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Supplementary Figure 1: Flow cytometry analysis of primary AL amyloidosis specimens and analysis based on prior therapy. (a-b) BH3
profiling measurement of overall priming (a) and apoptotic dependencies (b) based on type of prior therapy patients received. (c) Representative flow
cytometry plots for identifying plasma cells (CD138*) that undergo cell death, as measured by reduction in plasma cell percentage of total bone marrow
mononuclear cells, in response to chemotherapeutic treatment, and representative BH3 profiling flow cytometry plots showing gating strategy for
identifying Cytochrome C retention or loss in response to peptide treatment of plasma cells (CD138*). (d) AL amyloidosis clonal plasma cell sensitivity
to BH3 mimetics based on type of prior therapy patients received. P-values were calculated using two-way ANOVA with Holm-Sidak's adj.(e)
Comparison of BIM, ATF4 and CHORP levels in diffuse large B cell lymphoma, multiple myeloma and ALMC-1 cell lines.
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Supplementary Figure 2. Mass spectrometry analysis of bortezomib-treated ALMC-1 and ALMC-2 cells. (a-b) Gene set enrichment analysis for
negative regulation of (a) MAPK signaling and (B) ERK1 and ERK2 signaling. (c) Seahorse analysis of ALMC-1 and ALMC-2 cells demonstrating
increased mitochondrial respiration at baseline (before addition of oligomycin). (n=2) (d) Quantification of oxygen consumption by basal

mitochondrial respiration of ALMC-1 and ALMC-2 cells. Data are presented as mean values (n=2) +/- StDev. P-values were calculated using

unpaired t test. (e). Enrichment analysis for proteins (genes) associated with unfolded protein response compared with untreated (time 0 hr) cells.
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Supplementary Figure 3. Exploiting apoptotic vulnerabilities in AL amyloidosis. Model for changes in BCL-2 family dependencies in plasma cells
from AL amyloidosis. (a) Apoptosis can be induced in highly primed AL clonal plasma cells by 1) treating with a proteasome inhibitor that stabilizes and
upregulates the endogenous MCL-1 inhibitor Noxa; 2) treating with a small molecular MCL-1 inhibitor; or 3) treating with a BCL-2 inhibitor. (b)
Unprimed clonal plasma cells do not undergo apoptosis in response to proteasome, BCL-2 or MCL-1 inhibition. However, treatment with a proteasome
inhibitor stabilizes and upregulates Noxa and results in BCL-2 dependence, which can be exploited via BCL-2 inhibition. Note that MCL-1 inhibition
does not induce apoptosis in proteasome inhibited cells since Noxa does not efficiently activate BAX or BAK.
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