regions”.

Point 3: L162-167: Despite rewording, I think that “small lake-dominated regions” remains 

confusing. "Regions where lake variability is dominated by small lakes" would be more 

adequate. 

Response 3: Thanks for this suggestion. The full sentence has been corrected as “The 

changes in small lakes showed dominant contributions (>50%) in approximately half of 

the examined inland regions (49.9% of the grid cells from the 1980-90s to the 2000s, and 

50.1% from 2000s to 2010s) (Fig. 3c), and regions where lake variability is dominated by 

small lakes were spread across the entire globe in both low-populated regions and areas 

with high chances of human disturbance (Supplementary Fig. 9).” . 

Point 4: The response to Point 1 from Reviewer 3 should be included in the manuscript’s 

Methods, particularly that on manual corrections. 

Response 4: Thanks for this comment. We have added more necessary details of the 

manual corrections in the revised manuscript, as indicated in lines 373-381: “Finally, 

extensive visual examinations were performed from one sample region to another, where 

some lakes in hydrologically complex regions were given more attention, such as those in 

the large river basins and floodplain regions. Manual corrections were performed 

mainly on the following two situations: (1) river residuals resulting from the absent 

coverage of the corresponding river masks and (2) river-connected lakes that required 

further division from river channels. Of all sample polygons, Case 1 polygons frequently 

occurred, which could take up ~10% of the total lake samples and thus require careful 

inspection. On the contrary, the percentage of Case 2 polygons was minor (far less than 

1%).”  
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Point 5: A brief sentence mentioning response to Point 4 from Reviewer 3 would be 

informative. 

Response 5: Thanks for this suggestion. We have summarized the response to point 4 

from reviewer 3 and added it to the revised manuscript accordingly (lines 142 to 150). 

Now the full context becomes “The median values of the relative areal changes in small 

lakes were +2.9% from the 1980-90s to the 2000s and +0.6% from the 2000s to the 2010s; 

these changes were significantly greater than those derived for medium and large lakes 

(matched-pair t-test, P<0.05) (Fig. 3a). Such difference in temporal variability between 

small lakes and median/large lakes was also evident even when evaluating under equal 

relative pixel sizes, as revealed through a case experiment in Tibetan Plateau, which 

showed that lakes within the size range of 0.5-1.5 km2 at the resolution of 30 m were 

found to exhibit a far larger range of the relative areal changes compared to lakes 

between 50-150 km2 at the 300 m resolution (Supplementary Fig. 7).” 

Point 6: Point 21 to Reviewer 3: I still don’t think that deep learning inherently makes it 

possible to detect smaller lakes. The resolution of the underlying dataset is really what 

enables detecting smaller lakes. Deep learning in this case seems to only enable 

distinguishing lakes from rivers. I think that this needs to be made clearer. 

Response 6: Thanks for this valuable suggestion. We’re agree with your opinion and 

now the sentence has been rephrased as “The GSWO dataset provides the probability of 

water presence, which was established using 30-m resolution Landsat satellite 

observations between 1984 and 2019. Deep learning allows for the disentanglement of 

lakes from rivers in the GSWO images, and the integration of high-resolution remote 

sensing images and deep learning makes it possible to detect lakes as small as 0.03 

km2 …” (lines 84-91). 

Point 7: Extended Data Fig. 1: replace “vecter” with “vector”. 

Response 7: Corrected as suggested.  

Point 8: Point 53 to Reviewer 3: sorry for being unclear. Please indicate the meaning of the 

boxplot edges and whiskers.  

Response 8: Thanks for this suggestion. The boxplot edges indicate the first (Q1) and 

third quartile (Q3) of the data, while the length of whiskers is 1.5 times the IQR 

(Interquartile range, defined as Q3 – Q1). We have clarified this in the caption of the 

Supplementary Fig. 9. 
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Point 9: I forgot to mention, but somewhere in the manuscript, a mention should be made of 

the global lake area, climate, and population dataset (GLCP). It provides lake surface area 

from 1995 to 2015 for all HydroLAKES polygons based on the GSW MWH. Same 

limitations as HydroLAKES in terms of lake size limit, consistency, and they computed area 

based on a buffer around lake polygons, which means that they may have captured water 

coverage from other lakes, wetlands and rivers or missed greater spatial extents. 

Response 9: Thanks for this suggestion. We have added the relevant clauses in the 

Accuracy assessments and comparisons with previous global lake datasets section (lines 

572 to 586). Now the full context are: “Overall, both GLAKES and HydroLAKES have 

their own strengths and limitations in terms of lake coverage, but what distinguishes 

GLAKES is its global consistency (not mosaic from different datasets), higher resolution 

(better characterizes water/land interface), the reflection of multidecadal lake extent 

(not snapshot on short time period) as well as the inclusion of smaller lakes (<0.1 km2). 

This is significant for the long-term monitoring of the lake surface water area dynamics. 

As a comparison, the Global Lake area, Climate, and Population (GLCP) dataset 

provides annual time series lake surface area records from 1995 to 2015 for all 

HydroLAKES polygons (Meyer et al. 2020). Nevertheless, GLCP faces the same 

limitations as HydroLAKES in terms of the lake size limit and spatial consistency. 

Besides, since the HydroLAKES polygons did not represent the maximum water extent, 

a fixed buffer zone around lakes was generated in GLCP for area estimation, which 

might result in fallaciously inclusion of water coverage that did not belong to the target 

lakes or missed detection of water area due to the insufficient coverage of the buffer 

outlines. ”. 
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