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Materials and Methods 

 

Data reporting 

 

Data objects with the raw counts matrices and annotation are available via cellxgene through the Human Cell 

Atlas (HCA) Data Coordination Platform (DCP). Raw data for all samples, including the five major genotypes (LMNA, 

RMB20, TTN, PKP2 and PVneg) and rare genotypes (BAG3, DES, DSP, FKTN, TNNC1, TNNT2, TPMI, PLN), are 

available through the European Genome Archive. All of our data can be explored at 

https://cellxgene.cziscience.com/collections/e75342a8-0f3b-4ec5-8ee1-245a23e0f7cb/private. All methods refer to 

the analyses of the five major genotypes unless differently stated.  

 

Ethics statement 

 

Clinical details on cardiac tissues are provided on Table S1. Control hearts were obtained from unused 

transplant organ donations, including 12 previously described samples (4), and six additional control samples from 

the Bad Oeynhausen Heart Center and NHS Blood and Transplant Health Authority. Discarded disease heart samples 

were obtained in the context of clinical patient care. All cardiac tissues were anonymized and used with approved 

protocols reviewed by the ethics committees listed below:  

a) Bad Oeynhausen Heart Center; Ethics Board of the Ruhr-University Bochum (Approvals 2020-640-1; 21/2013) 

b) Mazankowski Alberta Heart Institute (MAHI, Edmonton, Canada); Human Explanted Heart Program (HELP, 

Pro00011739) 

c) Cardiovascular Research Centre Biobank at the Royal Brompton and Harefield Hospitals, Guy’s and St. Thomas’ 

NHS Foundation Trust (EC reference 09/H0504/104 +5) 

d) Imperial College (REC reference16/LO/1568)  

e) Mass General Brigham Human Research Protection Committee (Protocol 1999P010895) 

f) Harvard Longwood Campus Institutional Review Board (Protocol M11135) 

 

Cohort samples 

 

Control heart samples were collected as previously described (4). Disease samples were collected from 

cardiomyopathy patients with heart failure, prior to mechanical support (n=15) or at the time of heart transplantation 

(n=31). All samples were full-thickness myocardial specimens from the LV and RV free walls, and the LV apex, and 

interventricular septum. Regions with large epicardial fat deposits or macroscopic areas of high fibrosis were 

intentionally excluded. When full-thickness apical cores were obtained, other regions were not available. Additional 

details are provided in Fig. S2A and Table S1. Thorough sample collection details have been described previously 

(89).  

 

https://paperpile.com/c/7ZZ9Ts/l7l3P
https://paperpile.com/c/7ZZ9Ts/l7l3P
https://paperpile.com/c/7ZZ9Ts/l7l3P
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Patient genotyping 

 

Genomic DNA from patient samples from the Bad Oeynhausen Heart Center was isolated from blood using 

the High Pure PCR Preparation Kit® (Roche Diagnostics GmbH) or Genomic DNA Extraction Kit (Qiagen). DNA 

was prepared for gene enrichment re-sequencing on a MiSeq® sequencing system using the TruSightTM Rapid Capture 

Sample Preparation Kit (Illumina). DNA was screened for pathogenic or likely pathogenic variants using the 

TruSightTM Cardio (174 genes) or the TruSightTM Cardiomyopathy (46 genes) Sequencing Panel (Illumina). In a subset 

of samples, whole exome or genome sequencing was performed (Table S1) and analyzed for cardiomyopathy genes. 

Variants were annotated using VariantStudioTM v.3.0 (Illumina) and classified according to the recommendations of 

the American College of Medical Genetics and Genomics and the Association for Molecular Pathology (ACMG) (91). 

Genomic DNA from patients enrolled at Brigham and Women’s Hospital and the Mazankowski Alberta 

Heart Institute was isolated using Genomic DNA Extraction Kit (Qiagen) from LV samples and whole exome 

sequencing (WES) performed using Illumina NovaSeq instruments. All sequencing reads were aligned to hg19 

(GRCh37) using BWA-MEM (92). Single nucleotide variants (SNVs) and small indels were identified using the 

Genome Analysis Tool Kit (GATK; version 3.8) Haplotype Caller tool (93). The variant call format file was annotated 

using dbNSFP (94), gnomAD v2.1 (95), and SnpEff (version 4.3t, annotation database GRCh37.75). High quality 

variants (pass GATK, Variant Score Quality Recalibration (VSQR, truth sensitivity threshold 99.5 for SNVs, 99.0 for 

indels), a minimum depth (DP) of 10, and genotype quality (GQ) ≥ 20, and quality (QUAL) ≥ 30) were filtered for 

rare (defined as minor allele frequency < 1.00e-04 in gnomAD v2.1) pathogenic variants. 

Genomic DNA from patients enrolled at the Imperial College was isolated from blood or heart tissues using 

the Genomic DNA Extraction Kit (Qiagen) and  processed for  cardiomyopathy panel sequencing or WES using 

Illumina NovaSeq instruments. Panel sequencing and bioinformatic analysis was performed as previously described 

(96). Reads were aligned to hg38 (GRCh38) using BWA-MEM. Variants were annotated using Ensembl VEP v99 

(97), and CardioClassifier (98). Rare variants (MAF<0.001) in known disease genes were considered for a potential 

causal role in disease and interpreted using the ACMG-AMP variant interpretation framework (91). 

 

Single nuclei isolation of cardiac samples and processing on the 10X Genomics platform 

 

Samples were processed independent of disease, genotype, or control status. Nuclei isolation and library 

preparation was performed at the Harvard Medical School, Imperial College London, and the Max-Delbrück Center 

for Molecular Medicine as previously reported (4, 99). Isolated nuclei from flash-frozen tissue were visually inspected 

under the microscope to assess nuclei integrity and manually or automatically counted using a Countess II (Life 

|Technologies). Nuclei suspension was loaded on the Chromium Controller (10X Genomics) with targeted nuclei 

recovery of 5,000–10,000 per reaction (Table S2).  

3′ gene expression libraries were prepared according to the manufacturer’s instructions of the v3 Chromium 

Single Cell Reagent Kits (10X Genomics). Quality control of final library cDNA was done using Bioanalyzer High 

https://paperpile.com/c/7ZZ9Ts/Bliut
https://paperpile.com/c/7ZZ9Ts/Bliut
https://paperpile.com/c/7ZZ9Ts/Bliut
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Sensitivity DNA Analysis (Agilent) and the KAPA Library Quantification kit. Libraries were sequenced on an 

Illumina HighSeq 4000 or NovaSeq with a targeted read number of 30,000-50,000 reads per nucleus (Table S2). 

 

Data pre-processing and transcriptome mapping 

 

Bcl files were converted to Fastq files by using bcl2fastq. Each sample was mapped to the human reference 

genome GRCh38 with a modified pre-mRNA gtf file of Ensembl release Ens84 (100) using the CellRanger suite 

(v.3.0.1) with specifications provided in the DCMheart github repository. Reads mapping within exonic and intronic 

regions were counted. Mapping quality was assessed using the cellranger summary statistics. Reads overlapping 

multiple sequence features have been discarded. Two libraries (Table S2) exceeded the read number per nucleus of 

200,000 and were downsampled to 100,000 reads per nucleus using the DropletUtils R package on the 

molecule_info.h5 file (101). 

 

Count data processing 

  

Empty droplets (identified by Emptydrops, implemented in the CellRanger workflow) were removed, 

samples were assembled into an AnnData object by concatenating the filtered_feature_bc_matrix.h5, and metadata 

information was added.  

 

Quality control, batch correction and clustering 

 

Downstream analysis employed the concatenated filtered feature-barcode matrices, using R Seurat v4.0.2 

and Python Scanpy v1.5.1 toolkits (102, 103). Doublets were identified and filtered using Solo v0.3 per sample (104). 

Additionally, scrublet scores (v0.2.1) were calculated with prior z- or log-transformation as an independent doublet 

detection method (105). Single nuclei were filtered for counts (300 ≤ n_counts ≤15,000), genes (300 ≤ n_genes 

≤5,000), mitochondrial genes (percent_mito ≤1%), ribosomal genes (percent_ribo ≤1%), and soft max score detected 

by Solo (solo_score ≤0.5).  

No significant differences were identified in cell-type abundances or expression profiles between free-wall 

(FW), the apical core (AP) and septal (S) samples and thus these were merged and denoted as LV as previously 

described (4). After read count normalization and log-transformation, highly variable genes were selected. Effects of 

percentage of mitochondrial genes and total counts per nucleus were regressed out and values were scaled to unit 

variance. Principal components were computed and elbow plots were used to define the appropriate number of 

principal components for neighbor graph construction. Prior to manifold construction using UMAP, selected principal 

components were harmonized by using R Harmony (106) or Python Harmonypy with “Patient” as batch key (Table 

S2). Nuclei were clustered using the network-based Louvain and Leiden algorithms (107, 108). Differential expressed 

genes per cluster were calculated using the Wilcoxon rank sum test. Clusters with high similarity in differentially 

expressed genes were merged.  
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Nuclei were classified for cell type or denoted unassigned (Fig. 1C). Subsequently nuclei were subclustered 

to identify cell-states. Despite prior doublet removal we identified during subclustering some droplets with chimeric 

transcriptional profiles. Whether these may represent real biology, background  RNA noise (soup), or multiplets is 

unclear. We labeled these clustered “nuclei” as unassigned (Fig. 1C, n= 52981 “nuclei”; 6%). Additional filters are 

provided in scripts deposited at the DCMheart github. Lymphocytes were annotated initially by merging scRNAseq 

(4) with snRNAseq data using the scVI framework v0.9.0  to improve marker identification and annotation (109). 

Subsequently scRNAseq data were then removed for further downstream analyses.  

 

Differential gene expression and variance analysis 

 

Differentially expressed genes (DEG) per cell type and state were calculated using the implemented 

Wilcoxon rank-sum-test. Only genes with mean expression (log transformed and library size normalized 

counts) >0.0125 in the control and genotype group were tested for differential expression. Genes were called as 

differentially expressed with FDR<5% and |log2FC|>0.5. DEGs for rare cell states (>5 nuclei in at least 3 patients) 

have not been computed. For comparison of genotype specific effects, pseudobulks for each cell type and cell state 

per LV and RV sample were computed. Differential gene expression analysis on pseudobulk expression values were 

performed using edgeR, v3.28.1 (110, 111). 

We assessed differences in the variability across cells between patients with a specific PV or PVneg and 

controls, in each cell type and each anatomical region separately. Because the variance of UMI counts is strongly 

dependent on the mean expression level, we first applied a variance stabilizing transformation (112) similar to 

scTransform (113) on the 1000 most highly variable genes. We used the Pearson residuals of a negative binomial 

regression with explanatory variables: total read count of each cell and the fraction of mitochondrial reads. Next, we 

computed the variance of the Pearson residuals for each gene in each patient, anatomical region and cell type. Finally, 

we compared the variance for each gene between patients with a specific mutation (or PVneg) against the control 

group using a Wilcoxon rank sum test and corrected across all comparisons made using the Benjamini Hochberg 

method.  

 

Differential abundance analysis 

 

Compositional data analyses were performed to determine genotype specific differences in cell type 

abundances, excluding unassigned nuclei. Analyses of cell counts per cell type and cell counts per cell state within 

each cell type were performed separately in each anatomical region (LV and RV). To account for the compositional 

nature of the data count data were transformed using the centered log ratio (CLR) transformation. Counts of zero were 

assumed to be due to insufficiently deep sampling and therefore imputed using the method of multiplicative 

replacement (114). To assess statistical differences between groups of samples, for example all patients with a specific 

genotype vs. controls, a linear model of the CLR values was estimated as a function of the grouping encoded as an 

indicator variable and a t-test was performed to determine the significance of the regression coefficient. Differential 
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abundance of all cell types or states in each anatomical region was assessed separately between patients of each 

genotype and controls. In addition, all DCM patients were compared to controls. For the analysis of cell states within 

each cell type, only cell state counts assigned to each cell type were considered, effectively normalizing all cell states 

within a cell type to 100%. Samples with less than 10 cells per cell type were excluded from the cell state analysis. 

Before analyzing differential abundance between samples of different genotypes or diagnosis, we assessed whether 

samples from different anatomical regions show compositional differences using the region as a grouping variable in 

the model described above. The comparison of FW and AP showed no significant abundance changes (all FDR>5%, 

Fig. S2D). Therefore AP and FW were merged. Next, we also compared the merged AP and FW to SP. As no 

significant abundance changes were observed (all FDR>5%, Fig. S2E) AP, FW and SP were merged into LV. 

We also employed CLR transformed cell type abundance to consider sex specific differences of cell type 

abundance, separately for LVs and RVs, between DCM (10 females, 29 males) and controls (7 females, 11 males). 

As explanatory variables we included the additive terms phenotype (control=0, DCM=1) and sex (female=0, male=1) 

as well as an interaction term (DCM and male = 1, others = 0). We tested whether the interaction term was different 

from 0, which would indicate a significant (FDR < 5%) sex specific difference. Using the same approach, we compared 

sex specific cell abundances between LMNA and control hearts, as only this genotype had sufficient samples from 

males (n=7) and female (n=5) patients.  

In addition to CLR values, abundance differences were also reported as differences of mean percentages 

between groups (while using statistical significance from the CLR analysis). The proportional changes in mean 

percentages of control and disease samples were reported (Figs. 1D, S4, S8, S12, S17, S21, S26, S32, S35, S38). 

Positive values indicate higher abundance in the disease group. In addition to CLR values, log ratios of abundances 

for cell type (or state) pairs between genotypes and controls were ascertained and reported. CLR values are normalized 

to the geometric mean of all abundance values. For a more intuitive interpretation of the differential abundance results, 

we complemented the CLR analysis with an analysis of all pairwise cell type (respectively cell state) ratios. Based on 

the imputed abundances used for the CLR analysis we also computed differences in log ratios of counts of cell type 

c1 and cell type c2 between groups of patients as assessed in the CLR analysis. Specifically we tested whether log 

(c1/c2) in group 1 was equal to log (c1/c2) in group 2 using a t-test. All P-values were adjusted for multiple testing 

using the Benjamini and Hochberg method and only significant results are shown. 

 

 

 

 

 

GOterm and pathway enrichment 

 

GOterm enrichment analysis was performed using the web-tool Gprofiler2 with default settings (115). 

Enriched KEGG pathways were identified using  'Pathway Enrichment Analysis' from the R package 'ReactomePA' 

(116). 

https://paperpile.com/c/7ZZ9Ts/TOZaW
https://paperpile.com/c/7ZZ9Ts/TOZaW
https://paperpile.com/c/7ZZ9Ts/TOZaW
https://paperpile.com/c/7ZZ9Ts/zAAhY
https://paperpile.com/c/7ZZ9Ts/zAAhY
https://paperpile.com/c/7ZZ9Ts/zAAhY
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Gene set score enrichment 

Enrichment of individual pathways was calculated using the score_genes functionality implemented in 

Scanpy on log-transformed and scaled counts (102) using reference gene sets. These included: Apoptosis 

(REACTOME_APOPTOSIS, M15303; https://reactome.org), OSM pathway (4), TGFB-stimulation (curated from 

(30) using ldFC>0.7 and FDR of 0.05), Endothelial-to-mesenchymal (EMT) and mesenchymal-to-endothelial (MET) 

(Table S36), Deathbase (117) cross-referenced with the gene ontology GO:0010942 and GO:0060548, and Antigen 

presentation (MHCII) score (118). Cell-cycle scoring was defined using the Scanpy function score_genes_cell_cycle.  

 

Cell-cell interaction and differential connectome analysis 

 

Cell-cell interactions between assigned cell states in LVs and RVs were inferred using CellChat (version 

1.1.0 using the cell-cell interaction database) (75). The cellchat database is accessible at 

http://www.cellchat.org/cellchatdb/. Analyses were performed using the log-transformed normalized gene counts with 

default parameters, and population size was accounted for when calculating communication probabilities. Data from 

controls and genotypes were compared to identify significant changes.  

Interaction heatmaps were generated using the table produced by the rankNet() function comparing each 

genotype to controls, which produced aggregated communication probabilities across all cell states for each signaling 

pathway and p-values. To address for multiple testing p-values were Bonferroni-adjusted using the p.adjust() function 

in the R stats package. The log2(fold change) in aggregated communication probability of genotype vs control was 

calculated and plotted on a heatmap using heatmap.2() from the gplots package (https://CRAN.R-

project.org/package=gplots). Heatmap color scales depict 0.05 sized intervals, from -14 to 14.  

Circle plots (Fig. 6C) showing pathway specific changes in interaction strength between cell types were 

generated by aggregating communication probabilities per cell state, while subsetting for a specified pathway using 

the aggregateNet() function. Communication probabilities were then aggregated for cell states of the same cell type 

using the mergeInteractions() function and plotted using netVisual_diffInteraction(). Chord plots showing cell state 

interactions for specific signaling pathways were generated using the netVisual_aggregate() function in CellChat. 

 

 

 

Masson trichrome staining and collagen quantification via hydroxyproline 

 

Control and disease LV and RV tissue were fresh-frozen in isopentane (ThermoFisher) at -80°C and OCT 

(VWR) embedded. Sections were cut (10 μm thickness) using a microtome, placed onto slides and processed using a 

standard Masson trichrome staining protocol.  

https://paperpile.com/c/7ZZ9Ts/9xzrI
https://paperpile.com/c/7ZZ9Ts/9xzrI
https://paperpile.com/c/7ZZ9Ts/9xzrI
https://paperpile.com/c/7ZZ9Ts/l7l3P
https://paperpile.com/c/7ZZ9Ts/l7l3P
https://paperpile.com/c/7ZZ9Ts/l7l3P
https://paperpile.com/c/7ZZ9Ts/uHrgZ
https://paperpile.com/c/7ZZ9Ts/uHrgZ
https://paperpile.com/c/7ZZ9Ts/uHrgZ
https://paperpile.com/c/7ZZ9Ts/9gdsy
https://paperpile.com/c/7ZZ9Ts/9gdsy
https://paperpile.com/c/7ZZ9Ts/9gdsy
https://paperpile.com/c/7ZZ9Ts/ry710
https://paperpile.com/c/7ZZ9Ts/ry710
https://paperpile.com/c/7ZZ9Ts/ry710
http://www.cellchat.org/cellchatdb/
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Extracellular matrix was quantified  within 50 mg of LV and RV (Table S15) tissue, by measuring the 

quantity of hydroxyproline, a common amino acid in mammalian collagens, as described (119).  

 

 

Differential gene expression validated by single molecule fluorescent in situ hybridization with RNAscope probes 

 

Fresh-frozen LVs or RVs obtained from controls or patients with PVs were fixed overnight in 4% 

paraformaldehyde solution and then placed in 30% sucrose in PBS until submerged. Tissues were embedded in OCT 

compound, sectioned to 5 μm thickness using a cryotome and mounted on Superfrost Plus slides. Slides were  pre-

treated and incubated with probes according to the manufacturer's protocol (RNAScope Multiplex Fluorescent 

Reagent Kit V2, ACDBiotechne), but used Protease IV for digestion. Positive and negative controls were performed 

for each tissue sample. RNAscope probes were multiplexed according to the manufacturer's protocol and run with 

positive and negative controls. Tissue sections were counterstained with DAPI (Wavelength: 358/461 nm) and WGA 

(WGA Alexa Fluor® 488 conjugate by Invitrogen, Wavelength: 495/519 nm; Biotium CF®633 WGA Wavelength: 

630/650nm). Opal 520 (Wavelength:  494/525 nm), Opal 570 (Wavelength 550/570 nm), Opal 620 (Wavelength 

588/616 nm), Opal 690 (Wavelength 676/694 nm) dyes (Akoya Bioscience) were conjugated to the RNAscope probes. 

Slides were imaged using one of three microscope platforms. The  LSM710 confocal microscope (Zeiss, North 

American samples) was used with 25x or 40x oil immersion objectives (1.3 oil, DIC III). The SP8 confocal microscope 

(Leica, for samples obtained and processed in Germany) was used with a NA 1.4 63x oil immersion objective. The 

LSM780 confocal microscope (Zeiss, samples from the Imperial College) was used with 20x (0.8 NA) or 40x oil 

immersion objectives (1.3 NA). Spectral bleed-through was corrected using Fiji or Zeiss’ Zen Black software 

according to the manufacturer's manual (120, 121). Cell segmentation and transcript quantification/spot detection for 

cardiomyocytes was performed using Multiple-Choice Microscopy (MCMICRO, Fig. 2C) (122). Cells were 

segmented using a custom trained instance segmentation model, Cypository (123), based on the MaskRCNN resnet50 

architecture (124) and pretrained on the COCO dataset (125). Briefly, images were manually annotated with two 

classes - cell membrane stained with wheat germ agglutinin and background consisting of all other areas. Annotated 

data was split into training, validation and test images in a 0.72:0.18:0.1 split. Training was performed with stochastic 

gradient descent with a learning rate of 0.005, momentum of 0.9 and weight decay of 0.0005. Cypository was deployed 

using MCMICRO (122) which is an end-to-end nextflow-based image analysis pipeline for tissue images. After cells 

were segmented as label masks, spot detection of RNA was performed in S3segmenter (126) by convolving a 

Laplacian of Gaussian (LoG) kernel over the image and identifying local maxima that had responses above a threshold. 

The number of spots per channel and mean intensity were then quantified on a single cell basis. In order to quantify 

SMYD1 transcripts per CMs, control (n=2) and disease samples were analyzed. At least five images per sample were 

taken at different regions with 64 to 114 CMs per image. Other RNAscope quantifications (Figs. 2D, S6D) was 

performed manually in controls and disease samples using the H-score as described by ACDBio (ACDBiotechne). 

 

Immunofluorescence Staining 
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Fresh LVs obtained from controls (n=5) or patients with PVs (n=5) were embedded in OCT compound, and 

sectioned at 5 μm thickness using a cryotome and mounted on Superfrost Plus slides. Slides were fixed in 4% 

paraformaldehyde solution and permeabilized with 0.1% Triton X-100 (Sigma-Aldrich). After several washing steps, 

slides were incubated in TrueBlackⓇ Lipofuscin Autofluorescence Quencher (Biotium), then blocked in 4% Bovine 

Serum Albumin (BSA). Slides were incubated in primary antibodies for SMYD1 (Abcam, ab181372) and Cardiac 

Troponin T (cTnT) to identify cardiomyocytes (Invitrogen, MA5-12960) overnight at 4°C. Next, slides were incubated 

with anti-rabbit Alexa Fluor™ 568 (Invitrogen, Wavelength: 578/603 nm), and anti-mouse Alexa Fluor™ 647 

(Invitrogen, Wavelength: 650/665 nm) to visualize SMYD1 and cTnT respectively. Tissue sections were 

counterstained with DAPI (Wavelength: 358/461 nm) and WGA (WGA Alexa Fluor® 488 conjugate by Invitrogen, 

Wavelength: 495/519 nm). Slides were mounted in ProLong™ Gold Antifade Mountant (Invitrogen) and 

coverslipped. Slides were imaged using the SP5 laser scanning confocal microscope (Leica) with a 100x immersion 

objective (1.4 NA). Spectral bleed-through was corrected using Fiji or Zeiss’ Zen Black software according to the 

manufacturer's manual (120, 121). SMYD1 quantification per CMs (cTnT staining) was performed by measuring the 

integrated density using Fiji, where a minimum of ten transmural images were quantified with a total of 97 to 174 

CMs per sample.  

 

Selection of GWAS candidate loci and assessment of expression in cell types 

 

Table S65 provides the candidate genes residing in 15 previously identified DCM GWAS loci. Differential 

gene expression results were obtained from the edgeR analysis. For analyses of GWAS genes we applied a strict fold 

change cutoff of |log2FC|>1 for disease compared to controls, and FDR cutoff of 5%. In addition, we removed signals 

derived from ambient RNA, identified as  transcripts from the top 30 genes with cell type specific expression and high 

technical noise for each cell type.  

Cell type specific expression was defined by first computing the average UMI count per gene, per nucleus, 

per cell type. Next, these averages per gene were normalized to sum to 100% across cell types. Finally, genes were 

termed as specifically expressed if a cell type's average UMI fraction was >85%. To assess expression above 

background levels, background droplets that do not contain nuclei were identified by the cellranger pipeline. 

 

 

 

Construction of graph attention network models  

 

Cell-types were split into separate anndata files followed by library-size normalization and log-

transformation per nucleus (barcode). Highly variable genes (HVGs) were selected based on mean expression and 

dispersion. Effects of percentage of mitochondrial genes and total counts per nucleus were regressed out and values 

were scaled to unit variance. kNN-neighbor graphs were computed (sc.pp.neighbors) on harmonized (Patient as batch 
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key) PCs per cell-type as edge input for graph attention (GAT) models, using classification model structure described 

above. 

In order to recognize genotype specific transcriptional patterns, an aggregated GAT model was built 

consisting of the individual cell-type specific GAT models, where each model was trained per cell-type and validated 

on test data (not included in training). Model performance was evaluated by using an inductive learning policy using 

a leave-one-out cross-validation approach (LOO-CV) .  

Training was stopped at the point when performance on the validation dataset did not improve to avoid 

overfitting (early stopping procedure). Subsequently, the genotype probability was assigned based on the 

transcriptional signature of each nucleus from one patient that was left out of the training, a process that was replicated 

to encompass all patients. Probabilities across all nuclei per cell-type were aggregated to obtain the genotype-

likelihood for each patient (Fig. 6D). The final classification model was restricted to highly abundant cell types (CM, 

FB, EC and myeloid cells) in LV. Each cell type per genotype was given a weight, which was obtained by multiplying 

the true positive (TP) and 1-false positive (FP) rate.  

GAT takes node (nuclei) features (X, anndata.X) and the adjacency matrix (A) of the nodes as input features (Fig. 

S53). 𝑋 = {𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑁}, 𝑥𝑖 ∈ 𝑅𝐹 where N is the number of nodes, and F is the number of HVGs for each node. 

In the first step the input files were forwarded to the GAT layer. As output, the learned graph representation was 

received (H’). Secondly, layer normalization (LN) and Exponential Linear Unit activation function (ELU) was applied 

to the learned graph representation. LN is defined as 

  

 

𝐿𝑁(𝑥) =
𝑥 − 𝐸[𝑥]

√𝑉𝑎𝑟[𝑥] + 𝜖 
 

  

and the ELU activation function is 

  

𝐸𝐿𝑈(𝑥) = {𝑥, 𝛼 ∗ (𝑒𝑥 − 1),          𝑥 > 0 𝑥 ≤ 0  , 
 

 

where α = 1. 

  

Next, a self-attention layer (F’) was applied (127) and the procedures from the previous step (LN and ELU) were 

repeated. Hidden features were extracted from the graph representation. H’ and output from F’ were concatenated to 

feed into the second GAT layer. Finally, a log-softmax function for multiclass classification was executed.  

 

𝐿𝑜𝑔𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑥𝑖) =𝑙𝑜𝑔 𝑙𝑜𝑔 (
𝑒𝑥𝑖

∑𝑗 𝑒𝑥𝑗
)  
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For multiclass classification a negative log-likelihood was used as a loss function.   

 

The individual GAT layers were built as described in (128); in brief:  

 

1) Apply a linear transformation — Weighted matrix W to the feature vectors of the nodes. 

where W is an earnable weight matrix and  ℎ𝑖  a lower layer embedding. 

 

𝑧𝑖
(𝑙)

= 𝑊(𝑙)ℎ𝑖
(𝑙)

 
 

 

2) Attention Coefficients determine the relative importance of neighboring features to each other. These were 

calculated using the formula. 

  

𝛾
𝑖𝑗
(𝑙) = 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑎(𝑙)𝑇

[𝑧𝑖
(𝑙) | 𝑧𝑗

(𝑙)  ]) 
  

First, the z embeddings of the two nodes are concatenated, where || denotes concatenation. Then, it takes the dot 

product of concatenation and a learnable weight vector a. In the end, a LeakyReLU was applied to the result of the 

dot product. The attention score indicates the importance of a neighbor node in the message passing framework. 

  

3) Normalization of attention coefficients by applying a softmax to normalize the attention scores on each node’s 

incoming edges. Ni denotes the set of indices of neighbors of a node with index i. 

  

𝛼𝑖𝑗
(𝑙)

=
𝑒

𝛾𝑖𝑗
(𝑙)

∑𝑘∈𝑁(𝑖) 𝑒𝛾𝑖𝑘
(𝑙) 

 

 

  

4) Computation of final output features 

 

ℎ𝑖
(𝑙+1)

= 𝜎 ( ∑
𝑗∈𝑁(𝑖)

𝛼𝑖𝑗
(𝑙)

𝑧𝑗
(𝑙)

 ) 

 

  

5) Computation of multiple attention mechanisms, improving stability of the learning process: 
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ℎ𝑖
′ = 𝜎 (

1

𝐾
∑

𝐾

𝑘=1

∑

𝑁

𝑗∈𝑁(𝑖)

𝛼𝑖𝑗
𝑘 𝑊𝑘ℎ𝑗

′) 

 

where K denotes the number of independent attention maps used. 

  

   

To derive the final prediction per patient, an aggregation procedure was used in which median prediction scores per 

cell-type per patient were multiplied with a pre-computed weight matrix. Prediction scores per cell-type equals the 

relative abundance of nuclei assigned to a genotype. The weight matrices were created from previously computed 

confusion matrices. The aggregation procedure was defined as, 

 

 

 

where P denotes the probability per genotype,  𝑦̂ the probability of a cell-type to be derived from a patient with a 

certain genotype. W is the pre-computed weight matrix. n equals the number of cell-types included in the aggregation 

procedure. The weighted aggregation procedure yielded more robust results than mean value per class, as errors per 

classifier were compensated.  

  

 Alternative modeling 

  

For alternative modeling, six different models were used, and accuracy and F1 macro on cross validation was 

compared. An example for fibroblasts is below (Table S71).  Model performance was measured on the cell-type 

level. For input data we used the gene expression data matrix (anndata.X) and meta information about patients (such 

as age, gender). Hyperparameters for a) Random Forest, b) XGBOOST and c) KNN classifiers were selected 

according to GridsearchCV. The training procedure was based on cross validation with patient stratification, to 

avoid overfitting of patient specific transcriptional patterns. The best result by alternative methods was obtained by 

the Random Forest Classifier with an accuracy of 0.39 and F1 macro score 0.15. In addition to three classical 

machine learning approaches, three approaches based on neural networks were compared. i) Feed Forward Neural 

Network (FFNN) on the count matrix with three hidden layers obtained a lower performance on validation data. ii) 

SCANVI (single-cell ANnotation using Variational Inference), developed for single-cell annotation using 

variational inference (129), was outperformed by GAT in the unbiased genotype classification task. iii) An 

additional FFNN on graph embeddings was applied. The neighbors’ information from the graph (considering first 

and second neighbors order) and edge quantity were extracted using a graph neural network embedding and used as 
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input features. This approach performed better than other neural networks and the classical machine learning 

approaches, however, was still outperformed by GAT (accuracy and F1 macro).  
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Figure S1: Quality assessment of snRNAseq data 

(A) Infographic depicts the 78 individuals studied (women, pink; men, blue; binned by age range), including controls 

(unused donor hearts), patients with pathogenic variants (PV pos) or patients with unknown disease etiology (PVneg). 

Further clinical details are provided in the metadata sheet (Table S1). (B) Estimated number of nuclei, mean reads and 

median UMI count per nuclei (Cellranger) as well as cDNA (ng/µl). (C) Barcode rank plots across all samples. A 

clear distinction between nuclei containing droplets and empty droplets (background ambient RNA) indicated a low 

overall background. (D) Barcode rank plot across all samples as in (C). Coloring code shows classification of nuclei: 

turquoise, nuclei-containing droplets (true); red, empty droplet, background, or ambient RNA (false). (E) Violin plots 

show number of genes (n_genes), number of UMIs (n_counts), percent UMIs mapping to mitochondrial 

(percent_mito) and ribosomal genes (percent_ribo) and doublet score (solo_score) plotted per cell type after quality 

control filtering and clustering.  
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Figure S2: Schematic of study cohort, replicate analyses, and comparison of LV regions 

(A) Biological replicates of tissue samples obtained from neighboring areas of the same heart (from individuals H08, 

H12, H40, H49 and H51) and studied after libraries were generated in different batches. (B) There was a high 

correlation between replicates (0.74 and 0.99), based on cell type proportions. (C) Histogram showing p-value 

distribution of differential cell state abundances between LV free walls (FW) and apex (AP) samples. p-values were 

uniformly distributed, and no significant differences were detected at FDR < 10%. (D) Parallel comparisons as shown 

in (D), between LV apical (AP) and free wall (FW) samples versus septum (SP). Based on these analyses, data was 

combined for all LV regions. (E) Abundance changes (CLR transformed) of cell types in healthy control compared to 

all DCM (LMNA, TTN, RBM20, PVneg) and LMNA only.   
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Figure S3: Abundance analyses and marker genes of cardiac cell types in LVs and RVs 

(A) Box plots show cell type distribution across controls and genotypes in LVs and RVs. p-values are indicated for 

significant proportional changes, FDR<0.05. (B) Dotplots show selected marker genes of each cell type. Dot size, 

fraction (%) of expressing cells; color, mean expression level. 
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Figure S4: Relative cellular composition analyses in RV 

(A) Upper panel: Mean abundance (%) of cell types in healthy control RVs. Lower panel: Proportional changes of 

cell types in specified genotypes or aggregated across DCM genotypes. Proportional changes are scaled by color: 

increased (red) or decreased (blue) in disease versus control. p-values are indicated for significant proportional 

changes, FDR<0.05. (B) Pairwise cell-type abundance ratios in specified genotypes or aggregated DCM genotypes in 

RVs relative to controls. Color scale, FDR, significance depicted as in (A). 
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Figure S5: Genotype specific upregulated genes in cardiomyocytes (CMs) 

(A) Total number of uniquely upregulated genes (log2FC >0.5) for each genotype in LVs and RVs, across all CM 

states. FDR<0.05. (B) Upset plots of all upregulated genes (log2FC>0.5, FDR<0.05) in LVs and RVs demonstrated 

shared (connected by lines) and specific expression (no connected lines) by genotypes. The total number of genes in 

the set is plotted as a bar on top (set size). 
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Figure S6: Genotype specific compositional changes across cardiomyocyte (CM) cell states 

(A) Box plots show apoptosis gene expression scores in LV and RV CMs. Significant p-values comparing the 

genotype to control (FDR<0.05) are shown above the whiskers. (B) Dotplots illustrate fold-change (log2FC) and 

significance (-lg(FDR)) of MHY6 and MYH7 across diseased genotypes and all cell states in LVs (left) and RVs (right) 

(C) Dotplots illustrate fold-change (log2FC) and significance (-lg(FDR)) of selected dysregulated genes across 

diseased genotypes and all cell states in the LVs and RVs. (D) Single-molecule RNA fluorescent in situ hybridization 

exemplifies decreased SMYD1 (red) expression in CMs (identified by TNNT2 transcripts, cyan) within a DCM heart 
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with a PV in PLN (phospholamban). (E) Single-channel images of SMYD1 immunohistochemistry are shown in 

Figure 2D. (F) (Left) Single-molecule RNA-fluorescent in situ hybridization (RNA-scope) of CPEB4 (red) and 

TNNT2 (cyan) in control and PKP2 RVs. (Right) Bar graph showing quantified expression of CPEB4 assessed in 

controls vs. PKP2 (H-score, spots per CM) (right) with p-value indicated. Cell boundaries, WGA-stained (green); 

nuclei, DAPI-stained (blue); bar 10 µm. (G) Doptplots visualize the levels of fold-change (logFC) and significance (-

log10(FDR)) of selected dysregulated genes across diseased genotypes and each cell state in LVs and RVs. 



 

 

25 

 

 

 

Figure S7: Characterization of cardiomyocyte (CM) state abundance and gene expression 

(A) Box plots show CM state distribution across controls and genotypes in LVs and RVs. p-values are indicated for 

significant proportional changes, FDR<0.05. (B) Total number of upregulated genes across CM states and genotypes 

in LVs and RVs. Only significantly upregulated expressed genes (log2FC >0.5) are shown, FDR<0.05. (C) Dotplot 

shows selected marker genes of CM states. Dot size, fraction (%) of expressing cells; color, mean expression level. 

(D) Single-molecule RNA-fluorescent in situ hybridization (RNA-scope) of BMPR1B (red) enriched in vCM1.3 and 
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TNNT2 (cyan) in TTN LV. (E) RNA-scope of ATF3 (red) and NR4A3 (yellow), both enriched in vCM3.1, as well as 

TNNT2 (cyan) in control LV and RV. (D and E) Cell boundaries, WGA-stained (green); nuclei, DAPI-stained blue); 

bar 10 µm (note longer bar in TTN panel).  
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Figure S8: Genotype specific compositional changes in cardiomyocytes (CMs) 

(A) Upper panel: Mean abundance (%) of CM states in healthy control LVs. Lower panel: Proportional changes of 

CM states in specified genotypes or aggregated across DCM genotypes. (B) as in (A) but for RVs. (C) Pairwise CM 

state abundance ratios in specified genotypes or aggregated DCM genotypes in LVs relative to controls. (D) as in (C) 

but for RVs. 
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Figure S9: Genotype specific upregulated genes in fibroblasts (FBs) 

(A) Total number of uniquely upregulated genes (log2FC >0.5) for each genotype in LVs and RVs across all FB states, 

FDR<0.05. (B) Upset plots of all upregulated genes (log2FC>0.5, FDR<0.05) in LVs and RVs demonstrated shared 

(connected by lines) and specific expression (no connected lines) by genotypes. The total number of genes in the set 

is plotted as a bar on top (set size). 
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Figure S10: Genotype specific gene expression in fibroblasts (FBs) 

(A) Dot plot shows levels of EGFR and AGTR1 across genotypes in LV FBs compared to control. (B) Dot plot shows 

levels of fold-change (logFC) and significance (-log10(FDR)) of TGFB1-3 across genotypes in LV FBs compared to 

control. (C) Dot plot illustrates fold-change (log2FC) and significance (-lg(FDR)) of selected genes encoding ECM 

modulators in FBs across genotypes. (D) Box plot shows collagen gene expression scores in LV FBs. Significant p-

values comparing the genotype to control (FDR<0.05) are shown above the whiskers. (E) Hydroxyproline assay 

(HPA) in RVs quantifying cardiac collagen content for each genotype. p-values indicate significant differences. (F) 

TGFβ activation score for vFB2 in RV. (A, B and D) Dot sizes represent significance values; color intensity denotes 

fold-change.  
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Figure S11: Characterization of fibroblast (FB) state abundance and gene expression  

(A) Box plots show FB state distribution across controls and genotypes in LVs and RVs. p-values are indicated for 

significant proportional changes, FDR<0.05. (B) Total number of upregulated genes across FB states and genotypes 

in LVs and RVs. Only significantly upregulated expressed genes (log2FC >0.5) are shown, FDR<0.05. (C) Dotplot 

shows selected marker genes of fibroblast states. Dot size, fraction (%) of expressing cells; color, mean expression 

level.  
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Figure S12: Genotype specific compositional changes in fibroblasts (FBs) 

(A) Upper panel: Mean abundance (%) of FB states in control LVs. Lower panel: Proportional changes of FB states 

in specified genotypes or aggregated across DCM genotypes. (B) as in (A) but for RVs. (C) Pairwise FB state 

abundance ratios in specified genotypes or aggregated DCM genotypes in LVs relative to controls. (D) as in (C) but 

for RVs. 
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Figure S13: Validation of fibroblast (FB) states vFB.1 and 1.2 

(A) Single-molecule RNA-fluorescent in situ hybridization (RNAscope) demonstrated colocalization of CST3 (red) 

and DCN (cyan), enriched in vFB1.1 (exemplified in PLN LV). UMAP representations depict FB state (mid) and cell 

type (right) specificity of CST3. (B) RNAscope demonstrated colocalization of DAAM1 (red) and DCN (cyan), 

enriched in vFB1.2 (exemplified in PKP2 LV). DCN serves as a pan-fibroblast marker cell boundaries, WGA-stained 

(green); nuclei, DAPI-stained (blue); bar 10 µm. UMAP representations depict FB state (mid) and cell type (right) 

specificity of DAAM1. 
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Figure S14: Analyses of gene expression indicating fibroblast (FB) activation 

(A) TGFβ-activation score in RV vFB2. Significant p-values comparing genotypes to control are shown above the 

whiskers. (B) Left: Box plot visualizes the level of average IL11 expression in LV vFB2 across genotypes. p-values 

were calculated using a hypergeometric test. p-values <0.05 are indicated with *. Right: Dot plot showing IL11 

expression across all fibroblast states. The dot sizes represent the fraction (%) of expressing cells; the color scale 

represents the corresponding scaled mean expression levels. (C) Single-molecule RNA-fluorescent in situ 

hybridization (RNAscope) of IL11 (red), POSTN and DCN (cyan) expression (yellow) in LMNA LV (left) and RBM20 

LV (right). DCN serves as a pan-fibroblast marker while POSTN expression depicts activated fibroblast (vFB2). Cell 

boundaries, WGA-stained (green); nuclei, DAPI-stained (blue); bar 10 µm. (D) OSM pathway score in LV vFB3. 

Significant p-values comparing genotypes to control are shown above the whiskers. 
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Figure S15: Genotype specific upregulated genes in mural cells (MCs) 

(A) Total number of uniquely upregulated genes (log2FC>0.5) for each genotype in LVs and RVs across MC states, 

FDR<0.05. (B) Upset plots of all upregulated genes (log2FC>0.5, FDR<0.05) in LVs and RVs demonstrated shared 

(connected by lines) and specific expression (no connected lines) by genotypes. The total number of genes in the set 

is plotted as a bar on top (set size). 
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Figure S16: Validation of mural cell (MC) states 

(A) Validation of increased ADAMTS-AS2 and decreased ADAMTS9 expression in MCs of diseased genotypes using 

RNA in situ hybridization (RNAscope). RNAscope of ADAMTS9 (orange) and ADAMTS-AS2 (red) in control and 

TTN LVs. KCNJ2 (cyan) served as a marker for mural cells. Cell boundaries: WGA (green), nuclei stain: DAPI (dark 

blue), bar length: 10 µm. Dotplot shows ADAMTS9-AS2 and ADAMTS9 expression across cell types. Dot size, fraction 

(%) of expressing cells; color, mean expression level. (B) Feature plot shows selected marker genes of MC states. 
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Figure S17: Characterization of MC state abundance and gene expression 

(A) Box plots show MC state distribution across controls and genotypes in LVs and RVs. p-values are indicated for 

significant proportional changes, FDR<0.05. (B) Total number of upregulated genes across MC states and genotypes 

in LVs and RVs. Only significantly upregulated expressed genes (log2FC >0.5) are shown, FDR<0.05. (C) Dotplot 

shows selected marker genes of MC states. Dot size, fraction (%) of expressing cells; color, mean expression level. 
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Figure S18: Genotype specific compositional changes in mural cells (MCs) 

(A) Upper panel: Mean abundance (%) of MC states in control LVs. Lower panel: Proportional changes of MC states 

in specified genotypes or aggregated across DCM genotypes. (B) as in A but for RVs. (C) Pairwise MC state 

abundance ratios in specified genotypes or aggregated DCM genotypes in LVs relative to controls. (D) as in (C) but 

for RVs. 
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Figure S19: Genotype specific upregulated genes in endothelial cells (ECs) 

(A) Total number of uniquely upregulated genes (log2FC>0.5) for each genotype in LVs and RVs across all EC states, 

FDR<0.05. (B) Upset plots of all upregulated genes (log2FC>0.5, FDR<0.05) in LVs and RVs demonstrated shared 

(connected by lines) and specific expression (no connected lines) by genotypes. The total number of genes in the set 

is plotted as a bar on top (set size). 
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Figure S20: Characterization of endothelial cell (EC) state abundance and gene expression 

(A) Box plots show EC state distribution across controls and genotypes in LVs and RVs. p-values are indicated for 

significant proportional changes, FDR<0.05. (B) Total number of upregulated genes across EC states and genotypes 

in LVs and RVs. Only significantly upregulated expressed genes (log2FC >0.5) are shown, FDR<0.05. (C) Dot plot 

shows selected marker genes of EC states. Dot size, fraction (%) of expressing cells; color, mean expression level.  
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Figure S21: Genotype specific compositional changes in endothelial cells (ECs) 

(A) Upper panel: Mean abundance (%) of EC states in control LVs. Lower panel: Proportional changes of EC states 

in specified genotypes or aggregated across DCM genotypes. (B) as in (A) but for RVs. (C) Pairwise EC state 

abundance ratios in specified genotypes or aggregated DCM genotypes in LVs relative to controls. (D) as in (C) but 

for RVs. 

 

 

 

 

 

 

 

 

 

 



 

 

42 

 

 

 
 

Figure S22: Cell-phase, EMT/MET, and apoptosis related pathways in endothelial cells (ECs) 

(A) Cell-phase classification of ECs. Left: Nuclei in G2M (orange) and S-phase (green) are highlighted. Right: Each 

dot represents the abundance of cycling ECs of a patient in LV and RV. The table of genes used for classification is 

provided in Table SEC2. (B) EMT/MET classification of ECs. Left: Nuclei in EMT (blue) and MET (orange) are 

highlighted. Right: Each dot represents the abundance of transitional ECs of the EC7.0 population in LVs and RVs. 

The table of genes used is provided in Table SEC2. Nuclei with a score lower than 0.3 for both processes were 

considered as unscored and nuclei with a MET score higher than an EMT score were considered as undergoing MET. 

(C) Classification of ECs showing higher expression of positive and negative regulators of cell death. Right: Each dot 

represents the abundance of apoptosis inhibiting ECs of total EC population in LVs and RVs. The table of genes used 

is provided in Table SEC2. Nuclei with a score lower than 0.1 were unscored and nuclei with a greater positive than 

negative score were denoted as undergoing cell death. 
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Figure S23: UMAP embedding and expression of selected marker genes of myeloid cells. 

This is the unmodified UMAP of Fig. 4A, embedding the 17 myeloid states. 
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Figure S24: Genotype specific upregulated genes in myeloids 

(A) Total number of uniquely upregulated genes (log2FC >0.5) for each genotype in LVs and RVs across all myeloid 

states, FDR<0.05. (B) Upset plots of all upregulated genes (log2FC>0.5, FDR<0.05) in LVs and RVs demonstrate 

shared (connected by lines) and specific expression (no connected lines) by genotypes. The total number of genes in 

the set is plotted as a bar on top (set size). 
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Figure S25: Characterization of myeloid state abundance 

(A) Total number of upregulated genes across myeloid states and genotypes in LVs and RVs. Only significantly 

upregulated expressed genes (log2FC>0.5) are shown, FDR<0.05. (B) Dotplot shows selected marker genes of 

myeloid states. Dot size, fraction (%) of expressing cells; color, mean expression level. (C) Dotplot highlighting 

selected marker genes of cDC1 and cDC2. The dot sizes represent the fraction (%) of expressing cells; the color scale 

represents the corresponding mean expression levels. (D) Dotplot highlighting selected marker genes of different 

LYVE1 MP populations. The dot sizes represent the fraction (%) of expressing cells; the color scale represents the 

corresponding mean expression levels. 
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Figure S26: Characterization of myeloid state abundance 

Box plots show myeloid state distribution across controls and genotypes in LVs and RVs. p-values are indicated for 

significant proportional changes, FDR<0.05. 
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Figure S27: Genotype specific compositional changes in myeloids 

(A) Upper panel: Mean abundance (%) of myeloid states in control LVs. Lower panel: Proportional changes of 

cardiomyocyte states in specified genotypes or aggregated across DCM genotypes. (B) as in (A) but for RVs. (C) 

Pairwise myeloid state abundance ratios in specified genotypes or aggregated DCM genotypes in LVs relative to 

controls. (D) as in (C) but for RVs. 
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Figure S28: OSM and MHCII expression in myeloids 

(A) Dot plot shows OSM expression across genotypes in LV MP_OSM compared to control. Dot sizes represents 

significance values; color intensity denotes fold-change. (B) Enrichment score of antigen presentation MHCII gene 

expression in LVs across antigen presenting myeloid populations and genotypes. cDC1, cDC2, MO_CD16, 

MO_VCAN, MP_FOLR2 and MP_LYVE1lo/MHCII_hi are included. (C) Dotplot highlighting MHCI and II genes 

across all assigned myeloid states (all regions and genotypes). The dot sizes represent the fraction (%) of expressing 

cells; the color scale represents the corresponding mean expression levels. 
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Figure S29: Genotype specific upregulated genes in lymphoids 

(A) Total number of uniquely upregulated genes (log2FC>0.5) for each genotype in LVs and RVs across all lymphoid 

states, FDR<0.05. (B) Upset plots of all upregulated genes (log2FC>0.5, FDR<0.05) in LVs and RVs demonstrated 

shared (connected by lines) and specific expression (no connected lines) by genotypes. The total number of genes in 

the set is plotted as a bar on top (set size). 
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Figure S30: Characterization of lymphoid state abundance 

Box plots showing myeloid state distribution across controls and genotypes in LVs and RVs. p-values are indicated 

for significant proportional changes, FDR<0.05. 
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Figure S31: Characterization of lymphoid state gene expression 

(A) Total number of upregulated genes across lymphoid states and genotypes in LVs and RVs. Only significantly 

upregulated expressed genes (log2FC>0.5) are shown, FDR<0.05. (B) Dotplot shows selected marker genes of 

lymphoid states. Dot size, fraction (%) of expressing cells; color, mean expression level. 
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Figure S32: Genotype specific compositional changes in lymphoids 

(A) Upper panel: Mean abundance (%) of lymphoids states in control LVs. Lower panel: Proportional changes of 

lymphoid states in specified genotypes or aggregated across DCM genotypes. (B) as in (A) but for RVs. (C) Pairwise 

lymphoid state abundance ratios in specified genotypes or aggregated DCM genotypes in LVs relative to controls. (D) 

as in (C) but for RVs. 
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Figure S33: Genotype specific upregulated genes in neuronal cells (NC) 

(A) Total number of uniquely upregulated genes (log2FC>0.5) for each genotype in LVs and RVs across all NC states, 

FDR<0.05. (B) Upset plots of all upregulated genes (log2FC>0.5, FDR<0.05) in LVs and RVs demonstrated shared 

(connected by lines) and specific expression (no connected lines) by genotypes. The total number of genes in the set 

is plotted as a bar on top (set size). 
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Figure S34: Characterization of neuronal cell (NC) state abundance and gene expression 

(A) Box plots show NC state distribution across controls and genotypes in LVs and RVs. p-values are indicated for 

significant proportional changes, FDR<0.05. (B) Total number of upregulated genes across NC states and genotypes 

in LVs and RVs. Only significantly upregulated expressed genes (log2F >0.5) are shown, FDR<0.05.  
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Figure S35: Genotype specific compositional changes in neuronal cells (NC) 

(A) Upper panel: Mean abundance (%) of NC states in control LVs. Lower panel: Proportional changes of NC states 

in specified genotypes or aggregated across DCM genotypes. (B) as in (A) but for RVs. (C) Pairwise NC state 

abundance ratios in specified genotypes or aggregated DCM genotypes in LVs relative to controls. (D) as in (C) but 

for RVs. 
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Figure S36: Genotype specific upregulated genes in adipocytes 

(A) Total number of uniquely upregulated genes (log2FC>0.5) for each genotype in LVs and RVs across all 

adipocytes, FDR<0.05. (B) Upset plots of all upregulated genes (log2FC>0.5, FDR<0.05) in LVs and RVs 

demonstrated shared (connected by lines) and specific expression (no connected lines) by genotypes. The total number 

of genes in the set is plotted as a bar on top (set size). 
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Figure S37: Characterization of adipocyte state abundance 

(A) Box plots show adipocyte state distribution across controls and genotypes in LVs and RVs. Tissues from patients 

with fewer than 10 nuclei were excluded from these analyses. p-values are indicated for significant proportional 

changes, FDR<0.05. (B) Total number of upregulated genes across adipocyte states and genotypes in LVs and RVs. 

Only significantly upregulated expressed genes (log2FC>0.5) are shown, FDR<0.05. 
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Figure S38: Genotype specific compositional changes in adipocytes 

(A) Upper panel: Mean abundance (%) of adipocyte states in control LVs. Lower panel: Proportional changes of 

adipocyte states in specified genotypes or aggregated across DCM genotypes. (B) as in (A) but for RVs. (C) Pairwise 

adipocyte state abundance ratios in specified genotypes or aggregated DCM genotypes in LVs relative to controls. (D) 

as in (C) but for RVs. 

 

 



 

 

59 

 

 

 



 

 

60 

 

 

Figure S39. LV and RV expression of genes identified by DCM GWAS studies in DCM and ACM samples. The 

expression of genes that were identified from published GWAS studies (Table S65) are shown as log(UMI count +1), 

fold-changes are relative to mean pseudobulk expression of the control group, per gene and cell type (Supplemental 

Methods). Note different scales are used between genes in order to account for variable ranges of expression. Blue-

orange shading represents log fold change in expression compared to controls. *denotes p<0.05. Nuclei number for 

Mast cells in PVneg was too small to calculate expression changes. 
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Figure S40: Altered cell-cell interactions 

Heatmaps depict common (A: LV, C:RV) and unique (B: LV, D: RV) signaling pathways that are significantly 

expressed in diseased hearts. Changes in interaction strength (log2(fold-change)), scaled by color intensity (red, 

increased; blue, decreased). *denotes significance; adjusted p-values≤0.05; n/a denotes expression not detected in 

control or disease.  
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Figure S41: Schematic representation cell-cell communications for BMP, IGF, and NRG pathways in diseased 

RVs.  

Circle plots of significant (adjusted p-value≤0.05) cell-cell communications depict differentially regulated bone 

morphogenic protein (BMP), insulin growth factor (IGF) and neuregulin (NRG) pathways and interactions in disease 

RVs. The line thickness denotes interaction strength of signals from sending and receiving cell types, with color 

(orange, increased; blue, decreased) scaled from zero to maximum in diseased versus controls. Arrows indicate 

directionality. 
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Figure S42: Representation of cell-cell interactions for the IGF pathway in LVs and RVs with different 

genotypes  

Chord plots of significant (adjusted p-value≤0.05) cell-cell communications depict the differentially regulated insulin 

growth factor (IGF) pathway and interactions in disease LVs and RVs. The line thickness denotes interaction strength 

of signals from sending and receiving cell types, with color (orange, increased; blue, decreased) scaled from zero to 

maximum in diseased versus controls. Arrows indicate directionality. 
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Figure S43: Representation of cell-cell interactions for the BMP pathway in LVs and RVs with different 

genotype 

Chord plots of significant (adjusted p-value≤0.05) cell-cell communications depict the differentially regulated bone 

morphogenic protein (BMP) pathway and interactions in disease LVs and RVs. The lines thickness denotes interaction 

strength of signals from sending and receiving cell types, with color (orange, increased; blue, decreased) scaled from 

zero to maximum in diseased versus controls. Arrows indicate directionality. 
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Figure S44: Representation of cell-cell interactions for the EDN pathway in LMNA LVs and PKP2 RVs  

Chord plots of significant (adjusted p-value≤0.05) cell-cell communications depict the differentially regulated 

neuregulin (NRG) pathway and interactions in disease LVs and RVs. The lines thickness denotes interaction strength 

of signals from sending and receiving cell types, with color (orange, increased; blue, decreased) scaled from zero to 

maximum in diseased versus controls. Arrows indicate directionality. 
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Figure S45: Representation of cell-cell interactions for the NRG pathway in LVs and RVs with different 

genotypes 

Chord plots of significant (adjusted p-value≤0.05) cell-cell communications depict the differentially regulated 

endothelin (EDN) pathway and interactions in disease LVs and RVs. The line thickness denotes interaction strength 

of signals from sending and receiving cell types, with color (orange, increased; blue, decreased) scaled from zero to 

maximum in diseased versus controls. Arrows indicate directionality. 
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Figure S46: Communication probability dotplots of EC7.0 derived neuregulin (NRG) signaling.  

Color of the dots represents the probability of communication for NRG receptor-ligands pairs (x-axis). The specific 

ligand, expressed by EC7.0, and receptor, expressed by the respective receiving cell-state is shown (y-axis). 
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Figure S47: GAT predictions 

(A) Heatmap of first-order neighbors between nuclei per genotype on the KNN graph for cell types used for aggregated 

GAT model construction (CM, FB, EC, myeloids). The numbers show the fraction (%) of edges from the KNN graph 

connecting nuclei from a patient with a particular genotype to nuclei from patients with another genotype. For example 

in CMs, among LMNA patients 45% of edges connected nuclei within the group, while 17% of the edges connected 

nuclei from LMNA and TTN patients. (B) (Top) Heatmap of first-order neighbors between nuclei per genotype on the 

KNN graph for cell types not used in the aggregated GAT Model (lymphoid, PC, SMC). (Bottom) Genotype 

prediction probability from graph attention networks (GAT) per cell-type in LV. (C) Genotype prediction probability 

from graph attention networks (GAT) per cell-type in RV. RV mural SMCs and lymphoids produced insufficient 

observations per patient to train genotype-prediction models. 
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Figure S48: Genotype prediction per patient sample 

Stacked barplots represent the likelihood (% probability) of genotypes per LV cell type, for each patient before 

aggregation. 
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Figure S49: In situ hybridization of tissues used in Figs. 2C, 2J, S7D-E, and S13A with positive and negative 

control probes  

(A) TTN LV (presented in Fig. 2J and S7D) hybridized with positive probe mix or negative (DapB) probe, provided 

by ACDBio. (B) PLN (phospholamban) LV (presented in Figs. 2C and S13A), studied as in (A). (C) Control RV 

(presented in Fig. S7E), studied as in (A). 
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Figure S50: In situ hybridization of tissues used in Figs. 2C-D and S6D with positive and negative control probes  

(A) Control LV (presented in Figs. 2C) hybridized with positive probe mix or negative (DapB) probe, provided by 

ACDBio. (B) Control RVs (presented in Figs. 2D and S6D), studied as in (A). (C) PKP2 RVs (presented in Figs. 2D 

and S6D), studied as in (A).  
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Figure S51: In situ hybridization of tissues used in Figs. 4C and S13B with positive and negative control probes  

(A) PKP2 LV (presented in Fig. S13B) hybridized with positive probe mix or negative (DapB) probe, provided by 

ACDBio. (B) RBM20 LV (presented in Fig. S14C), studied as in (A). (C) TTN LV (presented in Fig. 4C), studied as 

in (A).  



 

 

77 

 

 

 

 
Figure S52: In situ hybridization of tissues used in Figs. 2J, 4C, and 5D with positive and negative control 

probes (A) Control LV (presented in Fig. 4C) hybridized with positive probe mix or negative (DapB) probe, provided 

by ACDBio. (B) Control LV (presented in Fig. 2J), studied as in (A). (C) PLN LV (presented in Fig. 5D), studied as 

in (A). 
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Figure S53: Schematic representation of Graph Attention Network (GAT) architecture.  

 

 

  Accuracy F1 macro 
Classical machine learning models 

a. Random Forest 0.39 0.15 
b. XGBOOST 0.34 0.14 
c. KNN 0.26 0.13 

Neural network-based models 
      i) FFNN on count matrix 0.34 0.27 
      ii) SCANVI 0.4 0.21 
      iii) FFNN on graph    
            embeddings 

0.43 0.28 

Approach described in this manuscript 
GAT 0.87 0.91 

Table S71: Accuracy and F1 macro for alternative modeling strategies 
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