Supporting Information

Artificial Intelligence and Radiomics - Fundamentals, Applications, and Challenges in Immunotherapy

Laurent Dercle¹*, Jeremy McGale¹*, Shawn Sun¹, Aurelien Marabelle², Randy Yeh³, Eric Deutsch⁴, Fatima-Zohra Mokrane⁵, Michael Farwell⁶, Samy Ammari^{4,7}, Heiko Schöder⁸, Binsheng Zhao¹, Lawrence H. Schwartz¹

*These authors contributed equally

Emails:

<u>laurent.dercle@gmail.com</u>, <u>jm4782@cumc.columbia.edu</u>, shawnsun25@gmail.com, <u>aurelien.marabelle@gustaveroussy.fr</u>, <u>yehr@mskcc.org</u>, <u>eric.deutsch@gustaveroussy.fr</u>, <u>mokrane.fz@chutoulouse.fr</u>, <u>Michael.Farwell@pennmedicine.upenn.ed</u>u, <u>samy.ammari@gustaveroussy.fr</u>, <u>schoderh@mskcc.org</u>, bz2166@cumc.columbia.edu, lhs2120@cumc.columbia.edu

Affiliations

- 1. Department of Radiology, New York-Presbyterian Hospital, Columbia University College of Physicians and Surgeons, New York, New York, United States of America
- Department of Therapeutic Innovation and Early Trials, INSERM U1015 & CIC 1428, Université Paris Saclay, Gustave Roussy, Villejuif, France
- 3. Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America.
- 4. Department of Radiation Oncology, Gustave Roussy Cancer Campus, Biomaps, INSERM 1030, Université Paris-Saclay, Villejuif, F-94805, France
- Radiology Department, Rangueil University Hospital, 1 avenue du Professeur Jean, Poulhes, 31059, Toulouse France
- 6. Division of Nuclear Medicine and Molecular Imaging, Hospital of the University of Pennsylvania, Philadelphia, PA, United States of America
- 7. ELSAN Department of Radiology, Institut de Cancérologie Paris Nord, Sarcelles, France
- 8. Molecular Imaging & Therapy Service, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America

Table of Contents

Table S1 - Metrics for Radiomics Quality Score (RQS) assessment

Figure S2 - Idealized workflow for radiomics model training, validation, and testing

Table S3 - Summary performance metrics delineated by predictive aim and validation strategy

Radiomics Quality Score	
Metric	Point Valu
Image Protocol Quality	
Well-documented imaging protocols	1
Used public imaging protocols	1
Multiple Segmentation	_
Segmentations by independent radiologists with calculation of an intra-class coefficient or similar metric	1
Phantom Study	
Performed phantom studies on all scanners used	1
Multiple Time Points Took images at multiple time points and analyzed feature robustness to temporal variation	1
Took images at multiple time points and analyzed feature robustness to temporar variation	1
Feature Reduction	-
Performed feature reduction or made adjustments for multiple testing to reduce possibility of overfitting	3
Multivariable Analysis	1
Performed multivariable analysis with non-radiomics features	1
Biological Correlate Detected and discussed phenotypic implications of radiomic features	1
Cut-Off Analysis Performed cut-off analyses and determined risk groups	1
Discrimination Statistics	
Reported discrimination statistics/ statistical significance	1
Applied a resampling method	
Calibration Statistics	
Reported calibration statistics/ statistical significance	1
Applied a resampling method	1
Prospective Study	
Utilized a prospective cohort	7
Validation Used a validation dataset from the same institute as training	2
Used a validation dataset from another institute	
Used validation datasets from two different institutes	
Validated a previously published signature	
Used datasets from three different institutes	
Gold Standard	
Compared results to the current gold standard method	2
Clinical Utility	-
Performed a decision curve analysis	2
Cost Analysis Performed a cost-effectiveness analysis	
rettormed a cost-effectiveness analysis	1
Open Science and Data	
Used or published open-source scans	
Used or published open-source region of interest segmentations	
Used or published open-source code Used or published open-source radiomic features	
Osed of published open-source fautofile features	1

Table S1

Figure S2: An idealized workflow for radiomics model training, validation, and testing. The gold-standard model development strategy should utilize a multi-center patient population, clearly delineate training and validation sets, and test final model performance on an external, prospective cohort.

Table S3

	Prognosis		Treatment Response			Immune Environment*			Tumor Phenotype*			
	Test Set	Validation Set	Training Set	Test Set	Validation Set	Training Set	Test Set	Validation Set	Training Set	Test Set	Validation Set	Training Se
Individual												
n	4	11	11	5	11	4	3	5	2	1	9	3
mean	0.730	0.777	0.816	0.761	0.830	0.805	0.764	0.767	0.873	0.840	0.831	0.764
median	0.704	0.750	0.821	0.810	0.810	0.804	0.760	0.753	0.873	0.840	0.834	0.750
Combined		26			20			10			13	
		3249			2377			1801			4141	
ggregate pts.0												
mean		0.787		0.808			0.787			0.816		
median		0.771			0.810			0.760			0.834	
IQR		0.711 - 0.875		0.785 - 0.860			0.727 - 0.848			0.790 - 0.848		
* Im	mune Environme	ent (Examining imme	une cell (e.g. CD8+,	CD4+, CD3, T-h	elper 1/2, B-cells, Na	atural Killer Cells, an	nong others) infil	tration of primary tu	mor)			
* Tu	mor Phenotype (Tumor PD-L1 expres	ssion or microsatelli	e instability)								