Supplementary Materials for

Pathogenic variants damage cell compositions and single cell transcription in
cardiomyopathies
Authors: Daniel Reichart!->%* Eric L. Lindberg*", Henrike Maatz*>#, Antonio M.A. Miranda%’,
Anissa Viveiros®®, Nikolay Shvetsov*, Anna Girtner'’, Emily R. Nadelmann', Michael Lee$,
Kazumasa Kanemaru!!, Jorge Ruiz-Orera*, Viktoria Strohmenger'!?2, Daniel M. DeLaughter’'3,
Giannino Patone*, Hao Zhang®®, Andrew Woehler'4, Christoph Lippert'>!6, Yuri Kim', Eleonora
Adami*, Joshua M. Gorham', Sam N. Barnett®, Kemar Brown'!”, Rachel J. Buchan®'®, Rasheda
A. Chowdhury®, Chrystalla Constantinou®, James Cranley!', Leanne E. Felkin®!8, Henrik Fox!°,
Ahla Ghauri®®, Jan Gummert!®, Masatoshi Kanda*?!, Ruoyan Li!', Lukas Mach®!8, Barbara
McDonough?!3, Sara Samari®, Farnoush Shahriaran??, Clarence Yapp??, Caroline Stanasiuk!,
Pantazis 1. Theotokis®?*, Fabian J. Theis??>, Antoon van den Bogaerdt?®, Hiroko Wakimoto!, James
S. Ware®!'824 Catherine L. Worth*, Paul J.R. Barton®!'%?* Young-Ae Lee?*?%, Sarah A.
Teichmann'!?’, Hendrik Milting!*, Michela Noseda®”#, Gavin Y. Oudit®®, Matthias

Heinig??2%2%, Jonathan G. Seidman'*", Norbert Hubner*>-%", Christine E. Seidman'-?!%#"

Affiliations:

1. Department of Genetics, Harvard Medical School, Boston MA, 02115 USA

2. Cardiovascular Division, Brigham and Women’s Hospital Boston MA, 02115 USA

3. Department of Medicine I, University Hospital, LMU Munich, 80336 Munich, Germany

4. Cardiovascular and Metabolic Sciences, Max Delbriick Center for Molecular Medicine in the
Helmholtz Association (MDC), 13125 Berlin, Germany

5. DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin,
Germany

6. National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK



7. British Heart Foundation Centre for Research Excellence and Centre for Regenerative
Medicine, Imperial College London WC2R 2LS, UK

8. Division of Cardiology, Department of Medicine, Faculty of Medicine and Dentistry,
University of Alberta, Edmonton, Alberta T6G 2R3, Canada

9. Mazankowski Alberta Heart Institute, Faculty of Medicine and Dentistry, University of
Alberta, Edmonton, Alberta T6G 2R3, Canada

10. Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital
of the Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany

11. Cellular Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus,
Hinxton CB10 1SA, UK

12. Walter-Brendel-Centre of Experimental Medicine, Ludwig-Maximilian University of
Munich, 81377 Munich, Germany

13. Howard Hughes Medical Institute, Bethesda MD, 20815-6789, USA

14. Systems Biology Imaging Platform, Berlin Institute for Medical Systems Biology (BIMSB),
Max-Delbriick-Center for Molecular Medicine in the Helmholtz Association (MDC), 10115
Berlin, Germany

15. Digital Health-Machine Learning group, Hasso Plattner Institute for Digital Engineering,
University of Potsdam, 14482 Potsdam, Germany

16. Hasso Plattner Institute for Digital Health, Icahn School of Medicine at Mount Sinai, NY
10029, USA

17. Cardiac Unit, Massachusetts General Hospital, Boston, MA 02114, USA

18. Royal Brompton and Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust,
London SW3 6NR, UK

19. Heart and Diabetes Center NRW, Clinic for Thoracic and Cardiovascular Surgery, University
Hospital of the Ruhr-University, 32545 Bad Oeynhausen, Germany

20. Max Delbriick Center for Molecular Medicine in the Helmholtz Association (MDC), 13125
Berlin, Germany

21. Department of Rheumatology and Clinical Immunology, Sapporo Medical University School
of Medicine, Sapporo 060-8556, Japan

22. Computational Health Center, Helmholtz Zentrum Miinchen Deutsches Forschungszentrum

fiir Gesundheit und Umwelt (GmbH), 85764 Neuherberg, Germany



23. Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA
24. MRC London Institute of Medical Sciences, Imperial College London, London W12 ONN,
UK

25. ETB-Bislife Foundation, POB 309, 2300 AH Leiden, The Netherlands.

26. Clinic for Pediatric Allergy, Experimental and Clinical Research Center, Charité-
Universitidtsmedizin Berlin, 13125 Berlin, Germany

27. Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge CB3
OHE, UK

28. Department of Informatics, Technische Universitaet Muenchen (TUM), 85748 Munich,
Germany

29. DZHK (German Centre for Cardiovascular Research), Munich Heart Association, Partner
Site Munich, 10785 Berlin, Germany

30. Charité-Universitditsmedizin Berlin, 10117 Berlin, Germany

# Denotes equal contribution

A Corresponding authors: Eric L. Lindberg: eric.lindberg@mdc-berlin.de
Jonathan Seidman: seidman@genetics.med.harvard.edu
Norbert Hubner: nhuebner@mdc-berlin.de

Christine Seidman:cseidman@genetics.med.harvard.edu

This PDF file includes:

Materials and Methods

Figs. S1 to S53

Index to Tables S1 to S71 (provided in Excel format)
References 90-129, cited here, are provided in main manuscript



Materials and Methods

Data reporting

Data objects with the raw counts matrices and annotation are available via cellxgene through the Human Cell
Atlas (HCA) Data Coordination Platform (DCP). Raw data for all samples, including the five major genotypes (LMNA,
RMB20, TTN, PKP2 and PVneg) and rare genotypes (BAG3, DES, DSP, FKTN, TNNCI1, TNNT2, TPMI, PLN), are
available through the FEuropean Genome Archive. All of our data can be explored at
https://cellxgene.cziscience.com/collections/e75342a8-0f3b-4ec5-8eel1-245a23e0f7cb/private. All methods refer to

the analyses of the five major genotypes unless differently stated.

Ethics statement

Clinical details on cardiac tissues are provided on Table S1. Control hearts were obtained from unused
transplant organ donations, including 12 previously described samples (4), and six additional control samples from
the Bad Oeynhausen Heart Center and NHS Blood and Transplant Health Authority. Discarded disease heart samples
were obtained in the context of clinical patient care. All cardiac tissues were anonymized and used with approved
protocols reviewed by the ethics committees listed below:

a) Bad Oeynhausen Heart Center; Ethics Board of the Ruhr-University Bochum (Approvals 2020-640-1; 21/2013)
b) Mazankowski Alberta Heart Institute (MAHI, Edmonton, Canada); Human Explanted Heart Program (HELP,
Pro00011739)

c¢) Cardiovascular Research Centre Biobank at the Royal Brompton and Harefield Hospitals, Guy’s and St. Thomas’
NHS Foundation Trust (EC reference 09/H0504/104 +5)

d) Imperial College (REC referencel6/LO/1568)

e) Mass General Brigham Human Research Protection Committee (Protocol 1999P010895)

f) Harvard Longwood Campus Institutional Review Board (Protocol M11135)

Cohort samples

Control heart samples were collected as previously described (4). Disease samples were collected from
cardiomyopathy patients with heart failure, prior to mechanical support (n=15) or at the time of heart transplantation
(n=31). All samples were full-thickness myocardial specimens from the LV and RV free walls, and the LV apex, and
interventricular septum. Regions with large epicardial fat deposits or macroscopic areas of high fibrosis were
intentionally excluded. When full-thickness apical cores were obtained, other regions were not available. Additional
details are provided in Fig. S2A and Table S1. Thorough sample collection details have been described previously
(89).
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Patient genotyping

Genomic DNA from patient samples from the Bad Oeynhausen Heart Center was isolated from blood using
the High Pure PCR Preparation Kit® (Roche Diagnostics GmbH) or Genomic DNA Extraction Kit (Qiagen). DNA
was prepared for gene enrichment re-sequencing on a MiSeq® sequencing system using the TruSight™ Rapid Capture
Sample Preparation Kit (Illumina). DNA was screened for pathogenic or likely pathogenic variants using the
TruSight™ Cardio (174 genes) or the TruSight™ Cardiomyopathy (46 genes) Sequencing Panel (Illumina). In a subset
of samples, whole exome or genome sequencing was performed (Table S1) and analyzed for cardiomyopathy genes.
Variants were annotated using VariantStudio™ v.3.0 (Illumina) and classified according to the recommendations of
the American College of Medical Genetics and Genomics and the Association for Molecular Pathology (ACMG) (91).

Genomic DNA from patients enrolled at Brigham and Women’s Hospital and the Mazankowski Alberta
Heart Institute was isolated using Genomic DNA Extraction Kit (Qiagen) from LV samples and whole exome
sequencing (WES) performed using Illumina NovaSeq instruments. All sequencing reads were aligned to hgl9
(GRCh37) using BWA-MEM (92). Single nucleotide variants (SNVs) and small indels were identified using the
Genome Analysis Tool Kit (GATK; version 3.8) Haplotype Caller tool (93). The variant call format file was annotated
using dbNSFP (94), gnomAD v2.1 (95), and SnpEff (version 4.3t, annotation database GRCh37.75). High quality
variants (pass GATK, Variant Score Quality Recalibration (VSQR, truth sensitivity threshold 99.5 for SN'Vs, 99.0 for
indels), a minimum depth (DP) of 10, and genotype quality (GQ) > 20, and quality (QUAL) > 30) were filtered for
rare (defined as minor allele frequency < 1.00e-04 in gnomAD v2.1) pathogenic variants.

Genomic DNA from patients enrolled at the Imperial College was isolated from blood or heart tissues using
the Genomic DNA Extraction Kit (Qiagen) and processed for cardiomyopathy panel sequencing or WES using
Illumina NovaSeq instruments. Panel sequencing and bioinformatic analysis was performed as previously described
(96). Reads were aligned to hg38 (GRCh38) using BWA-MEM. Variants were annotated using Ensembl VEP v99
(97), and CardioClassifier (98). Rare variants (MAF<0.001) in known disease genes were considered for a potential

causal role in disease and interpreted using the ACMG-AMP variant interpretation framework (97).

Single nuclei isolation of cardiac samples and processing on the 10X Genomics platform

Samples were processed independent of disease, genotype, or control status. Nuclei isolation and library
preparation was performed at the Harvard Medical School, Imperial College London, and the Max-Delbriick Center
for Molecular Medicine as previously reported (4, 99). Isolated nuclei from flash-frozen tissue were visually inspected
under the microscope to assess nuclei integrity and manually or automatically counted using a Countess II (Life
|Technologies). Nuclei suspension was loaded on the Chromium Controller (10X Genomics) with targeted nuclei
recovery of 5,000-10,000 per reaction (Table S2).

3’ gene expression libraries were prepared according to the manufacturer’s instructions of the v3 Chromium

Single Cell Reagent Kits (10X Genomics). Quality control of final library cDNA was done using Bioanalyzer High
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Sensitivity DNA Analysis (Agilent) and the KAPA Library Quantification kit. Libraries were sequenced on an
Ilumina HighSeq 4000 or NovaSeq with a targeted read number of 30,000-50,000 reads per nucleus (Table S2).

Data pre-processing and transcriptome mapping

Bcl files were converted to Fastq files by using bel2fastq. Each sample was mapped to the human reference
genome GRCh38 with a modified pre-mRNA gtf file of Ensembl release Ens84 (/00) using the CellRanger suite
(v.3.0.1) with specifications provided in the DCMheart github repository. Reads mapping within exonic and intronic
regions were counted. Mapping quality was assessed using the cellranger summary statistics. Reads overlapping
multiple sequence features have been discarded. Two libraries (Table S2) exceeded the read number per nucleus of
200,000 and were downsampled to 100,000 reads per nucleus using the DropletUtils R package on the
molecule info.hS file (101).

Count data processing

Empty droplets (identified by Emptydrops, implemented in the CellRanger workflow) were removed,
samples were assembled into an AnnData object by concatenating the filtered feature bc matrix.h5, and metadata

information was added.

Quality control, batch correction and clustering

Downstream analysis employed the concatenated filtered feature-barcode matrices, using R Seurat v4.0.2
and Python Scanpy v1.5.1 toolkits (102, 103). Doublets were identified and filtered using Solo v0.3 per sample (104).
Additionally, scrublet scores (v0.2.1) were calculated with prior z- or log-transformation as an independent doublet
detection method (/05). Single nuclei were filtered for counts (300 < n_counts <15,000), genes (300 < n_genes
<5,000), mitochondrial genes (percent_mito <1%), ribosomal genes (percent_ribo <1%), and soft max score detected
by Solo (solo_score <0.5).

No significant differences were identified in cell-type abundances or expression profiles between free-wall
(FW), the apical core (AP) and septal (S) samples and thus these were merged and denoted as LV as previously
described (4). After read count normalization and log-transformation, highly variable genes were selected. Effects of
percentage of mitochondrial genes and total counts per nucleus were regressed out and values were scaled to unit
variance. Principal components were computed and elbow plots were used to define the appropriate number of
principal components for neighbor graph construction. Prior to manifold construction using UMAP, selected principal
components were harmonized by using R Harmony (/06) or Python Harmonypy with “Patient” as batch key (Table
S2). Nuclei were clustered using the network-based Louvain and Leiden algorithms (707, 108). Differential expressed
genes per cluster were calculated using the Wilcoxon rank sum test. Clusters with high similarity in differentially

expressed genes were merged.



Nuclei were classified for cell type or denoted unassigned (Fig. 1C). Subsequently nuclei were subclustered
to identify cell-states. Despite prior doublet removal we identified during subclustering some droplets with chimeric
transcriptional profiles. Whether these may represent real biology, background RNA noise (soup), or multiplets is
unclear. We labeled these clustered “nuclei” as unassigned (Fig. 1C, n= 52981 “nuclei”; 6%). Additional filters are
provided in scripts deposited at the DCMheart github. Lymphocytes were annotated initially by merging scRNAseq
(4) with snRNAseq data using the scVI framework v0.9.0 to improve marker identification and annotation (/09).

Subsequently scRNAseq data were then removed for further downstream analyses.

Differential gene expression and variance analysis

Differentially expressed genes (DEG) per cell type and state were calculated using the implemented
Wilcoxon rank-sum-test. Only genes with mean expression (log transformed and library size normalized
counts) >0.0125 in the control and genotype group were tested for differential expression. Genes were called as
differentially expressed with FDR<5% and |log2FC|>0.5. DEGs for rare cell states (>5 nuclei in at least 3 patients)
have not been computed. For comparison of genotype specific effects, pseudobulks for each cell type and cell state
per LV and RV sample were computed. Differential gene expression analysis on pseudobulk expression values were
performed using edgeR, v3.28.1 (110, 111).

We assessed differences in the variability across cells between patients with a specific PV or PVneg and
controls, in each cell type and each anatomical region separately. Because the variance of UMI counts is strongly
dependent on the mean expression level, we first applied a variance stabilizing transformation (//2) similar to
scTransform (//3) on the 1000 most highly variable genes. We used the Pearson residuals of a negative binomial
regression with explanatory variables: total read count of each cell and the fraction of mitochondrial reads. Next, we
computed the variance of the Pearson residuals for each gene in each patient, anatomical region and cell type. Finally,
we compared the variance for each gene between patients with a specific mutation (or PVneg) against the control
group using a Wilcoxon rank sum test and corrected across all comparisons made using the Benjamini Hochberg

method.

Differential abundance analysis

Compositional data analyses were performed to determine genotype specific differences in cell type
abundances, excluding unassigned nuclei. Analyses of cell counts per cell type and cell counts per cell state within
each cell type were performed separately in each anatomical region (LV and RV). To account for the compositional
nature of the data count data were transformed using the centered log ratio (CLR) transformation. Counts of zero were
assumed to be due to insufficiently deep sampling and therefore imputed using the method of multiplicative
replacement (7 /4). To assess statistical differences between groups of samples, for example all patients with a specific
genotype vs. controls, a linear model of the CLR values was estimated as a function of the grouping encoded as an

indicator variable and a t-test was performed to determine the significance of the regression coefficient. Differential
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abundance of all cell types or states in each anatomical region was assessed separately between patients of each
genotype and controls. In addition, all DCM patients were compared to controls. For the analysis of cell states within
each cell type, only cell state counts assigned to each cell type were considered, effectively normalizing all cell states
within a cell type to 100%. Samples with less than 10 cells per cell type were excluded from the cell state analysis.
Before analyzing differential abundance between samples of different genotypes or diagnosis, we assessed whether
samples from different anatomical regions show compositional differences using the region as a grouping variable in
the model described above. The comparison of FW and AP showed no significant abundance changes (all FDR>5%,
Fig. S2D). Therefore AP and FW were merged. Next, we also compared the merged AP and FW to SP. As no
significant abundance changes were observed (all FDR>5%, Fig. S2E) AP, FW and SP were merged into LV.

We also employed CLR transformed cell type abundance to consider sex specific differences of cell type
abundance, separately for LVs and RVs, between DCM (10 females, 29 males) and controls (7 females, 11 males).
As explanatory variables we included the additive terms phenotype (control=0, DCM=1) and sex (female=0, male=1)
as well as an interaction term (DCM and male = 1, others = 0). We tested whether the interaction term was different
from 0, which would indicate a significant (FDR < 5%) sex specific difference. Using the same approach, we compared
sex specific cell abundances between LMNA and control hearts, as only this genotype had sufficient samples from
males (n=7) and female (n=5) patients.

In addition to CLR values, abundance differences were also reported as differences of mean percentages
between groups (while using statistical significance from the CLR analysis). The proportional changes in mean
percentages of control and disease samples were reported (Figs. 1D, S4, S8, S12, S17, S21, S26, S32, S35, S38).
Positive values indicate higher abundance in the disease group. In addition to CLR values, log ratios of abundances
for cell type (or state) pairs between genotypes and controls were ascertained and reported. CLR values are normalized
to the geometric mean of all abundance values. For a more intuitive interpretation of the differential abundance results,
we complemented the CLR analysis with an analysis of all pairwise cell type (respectively cell state) ratios. Based on
the imputed abundances used for the CLR analysis we also computed differences in log ratios of counts of cell type
cl and cell type c2 between groups of patients as assessed in the CLR analysis. Specifically we tested whether log
(c1/c2) in group 1 was equal to log (c1/c2) in group 2 using a t-test. All P-values were adjusted for multiple testing

using the Benjamini and Hochberg method and only significant results are shown.

GOterm and pathway enrichment

GOterm enrichment analysis was performed using the web-tool Gprofiler2 with default settings (/175).

Enriched KEGG pathways were identified using 'Pathway Enrichment Analysis' from the R package 'ReactomePA'
(116).
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Gene set score enrichment

Enrichment of individual pathways was calculated using the score genes functionality implemented in
Scanpy on log-transformed and scaled counts (/02) using reference gene sets. These included: Apoptosis
(REACTOME_APOPTOSIS, M15303; https://reactome.org), OSM pathway (4), TGFB-stimulation (curated from
(30) using 1dFC>0.7 and FDR of 0.05), Endothelial-to-mesenchymal (EMT) and mesenchymal-to-endothelial (MET)
(Table S36), Deathbase (/17) cross-referenced with the gene ontology GO:0010942 and GO:0060548, and Antigen

presentation (MHCII) score (/18). Cell-cycle scoring was defined using the Scanpy function score_genes _cell _cycle.

Cell-cell interaction and differential connectome analysis

Cell-cell interactions between assigned cell states in LVs and RVs were inferred using CellChat (version
1.1.0 using the cell-cell interaction database) (75). The cellchat database 1is accessible at

http://www.cellchat.org/cellchatdb/. Analyses were performed using the log-transformed normalized gene counts with

default parameters, and population size was accounted for when calculating communication probabilities. Data from
controls and genotypes were compared to identify significant changes.

Interaction heatmaps were generated using the table produced by the rankNet() function comparing each
genotype to controls, which produced aggregated communication probabilities across all cell states for each signaling
pathway and p-values. To address for multiple testing p-values were Bonferroni-adjusted using the p.adjust() function
in the R stats package. The log2(fold change) in aggregated communication probability of genotype vs control was
calculated and plotted on a heatmap wusing heatmap.2() from the gplots package (https://CRAN.R-
project.org/package=gplots). Heatmap color scales depict 0.05 sized intervals, from -14 to 14.

Circle plots (Fig. 6C) showing pathway specific changes in interaction strength between cell types were
generated by aggregating communication probabilities per cell state, while subsetting for a specified pathway using
the aggregateNet() function. Communication probabilities were then aggregated for cell states of the same cell type
using the mergelnteractions() function and plotted using netVisual diffInteraction(). Chord plots showing cell state

interactions for specific signaling pathways were generated using the netVisual aggregate() function in CellChat.

Masson trichrome staining and collagen quantification via hydroxyproline

Control and disease LV and RV tissue were fresh-frozen in isopentane (ThermoFisher) at -80°C and OCT
(VWR) embedded. Sections were cut (10 pm thickness) using a microtome, placed onto slides and processed using a

standard Masson trichrome staining protocol.
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Extracellular matrix was quantified within 50 mg of LV and RV (Table S15) tissue, by measuring the

quantity of hydroxyproline, a common amino acid in mammalian collagens, as described (/19).

Differential gene expression validated by single molecule fluorescent in situ hybridization with RNAscope probes

Fresh-frozen LVs or RVs obtained from controls or patients with PVs were fixed overnight in 4%
paraformaldehyde solution and then placed in 30% sucrose in PBS until submerged. Tissues were embedded in OCT
compound, sectioned to 5 pm thickness using a cryotome and mounted on Superfrost Plus slides. Slides were pre-
treated and incubated with probes according to the manufacturer's protocol (RNAScope Multiplex Fluorescent
Reagent Kit V2, ACDBiotechne), but used Protease IV for digestion. Positive and negative controls were performed
for each tissue sample. RNAscope probes were multiplexed according to the manufacturer's protocol and run with
positive and negative controls. Tissue sections were counterstained with DAPI (Wavelength: 358/461 nm) and WGA
(WGA Alexa Fluor® 488 conjugate by Invitrogen, Wavelength: 495/519 nm; Biotium CF®633 WGA Wavelength:
630/650nm). Opal 520 (Wavelength: 494/525 nm), Opal 570 (Wavelength 550/570 nm), Opal 620 (Wavelength
588/616 nm), Opal 690 (Wavelength 676/694 nm) dyes (Akoya Bioscience) were conjugated to the RNAscope probes.
Slides were imaged using one of three microscope platforms. The LSM710 confocal microscope (Zeiss, North
American samples) was used with 25x or 40x oil immersion objectives (1.3 oil, DIC III). The SP8 confocal microscope
(Leica, for samples obtained and processed in Germany) was used with a NA 1.4 63x oil immersion objective. The
LSM780 confocal microscope (Zeiss, samples from the Imperial College) was used with 20x (0.8 NA) or 40x oil
immersion objectives (1.3 NA). Spectral bleed-through was corrected using Fiji or Zeiss’ Zen Black software
according to the manufacturer's manual (120, 121). Cell segmentation and transcript quantification/spot detection for
cardiomyocytes was performed using Multiple-Choice Microscopy (MCMICRO, Fig. 2C) (122). Cells were
segmented using a custom trained instance segmentation model, Cypository (/23), based on the MaskRCNN resnet50
architecture (/24) and pretrained on the COCO dataset (/25). Briefly, images were manually annotated with two
classes - cell membrane stained with wheat germ agglutinin and background consisting of all other areas. Annotated
data was split into training, validation and test images in a 0.72:0.18:0.1 split. Training was performed with stochastic
gradient descent with a learning rate of 0.005, momentum of 0.9 and weight decay of 0.0005. Cypository was deployed
using MCMICRO (/22) which is an end-to-end nextflow-based image analysis pipeline for tissue images. After cells
were segmented as label masks, spot detection of RNA was performed in S3segmenter (/26) by convolving a
Laplacian of Gaussian (LoG) kernel over the image and identifying local maxima that had responses above a threshold.
The number of spots per channel and mean intensity were then quantified on a single cell basis. In order to quantify
SMYDI transcripts per CMs, control (n=2) and disease samples were analyzed. At least five images per sample were
taken at different regions with 64 to 114 CMs per image. Other RNAscope quantifications (Figs. 2D, S6D) was

performed manually in controls and disease samples using the H-score as described by ACDBio (ACDBiotechne).

Immunofluorescence Staining
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Fresh LVs obtained from controls (n=5) or patients with PVs (n=5) were embedded in OCT compound, and
sectioned at 5 pum thickness using a cryotome and mounted on Superfrost Plus slides. Slides were fixed in 4%

paraformaldehyde solution and permeabilized with 0.1% Triton X-100 (Sigma-Aldrich). After several washing steps,

slides were incubated in TrueBlack® Lipofuscin Autofluorescence Quencher (Biotium), then blocked in 4% Bovine

Serum Albumin (BSA). Slides were incubated in primary antibodies for SMYD1 (Abcam, ab181372) and Cardiac
Troponin T (¢TnT) to identify cardiomyocytes (Invitrogen, MA5-12960) overnight at 4°C. Next, slides were incubated
with anti-rabbit Alexa Fluor™ 568 (Invitrogen, Wavelength: 578/603 nm), and anti-mouse Alexa Fluor™ 647
(Invitrogen, Wavelength: 650/665 nm) to visualize SMYDI1 and cTnT respectively. Tissue sections were
counterstained with DAPI (Wavelength: 358/461 nm) and WGA (WGA Alexa Fluor® 488 conjugate by Invitrogen,
Wavelength: 495/519 nm). Slides were mounted in ProLong™ Gold Antifade Mountant (Invitrogen) and
coverslipped. Slides were imaged using the SP5 laser scanning confocal microscope (Leica) with a 100x immersion
objective (1.4 NA). Spectral bleed-through was corrected using Fiji or Zeiss’ Zen Black software according to the
manufacturer's manual (120, 121). SMYDI1 quantification per CMs (cTnT staining) was performed by measuring the
integrated density using Fiji, where a minimum of ten transmural images were quantified with a total of 97 to 174

CMs per sample.

Selection of GWAS candidate loci and assessment of expression in cell types

Table S65 provides the candidate genes residing in 15 previously identified DCM GWAS loci. Differential
gene expression results were obtained from the edgeR analysis. For analyses of GWAS genes we applied a strict fold
change cutoff of |log2FC[>1 for disease compared to controls, and FDR cutoff of 5%. In addition, we removed signals
derived from ambient RNA, identified as transcripts from the top 30 genes with cell type specific expression and high
technical noise for each cell type.

Cell type specific expression was defined by first computing the average UMI count per gene, per nucleus,
per cell type. Next, these averages per gene were normalized to sum to 100% across cell types. Finally, genes were
termed as specifically expressed if a cell type's average UMI fraction was >85%. To assess expression above

background levels, background droplets that do not contain nuclei were identified by the cellranger pipeline.

Construction of graph attention network models

Cell-types were split into separate anndata files followed by library-size normalization and log-
transformation per nucleus (barcode). Highly variable genes (HVGs) were selected based on mean expression and
dispersion. Effects of percentage of mitochondrial genes and total counts per nucleus were regressed out and values

were scaled to unit variance. KNN-neighbor graphs were computed (sc.pp.neighbors) on harmonized (Patient as batch
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key) PCs per cell-type as edge input for graph attention (GAT) models, using classification model structure described
above.

In order to recognize genotype specific transcriptional patterns, an aggregated GAT model was built
consisting of the individual cell-type specific GAT models, where each model was trained per cell-type and validated
on test data (not included in training). Model performance was evaluated by using an inductive learning policy using
a leave-one-out cross-validation approach (LOO-CV) .

Training was stopped at the point when performance on the validation dataset did not improve to avoid
overfitting (early stopping procedure). Subsequently, the genotype probability was assigned based on the
transcriptional signature of each nucleus from one patient that was left out of the training, a process that was replicated
to encompass all patients. Probabilities across all nuclei per cell-type were aggregated to obtain the genotype-
likelihood for each patient (Fig. 6D). The final classification model was restricted to highly abundant cell types (CM,
FB, EC and myeloid cells) in LV. Each cell type per genotype was given a weight, which was obtained by multiplying
the true positive (TP) and 1-false positive (FP) rate.

GAT takes node (nuclei) features (X, anndata.X) and the adjacency matrix (4) of the nodes as input features (Fig.
S53). X = {x4, X3, X3, ..., Xy }, X; € RF where N is the number of nodes, and F is the number of HVGs for each node.
In the first step the input files were forwarded to the GAT layer. As output, the learned graph representation was
received (). Secondly, layer normalization (LN) and Exponential Linear Unit activation function (ELU) was applied

to the learned graph representation. LN is defined as

x — E[x]

LN(x) = ————
Var[x] + €

and the ELU activation function is

ELU(x) = {x, ax(e*—1), x>0x<0,

where a = 1.

Next, a self-attention layer (F’) was applied (/27) and the procedures from the previous step (LN and ELU) were
repeated. Hidden features were extracted from the graph representation. H’ and output from F~’ were concatenated to

feed into the second GAT layer. Finally, a log-softmax function for multiclass classification was executed.

X
LogSoftmax(x;) =log log (67)
Zj e®
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For multiclass classification a negative log-likelihood was used as a loss function.
The individual GAT layers were built as described in (/28); in brief:

1) Apply a linear transformation — Weighted matrix W to the feature vectors of the nodes.

where W is an earnable weight matrix and h; a lower layer embedding.

20 = WORY

2) Attention Coefficients determine the relative importance of neighboring features to each other. These were

calculated using the formula.

Y0 = LeakyReLU (@[ | 0 )

First, the z embeddings of the two nodes are concatenated, where || denotes concatenation. Then, it takes the dot
product of concatenation and a learnable weight vector a. In the end, a LeakyReLU was applied to the result of the

dot product. The attention score indicates the importance of a neighbor node in the message passing framework.

3) Normalization of attention coefficients by applying a softmax to normalize the attention scores on each node’s

incoming edges. Ni denotes the set of indices of neighbors of a node with index .

0)
eli
a® =

ij = [O)

Vik
Dkeny €'

4) Computation of final output features

G+ _ o, m
h; =0 a;; z;
JEN(i)

5) Computation of multiple attention mechanisms, improving stability of the learning process:

13



N
! 1 !

K
k=1 JjeN(@)

where K denotes the number of independent attention maps used.

To derive the final prediction per patient, an aggregation procedure was used in which median prediction scores per
cell-type per patient were multiplied with a pre-computed weight matrix. Prediction scores per cell-type equals the
relative abundance of nuclei assigned to a genotype. The weight matrices were created from previously computed

confusion matrices. The aggregation procedure was defined as,

n
P = Z?iWi
i=1

where P denotes the probability per genotype, y the probability of a cell-type to be derived from a patient with a
certain genotype. W is the pre-computed weight matrix. n equals the number of cell-types included in the aggregation
procedure. The weighted aggregation procedure yielded more robust results than mean value per class, as errors per

classifier were compensated.
Alternative modeling

For alternative modeling, six different models were used, and accuracy and F1 macro on cross validation was
compared. An example for fibroblasts is below (Table S71). Model performance was measured on the cell-type
level. For input data we used the gene expression data matrix (anndata.X) and meta information about patients (such
as age, gender). Hyperparameters for a) Random Forest, b) XGBOOST and c) KNN classifiers were selected
according to GridsearchCV. The training procedure was based on cross validation with patient stratification, to
avoid overfitting of patient specific transcriptional patterns. The best result by alternative methods was obtained by
the Random Forest Classifier with an accuracy of 0.39 and F1 macro score 0.15. In addition to three classical
machine learning approaches, three approaches based on neural networks were compared. i) Feed Forward Neural
Network (FFNN) on the count matrix with three hidden layers obtained a lower performance on validation data. ii)
SCANVI (single-cell ANnotation using Variational Inference), developed for single-cell annotation using
variational inference (/29), was outperformed by GAT in the unbiased genotype classification task. iii) An
additional FFNN on graph embeddings was applied. The neighbors’ information from the graph (considering first

and second neighbors order) and edge quantity were extracted using a graph neural network embedding and used as

14



input features. This approach performed better than other neural networks and the classical machine learning

approaches, however, was still outperformed by GAT (accuracy and F1 macro).

15
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Figure S1: Quality assessment of snRNAseq data

(A) Infographic depicts the 78 individuals studied (women, pink; men, blue; binned by age range), including controls
(unused donor hearts), patients with pathogenic variants (PV pos) or patients with unknown disease etiology (PVneg).
Further clinical details are provided in the metadata sheet (Table S1). (B) Estimated number of nuclei, mean reads and
median UMI count per nuclei (Cellranger) as well as cDNA (ng/pl). (C) Barcode rank plots across all samples. A
clear distinction between nuclei containing droplets and empty droplets (background ambient RNA) indicated a low
overall background. (D) Barcode rank plot across all samples as in (C). Coloring code shows classification of nuclei:
turquoise, nuclei-containing droplets (true); red, empty droplet, background, or ambient RNA (false). (E) Violin plots
show number of genes (n_genes), number of UMIs (n_counts), percent UMIs mapping to mitochondrial
(percent _mito) and ribosomal genes (percent ribo) and doublet score (solo_score) plotted per cell type after quality

control filtering and clustering.

17



A

#Cell states ()

Abundance (%)
0 20 a0 80 100
BO_HO8_LVO_premrna | 1 aess g Patient
BO_HO8_LV1_premrna ] Il so073 g L al . . HOB
B8O W12 RVO premma | o | seo0s E‘ 10.0- . :ls
BO_H12_RV1_premrna ] a2e0 E] . e
BO_H40_LV1_premrna . | 3877 3 k Cell type
BO_H40_LV2_premrna [ ] | 3744 ,§ 101 ER cM
BO_H40_LVW_premrna ] | 2729 £ : » Mural
BO_H49_LVO_premrna LR I ‘ . EC
3 . Myel
BO_H49_LV1_premrna | a0 S ol m . L kymeh
BO_H51_LVO_premrna | sses 8 R ‘ o Mast
BO_H51 LV1_premrna ] | 3819 2 . T
o 04 1.0 10.0
Celltype - mural  myel + hast Replicate1 (abundance cell type %)
* FB Lymph * AD
) ) AP vs FW D AP and FW vs SP
6 % 6 -
4 Sa-
* 3 | il
0 ®0- % - r y :
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
P-value P-value
AD CcM EC FB Lymphoid Mast Mural Myeloid NC
. 6
3 o 0.016,
31 T . *
E B || g b || e el b
§ 01 ‘ e = o g
2 ! = O |7 T
g -3 E éé 7 d:? Sex
g -6 . ‘- e
g ¢ | =im
@ 3 ==
g T || e || ==Ll BT
g o, . =% b gy e7 == 2 s [RY
£ %Ilil | c,t.u g = m Q Lo 3
a2 -3 H N g
< el 3 s
2§ 838 88 28 838 85 28 23§ 38
£t o - £ o E o E o E o E o E o E o
o o 5] o o o o 5] o
Phenotype
6 AD cM EC FB Lymphoid Mast Mural Myeloid NC
E 3 5
1 + . .
5 T | e || e —tam|| -
g 4] e . o & v
5 H m o | fate .|| -
£ -3 E +ﬁ l?‘ — Sex
A ° =k
S 6 1 0088 & m
8 3] By A \ .
g Tor|| e || e | BN
B 04 = .‘#’5‘3 ST = = [RV
3 I—It] * = \ ¢ . R
g = i
64 °
g 8 82 8% 82 832 82 82 8%
: %5 $§ £5 $8 ¢35 $§8 £§8 8 ¢£§8



Figure S2: Schematic of study cohort, replicate analyses, and comparison of LV regions

(A) Biological replicates of tissue samples obtained from neighboring areas of the same heart (from individuals HOS,
H12, H40, H49 and H51) and studied after libraries were generated in different batches. (B) There was a high
correlation between replicates (0.74 and 0.99), based on cell type proportions. (C) Histogram showing p-value
distribution of differential cell state abundances between LV free walls (FW) and apex (AP) samples. p-values were
uniformly distributed, and no significant differences were detected at FDR < 10%. (D) Parallel comparisons as shown
in (D), between LV apical (AP) and free wall (FW) samples versus septum (SP). Based on these analyses, data was
combined for all LV regions. (E) Abundance changes (CLR transformed) of cell types in healthy control compared to
all DCM (LMNA, TTN, RBM20, PVneg) and LMNA only.
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Figure S3: Abundance analyses and marker genes of cardiac cell types in LVs and RVs
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(A) Box plots show cell type distribution across controls and genotypes in LVs and RVs. p-values are indicated for

significant proportional changes, FDR<0.05. (B) Dotplots show selected marker genes of each cell type. Dot size,

fraction (%) of expressing cells; color, mean expression level.
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Figure S4: Relative cellular composition analyses in RV

(A) Upper panel: Mean abundance (%) of cell types in healthy control RVs. Lower panel: Proportional changes of
cell types in specified genotypes or aggregated across DCM genotypes. Proportional changes are scaled by color:
increased (red) or decreased (blue) in disease versus control. p-values are indicated for significant proportional
changes, FDR<0.05. (B) Pairwise cell-type abundance ratios in specified genotypes or aggregated DCM genotypes in

RVs relative to controls. Color scale, FDR, significance depicted as in (A).
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Figure S5: Genotype specific upregulated genes in cardiomyocytes (CMs)

(A) Total number of uniquely upregulated genes (log2FC >0.5) for each genotype in LVs and RVs, across all CM
states. FDR<0.05. (B) Upset plots of all upregulated genes (1og2FC>0.5, FDR<0.05) in LVs and RVs demonstrated
shared (connected by lines) and specific expression (no connected lines) by genotypes. The total number of genes in

the set is plotted as a bar on top (set size).
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Figure S6: Genotype specific compositional changes across cardiomyocyte (CM) cell states

(A) Box plots show apoptosis gene expression scores in LV and RV CMs. Significant p-values comparing the
genotype to control (FDR<0.05) are shown above the whiskers. (B) Dotplots illustrate fold-change (log2FC) and
significance (-1g(FDR)) of MHY6 and MYH?7 across diseased genotypes and all cell states in LVs (left) and RV (right)
(C) Dotplots illustrate fold-change (log2FC) and significance (-Ig(FDR)) of selected dysregulated genes across
diseased genotypes and all cell states in the LVs and RVs. (D) Single-molecule RNA fluorescent in situ hybridization

exemplifies decreased SMYD1 (red) expression in CMs (identified by TNNT2 transcripts, cyan) within a DCM heart
23



with a PV in PLN (phospholamban). (E) Single-channel images of SMYD1 immunohistochemistry are shown in
Figure 2D. (F) (Left) Single-molecule RNA-fluorescent in situ hybridization (RNA-scope) of CPEB4 (red) and
TNNT?2 (cyan) in control and PKP2 RVs. (Right) Bar graph showing quantified expression of CPEB4 assessed in
controls vs. PKP2 (H-score, spots per CM) (right) with p-value indicated. Cell boundaries, WGA-stained (green);
nuclei, DAPI-stained (blue); bar 10 pm. (G) Doptplots visualize the levels of fold-change (logFC) and significance (-
logl0(FDR)) of selected dysregulated genes across diseased genotypes and each cell state in LVs and RVs.
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Figure S7: Characterization of cardiomyocyte (CM) state abundance and gene expression

(A) Box plots show CM state distribution across controls and genotypes in LVs and RVs. p-values are indicated for
significant proportional changes, FDR<0.05. (B) Total number of upregulated genes across CM states and genotypes
in LVs and RVs. Only significantly upregulated expressed genes (log2FC >0.5) are shown, FDR<0.05. (C) Dotplot
shows selected marker genes of CM states. Dot size, fraction (%) of expressing cells; color, mean expression level.

(D) Single-molecule RNA-fluorescent in situ hybridization (RNA-scope) of BMPRIB (red) enriched in vCM1.3 and
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TNNT?2 (cyan) in TTN LV. (E) RNA-scope of ATF3 (red) and NR4A3 (yellow), both enriched in vCM3.1, as well as
TNNT?2 (cyan) in control LV and RV. (D and E) Cell boundaries, WGA-stained (green); nuclei, DAPI-stained blue);
bar 10 um (note longer bar in 77N panel).
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Figure S8: Genotype specific compositional changes in cardiomyocytes (CMs)

(A) Upper panel: Mean abundance (%) of CM states in healthy control LVs. Lower panel: Proportional changes of

CM states in specified genotypes or aggregated across DCM genotypes. (B) as in (A) but for RVs. (C) Pairwise CM

state abundance ratios in specified genotypes or aggregated DCM genotypes in LVs relative to controls. (D) as in (C)

but for RVs.
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Figure S9: Genotype specific upregulated genes in fibroblasts (FBs)

(A) Total number of uniquely upregulated genes (log2FC >0.5) for each genotype in LVs and RVs across all FB states,
FDR<0.05. (B) Upset plots of all upregulated genes (log2FC>0.5, FDR<0.05) in LVs and RVs demonstrated shared
(connected by lines) and specific expression (no connected lines) by genotypes. The total number of genes in the set

is plotted as a bar on top (set size).
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Figure S10: Genotype specific gene expression in fibroblasts (FBs)
(A) Dot plot shows levels of EGFR and AGTRI across genotypes in LV FBs compared to control. (B) Dot plot shows

levels of fold-change (logFC) and significance (-logl0(FDR)) of TGFB1-3 across genotypes in LV FBs compared to
control. (C) Dot plot illustrates fold-change (log2FC) and significance (-1g(FDR)) of selected genes encoding ECM
modulators in FBs across genotypes. (D) Box plot shows collagen gene expression scores in LV FBs. Significant p-
values comparing the genotype to control (FDR<0.05) are shown above the whiskers. (E) Hydroxyproline assay
(HPA) in RVs quantifying cardiac collagen content for each genotype. p-values indicate significant differences. (F)
TGFp activation score for vFB2 in RV. (A, B and D) Dot sizes represent significance values; color intensity denotes

fold-change.
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Figure S11: Characterization of fibroblast (FB) state abundance and gene expression

(A) Box plots show FB state distribution across controls and genotypes in LVs and RVs. p-values are indicated for
significant proportional changes, FDR<0.05. (B) Total number of upregulated genes across FB states and genotypes
in LVs and RVs. Only significantly upregulated expressed genes (log2FC >0.5) are shown, FDR<0.05. (C) Dotplot
shows selected marker genes of fibroblast states. Dot size, fraction (%) of expressing cells; color, mean expression

level.
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Figure S12: Genotype specific compositional changes in fibroblasts (FBs)

(A) Upper panel: Mean abundance (%) of FB states in control LVs. Lower panel: Proportional changes of FB states
in specified genotypes or aggregated across DCM genotypes. (B) as in (A) but for RVs. (C) Pairwise FB state
abundance ratios in specified genotypes or aggregated DCM genotypes in LVs relative to controls. (D) as in (C) but
for RVs.
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Figure S13: Validation of fibroblast (FB) states vFB.1 and 1.2

(A) Single-molecule RNA-fluorescent in situ hybridization (RNAscope) demonstrated colocalization of CST3 (red)
and DCN (cyan), enriched in vFB1.1 (exemplified in PLN LV). UMAP representations depict FB state (mid) and cell
type (right) specificity of CST3. (B) RNAscope demonstrated colocalization of DAAMI (red) and DCN (cyan),
enriched in vFB1.2 (exemplified in PKP2 LV). DCN serves as a pan-fibroblast marker cell boundaries, WGA -stained
(green); nuclei, DAPI-stained (blue); bar 10 pm. UMAP representations depict FB state (mid) and cell type (right)
specificity of DAAMI.
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Figure S14: Analyses of gene expression indicating fibroblast (FB) activation
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(A) TGFpB-activation score in RV vFB2. Significant p-values comparing genotypes to control are shown above the

whiskers. (B) Left: Box plot visualizes the level of average IL11 expression in LV vFB2 across genotypes. p-values

were calculated using a hypergeometric test. p-values <0.05 are indicated with *. Right: Dot plot showing L1

expression across all fibroblast states. The dot sizes represent the fraction (%) of expressing cells; the color scale

represents the corresponding scaled mean expression levels. (C) Single-molecule RNA-fluorescent in situ
hybridization (RNAscope) of /L1 (red), POSTN and DCN (cyan) expression (yellow) in LMNA LV (left) and RBM20
LV (right). DCN serves as a pan-fibroblast marker while POSTN expression depicts activated fibroblast (vFB2). Cell

boundaries, WGA-stained (green); nuclei, DAPI-stained (blue); bar 10 pm. (D) OSM pathway score in LV vFB3.

Significant p-values comparing genotypes to control are shown above the whiskers.
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Figure S15: Genotype specific upregulated genes in mural cells (MCs)

(A) Total number of uniquely upregulated genes (log2FC>0.5) for each genotype in LVs and RVs across MC states,
FDR<0.05. (B) Upset plots of all upregulated genes (log2FC>0.5, FDR<0.05) in LVs and RVs demonstrated shared

(connected by lines) and specific expression (no connected lines) by genotypes. The total number of genes in the set

is plotted as a bar on top (set size).
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Figure S16: Validation of mural cell (MC) states

(A) Validation of increased ADAMTS-AS2 and decreased ADAMTSY expression in MCs of diseased genotypes using
RNA in situ hybridization (RNAscope). RNAscope of ADAMTS9 (orange) and ADAMTS-AS2 (red) in control and
TTN LVs. KCNJ2 (cyan) served as a marker for mural cells. Cell boundaries: WGA (green), nuclei stain: DAPI (dark
blue), bar length: 10 pm. Dotplot shows ADAMTS9-AS2 and ADAMTS9 expression across cell types. Dot size, fraction

(%) of expressing cells; color, mean expression level. (B) Feature plot shows selected marker genes of MC states.
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Figure S17: Characterization of MC state abundance and gene expression

(A) Box plots show MC state distribution across controls and genotypes in LVs and RVs. p-values are indicated for

significant proportional changes, FDR<0.05. (B) Total number of upregulated genes across MC states and genotypes

in LVs and RVs. Only significantly upregulated expressed genes (log2FC >0.5) are shown, FDR<0.05. (C) Dotplot

shows selected marker genes of MC states. Dot size, fraction (%) of expressing cells; color, mean expression level.
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Figure S18: Genotype specific compositional changes in mural cells (MCs)

(A) Upper panel: Mean abundance (%) of MC states in control LVs. Lower panel: Proportional changes of MC states
in specified genotypes or aggregated across DCM genotypes. (B) as in A but for RVs. (C) Pairwise MC state
abundance ratios in specified genotypes or aggregated DCM genotypes in LVs relative to controls. (D) as in (C) but
for RVs.
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Figure S19: Genotype specific upregulated genes in endothelial cells (ECs)

(A) Total number of uniquely upregulated genes (log2FC>0.5) for each genotype in LVs and RVs across all EC states,
FDR<0.05. (B) Upset plots of all upregulated genes (log2FC>0.5, FDR<0.05) in LVs and RVs demonstrated shared
(connected by lines) and specific expression (no connected lines) by genotypes. The total number of genes in the set

is plotted as a bar on top (set size).
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Figure S20: Characterization of endothelial cell (EC) state abundance and gene expression

(A) Box plots show EC state distribution across controls and genotypes in LVs and RVs. p-values are indicated for
significant proportional changes, FDR<0.05. (B) Total number of upregulated genes across EC states and genotypes
in LVs and RVs. Only significantly upregulated expressed genes (1og2FC >0.5) are shown, FDR<0.05. (C) Dot plot

shows selected marker genes of EC states. Dot size, fraction (%) of expressing cells; color, mean expression level.
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Figure S21: Genotype specific compositional changes in endothelial cells (ECs)

(A) Upper panel: Mean abundance (%) of EC states in control LVs. Lower panel: Proportional changes of EC states
in specified genotypes or aggregated across DCM genotypes. (B) as in (A) but for RVs. (C) Pairwise EC state
abundance ratios in specified genotypes or aggregated DCM genotypes in LVs relative to controls. (D) as in (C) but
for RVs.
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Figure S22: Cell-phase, EMT/MET, and apoptosis related pathways in endothelial cells (ECs)

(A) Cell-phase classification of ECs. Left: Nuclei in G2M (orange) and S-phase (green) are highlighted. Right: Each
dot represents the abundance of cycling ECs of a patient in LV and RV. The table of genes used for classification is
provided in Table SEC2. (B) EMT/MET classification of ECs. Left: Nuclei in EMT (blue) and MET (orange) are
highlighted. Right: Each dot represents the abundance of transitional ECs of the EC7.0 population in LVs and RVs.
The table of genes used is provided in Table SEC2. Nuclei with a score lower than 0.3 for both processes were
considered as unscored and nuclei with a MET score higher than an EMT score were considered as undergoing MET.
(C) Classification of ECs showing higher expression of positive and negative regulators of cell death. Right: Each dot
represents the abundance of apoptosis inhibiting ECs of total EC population in LVs and RVs. The table of genes used
is provided in Table SEC2. Nuclei with a score lower than 0.1 were unscored and nuclei with a greater positive than

negative score were denoted as undergoing cell death.
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Figure S23: UMAP embedding and expression of selected marker genes of myeloid cells.

This is the unmodified UMAP of Fig. 4A, embedding the 17 myeloid states.
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Figure S24: Genotype specific upregulated genes in myeloids

(A) Total number of uniquely upregulated genes (log2FC >0.5) for each genotype in LVs and RVs across all myeloid
states, FDR<0.05. (B) Upset plots of all upregulated genes (log2FC>0.5, FDR<0.05) in LVs and RVs demonstrate
shared (connected by lines) and specific expression (no connected lines) by genotypes. The total number of genes in

the set is plotted as a bar on top (set size).
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Figure S25: Characterization of myeloid state abundance

(A) Total number of upregulated genes across myeloid states and genotypes in LVs and RVs. Only significantly
upregulated expressed genes (log2FC>0.5) are shown, FDR<0.05. (B) Dotplot shows selected marker genes of
myeloid states. Dot size, fraction (%) of expressing cells; color, mean expression level. (C) Dotplot highlighting
selected marker genes of cDC1 and cDC2. The dot sizes represent the fraction (%) of expressing cells; the color scale
represents the corresponding mean expression levels. (D) Dotplot highlighting selected marker genes of different
LYVE1 MP populations. The dot sizes represent the fraction (%) of expressing cells; the color scale represents the

corresponding mean expression levels.
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Figure S26: Characterization of myeloid state abundance
Box plots show myeloid state distribution across controls and genotypes in LVs and RVs. p-values are indicated for

significant proportional changes, FDR<0.05.
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Figure S27: Genotype specific compositional changes in myeloids
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A) Upper panel: Mean abundance (%) of myeloid states in control LVs. Lower panel: Proportional changes of
Y

cardiomyocyte states in specified genotypes or aggregated across DCM genotypes. (B) as in (A) but for RVs. (C)

Pairwise myeloid state abundance ratios in specified genotypes or aggregated DCM genotypes in LVs relative to

controls. (D) as in (C) but for RVs.
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Figure S28: OSM and MHCII expression in myeloids

(A) Dot plot shows OSM expression across genotypes in LV MP_OSM compared to control. Dot sizes represents
significance values; color intensity denotes fold-change. (B) Enrichment score of antigen presentation MHCII gene
expression in LVs across antigen presenting myeloid populations and genotypes. ¢cDC1, ¢cDC2, MO_CD16,
MO _VCAN, MP_FOLR2 and MP_LYVEI1lo/MHCII hi are included. (C) Dotplot highlighting MHCI and II genes
across all assigned myeloid states (all regions and genotypes). The dot sizes represent the fraction (%) of expressing

cells; the color scale represents the corresponding mean expression levels.
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Figure S29: Genotype specific upregulated genes in lymphoids

(A) Total number of uniquely upregulated genes (log2FC>0.5) for each genotype in LVs and RVs across all lymphoid
states, FDR<0.05. (B) Upset plots of all upregulated genes (log2FC>0.5, FDR<0.05) in LVs and RVs demonstrated
shared (connected by lines) and specific expression (no connected lines) by genotypes. The total number of genes in

the set is plotted as a bar on top (set size).
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Figure S30: Characterization of lymphoid state abundance

Box plots showing myeloid state distribution across controls and genotypes in LVs and RVs. p-values are indicated

for significant proportional changes, FDR<0.05.
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Figure S31: Characterization of lymphoid state gene expression
(A) Total number of upregulated genes across lymphoid states and genotypes in LVs and RVs. Only significantly
upregulated expressed genes (log2FC>0.5) are shown, FDR<0.05. (B) Dotplot shows selected marker genes of

lymphoid states. Dot size, fraction (%) of expressing cells; color, mean expression level.
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Figure S32: Genotype specific compositional changes in lymphoids

(A) Upper panel: Mean abundance (%) of lymphoids states in control LVs. Lower panel: Proportional changes of
lymphoid states in specified genotypes or aggregated across DCM genotypes. (B) as in (A) but for RVs. (C) Pairwise
lymphoid state abundance ratios in specified genotypes or aggregated DCM genotypes in LVs relative to controls. (D)
as in (C) but for RVs.
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Figure S33: Genotype specific upregulated genes in neuronal cells (NC)
(A) Total number of uniquely upregulated genes (1o0g2FC>0.5) for each genotype in LVs and RVs across all NC states,
FDR<0.05. (B) Upset plots of all upregulated genes (log2FC>0.5, FDR<0.05) in LVs and RVs demonstrated shared

(connected by lines) and specific expression (no connected lines) by genotypes. The total number of genes in the set

is plotted as a bar on top (set size).
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Figure S34: Characterization of neuronal cell (NC) state abundance and gene expression

(A) Box plots show NC state distribution across controls and genotypes in LVs and RVs. p-values are indicated for
significant proportional changes, FDR<0.05. (B) Total number of upregulated genes across NC states and genotypes
in LVs and RVs. Only significantly upregulated expressed genes (log2F >0.5) are shown, FDR<0.05.
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Figure S35: Genotype specific compositional changes in neuronal cells (NC)

(A) Upper panel: Mean abundance (%) of NC states in control LVs. Lower panel: Proportional changes of NC states

in specified genotypes or aggregated across DCM genotypes. (B) as in (A) but for RVs. (C) Pairwise NC state

abundance ratios in specified genotypes or aggregated DCM genotypes in LVs relative to controls. (D) as in (C) but

for RVs.
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Figure S36: Genotype specific upregulated genes in adipocytes

(A) Total number of uniquely upregulated genes (log2FC>0.5) for each genotype in LVs and RVs across all
adipocytes, FDR<0.05. (B) Upset plots of all upregulated genes (log2FC>0.5, FDR<0.05) in LVs and RVs

demonstrated shared (connected by lines) and specific expression (no connected lines) by genotypes. The total number

of genes in the set is plotted as a bar on top (set size).
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Figure S37: Characterization of adipocyte state abundance

(A) Box plots show adipocyte state distribution across controls and genotypes in LVs and RVs. Tissues from patients
with fewer than 10 nuclei were excluded from these analyses. p-values are indicated for significant proportional
changes, FDR<0.05. (B) Total number of upregulated genes across adipocyte states and genotypes in LVs and RVs.
Only significantly upregulated expressed genes (log2FC>0.5) are shown, FDR<0.05.
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Figure S38: Genotype specific compositional changes in adipocytes

(A) Upper panel: Mean abundance (%) of adipocyte states in control LVs. Lower panel: Proportional changes of
adipocyte states in specified genotypes or aggregated across DCM genotypes. (B) as in (A) but for RVs. (C) Pairwise
adipocyte state abundance ratios in specified genotypes or aggregated DCM genotypes in LVs relative to controls. (D)
as in (C) but for RVs.
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Figure S39. LV and RV expression of genes identified by DCM GWAS studies in DCM and ACM samples. The
expression of genes that were identified from published GWAS studies (Table S65) are shown as log(UMI count +1),
fold-changes are relative to mean pseudobulk expression of the control group, per gene and cell type (Supplemental
Methods). Note different scales are used between genes in order to account for variable ranges of expression. Blue-
orange shading represents log fold change in expression compared to controls. *denotes p<0.05. Nuclei number for

Mast cells in PVneg was too small to calculate expression changes.
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Figure S40: Altered cell-cell interactions

Heatmaps depict common (A: LV, C:RV) and unique (B: LV, D: RV) signaling pathways that are significantly
expressed in diseased hearts. Changes in interaction strength (log2(fold-change)), scaled by color intensity (red,
increased; blue, decreased). *denotes significance; adjusted p-values<0.05; n/a denotes expression not detected in

control or disease.
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Figure S41: Schematic representation cell-cell communications for BMP, IGF, and NRG pathways in diseased
RVs.

Circle plots of significant (adjusted p-value<0.05) cell-cell communications depict differentially regulated bone
morphogenic protein (BMP), insulin growth factor (IGF) and neuregulin (NRG) pathways and interactions in disease
RVs. The line thickness denotes interaction strength of signals from sending and receiving cell types, with color
(orange, increased; blue, decreased) scaled from zero to maximum in diseased versus controls. Arrows indicate

directionality.
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Figure S42: Representation of cell-cell interactions for the IGF pathway in LVs and RVs with different
genotypes

Chord plots of significant (adjusted p-value<0.05) cell-cell communications depict the differentially regulated insulin
growth factor (IGF) pathway and interactions in disease LVs and RVs. The line thickness denotes interaction strength
of signals from sending and receiving cell types, with color (orange, increased; blue, decreased) scaled from zero to

maximum in diseased versus controls. Arrows indicate directionality.
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Figure S43: Representation of cell-cell interactions for the BMP pathway in LVs and RVs with different
genotype

Chord plots of significant (adjusted p-value<0.05) cell-cell communications depict the differentially regulated bone
morphogenic protein (BMP) pathway and interactions in disease LVs and RVs. The lines thickness denotes interaction
strength of signals from sending and receiving cell types, with color (orange, increased; blue, decreased) scaled from

zero to maximum in diseased versus controls. Arrows indicate directionality.
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Figure S44: Representation of cell-cell interactions for the EDN pathway in LMNA LVs and PKP2 RVs

Chord plots of significant (adjusted p-value<0.05) cell-cell communications depict the differentially regulated
neuregulin (NRG) pathway and interactions in disease LVs and RVs. The lines thickness denotes interaction strength
of signals from sending and receiving cell types, with color (orange, increased; blue, decreased) scaled from zero to

maximum in diseased versus controls. Arrows indicate directionality.
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Figure S45: Representation of cell-cell interactions for the NRG pathway in LVs and RVs with different
genotypes

Chord plots of significant (adjusted p-value<0.05) cell-cell communications depict the differentially regulated
endothelin (EDN) pathway and interactions in disease LVs and RVs. The line thickness denotes interaction strength
of signals from sending and receiving cell types, with color (orange, increased; blue, decreased) scaled from zero to

maximum in diseased versus controls. Arrows indicate directionality.
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Figure S46: Communication probability dotplots of EC7.0 derived neuregulin (NRG) signaling.
Color of the dots represents the probability of communication for NRG receptor-ligands pairs (x-axis). The specific

ligand, expressed by EC7.0, and receptor, expressed by the respective receiving cell-state is shown (y-axis).
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Figure S47: GAT predictions

(A) Heatmap of first-order neighbors between nuclei per genotype on the KNN graph for cell types used for aggregated
GAT model construction (CM, FB, EC, myeloids). The numbers show the fraction (%) of edges from the KNN graph
connecting nuclei from a patient with a particular genotype to nuclei from patients with another genotype. For example
in CMs, among LMNA patients 45% of edges connected nuclei within the group, while 17% of the edges connected
nuclei from LMNA and TTN patients. (B) (Top) Heatmap of first-order neighbors between nuclei per genotype on the
KNN graph for cell types not used in the aggregated GAT Model (lymphoid, PC, SMC). (Bottom) Genotype
prediction probability from graph attention networks (GAT) per cell-type in LV. (C) Genotype prediction probability
from graph attention networks (GAT) per cell-type in RV. RV mural SMCs and lymphoids produced insufficient

observations per patient to train genotype-prediction models.
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Figure S48: Genotype prediction per patient sample
Stacked barplots represent the likelihood (% probability) of genotypes per LV cell type, for each patient before

aggregation.
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Figure S49: In situ hybridization of tissues used in Figs. 2C, 2J, S7TD-E, and S13A with positive and negative
control probes

(A) TTN LV (presented in Fig. 2J and S7D) hybridized with positive probe mix or negative (DapB) probe, provided
by ACDBio. (B) PLN (phospholamban) LV (presented in Figs. 2C and S13A), studied as in (A). (C) Control RV
(presented in Fig. S7E), studied as in (A).
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Figure S50: In situ hybridization of tissues used in Figs. 2C-D and S6D with positive and negative control probes
(A) Control LV (presented in Figs. 2C) hybridized with positive probe mix or negative (DapB) probe, provided by
ACDBio. (B) Control RVs (presented in Figs. 2D and S6D), studied as in (A). (C) PKP2 RVs (presented in Figs. 2D
and S6D), studied as in (A).
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Figure S51: In situ hybridization of tissues used in Figs. 4C and S13B with positive and negative control probes
(A) PKP2 LV (presented in Fig. S13B) hybridized with positive probe mix or negative (DapB) probe, provided by
ACDBio. (B) RBM20 LV (presented in Fig. S14C), studied as in (A). (C) TTN LV (presented in Fig. 4C), studied as
in (A).
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Figure S52: In situ hybridization of tissues used in Figs. 2J, 4C, and 5D with positive and negative control
probes (A) Control LV (presented in Fig. 4C) hybridized with positive probe mix or negative (DapB) probe, provided
by ACDBio. (B) Control LV (presented in Fig. 2J), studied as in (A). (C) PLN LV (presented in Fig. 5SD), studied as
in (A).

77



Algorithm Description

X: Node features
A: Adjacency Matrix
GAT: Graph Attention Layer

H',H": features outputs from 1%t and 28 GAT layers(learned
Graph representations)

Attm1.Atm2: Attention weights from GAT

Self attention: Attention layer(Encoder Network)
LN: Layer norinalization

F': attention weights

Output: Out, Attnl Attn2

LN

ELU

v

|

Self attention ===

4

Concat(H',F") | =i

ELU |

LN

Logsoftmax(H'")

Figure S53: Schematic representation of Graph Attention Network (GAT) architecture.

IAccuracy |F1 macro
Classical machine learning models
a. Random Forest 0.39 0.15
b. XGBOOST 0.34 0.14
c. KNN 0.26 0.13
[Neural network-based models
i) FFNN on count matrix 0.34 0.27
ii) SCANVI 0.4 0.21
iii) FFNN on graph 043 028
embeddings
[Approach described in this manuscript
GAT 0.87 0.91

Table S71: Accuracy and F1 macro for alternative modeling strategies
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