

С

Supplemental Figure 1: A) High expression of macrophage Arginase-1 co-cultured with **NSCLC cells is highly reproducible.** For each biologic replicate of macrophages co-cultured with lung cancer and benign immortalized cells, the mean and standard deviation of Arginase-1 expression were calculated. Across all replicates of individual cell lines, the mean of the standard deviations was less than the standard deviation of the mean expression values, reflecting high reproducibility between replicates when compared to the overall range of expression values. Murine-specific primers were used to assess gene expression changes. Standard deviation values for individual genes across replicates for each lung cancer coculture system is provided in Supplemental File 1 ("Co-culture gPCR box plots"). B) Quantitative expression of macrophage genes between Arg^{hi} and Arg^{low} cluster lines. qRT-PCR gene expression analysis of differential expression of murine Arginase-1, Socs3, $II1\beta$, iNos, II6, Ym-1 was compared between both cohorts. Each dot represents a test of an individual NSCLC line on co-cultured macrophage transcriptional activity. Ardhi cluster lines induced significantly higher levels of Arginase-1 and II6. Median expression levels were compared using Mann-Whitney U tests. NSCLC (72), SCLC (2) and benign immortalized (3) cell lines for panels A and B. C) Induced macrophage phenotypes identified in cocultured murine macrophages are recapitulated in co-cultured human umbilical cord blood-derived macrophages. A panel of 2 Arg^{hi} (H1373 and H2009) and 2 Arg^{low} (H647 and H441) were co-cultured with cord-blood derived macrophages (2 replicates of patient-derived samples) and subsequently prepared for flow cytometric analysis. CD68 was used as a panmacrophage marker and CD206 was utilized as an M2-like marker. Those cell lines which induced high macrophage expression of Arginase-1 in murine macrophages similarly polarized human macrophages towards an M2-like (CD68+/CD206+) phenotype.

641 Supplemental Figure 2: A) Example of pipeline used for quantitative multiplex 642 immunohistochemical analysis of macrophages in nude mice xenografts. Hematoxylin 643 and eosin (H and E) stains of individual tumor sections were generated for each tumor to 644 identify tumor borders, stroma, and areas of necrosis (1). Sequentially stained tumor sections 645 were inspected (2) and key areas identified in H and E stains were annotated (3). Within the 646 annotated tumor border, quantitative analyses of overall macrophage (F4/80+ cells) and ARG+ 647 macrophage (ARG+ / F4/80+ cells) density were performed (4). B) Comparison of tumor area. 648 Median tumor area between tumors established in murine xenografts was not significantly 649 different between Arghi and Arghi cohorts on Mann-Whitney U analysis. NSCLC xenografts 650 studied in Panels A and B were established from 5 Arahi cluster lines (A427, H1373, H1666, 651 H2009, H522) and 6 Ard^{ow} cluster lines (H1993, Calu-6, H460, H647, H2073, H441). C) 652 Distribution of NSCLC subtype between cell line clusters. Adenocarcinoma (LUAD), 653 squamous cell carcinoma (LUSC), or other histologic subtypes were comprised of a mixed 654 distribution of Arg^{hi} and Arg^{low} low-cluster cell lines. D) Distribution of EMT subtype 655 classification between cell line clusters. No significant differences were noted between the 656 frequency of epithelial or mesenchymal phenotypes of NSCLC cells in either cohort using 657 Fisher-exact tests. E) Impact of sex, NSCLC subtype, and age on M1:M2 distribution in 658 **TCGA samples.** In TCGA-deposited clinical NSCLC tumor samples, sex, histologic subtype, 659 and age were not significantly associated with M1:M2 ratios of macrophages characterized by 660 CIBERSORT analysis. Mann-Whitney U tests were used for comparative analyses. Available 661 data from a total of 980 patient lung cancer samples were used for TCGA analyses.

ŴТ MÚT

WT MÚT

664 665 666 667 668 669	Supplemental Figure 3: Impact of key driver mutations in NSCLC on quantitative expression of <i>Arginase-1</i> in co-cultured macrophages. Across the most frequently mutated single or combination of oncogenes, relative expression of <i>Arginase-1</i> compared to macrophages alone was compared between wild-type and mutant status using Wilcoxon signed-rank tests. No significant associations with induced macrophage <i>Arginase-1</i> expression were observed across oncogenotypes. 72 individual NSCLC cell lines were studied.
670	
671	
672	
673	
674	
675	
676	
677	
678	
679	
680	
681	
682	
683	
684	
685	
686	
687	
688	
689	
690	
691	
692	
693	
694	

695 Supplemental Table S1: Clinical characteristics and oncogenotypes of the 74 lung cancer lines696 and 3 benign immortalized lines used in this study.

Cell Line	Arg Status	Age	Race	Gender	Subtype	EMT Status	Smoking	тмв	TP53	KRAS	LKB1	EGFR	KEAP1	Tumor Source	Stage	Chemotherapy	Radiation	Response
A427	High	52	с	м	NSCLC			548	WT	Codon 12	HD	WT	WT	Primary				
H1355	High	53	с	м	ADN	Mes	Y	589	MUT	Codon 13	FS	Other	MUT	Distant Metastasis	4	N	N	
H1650	High	27	С	м	ADN	Epi	Y	258	MUT	WT	WT	Exon 19	WT	Distant Metastasis	3	N	N	PD
H1666	High	50	С	F	ADN	Epi		515	WT	WT	FS	WT	WT	Distant Metastasis	3	N	Y	
H1693	High	55	С	F	ADN	Epi	Y	280	MUT	WT	WT	WT	WT	Lymph Node	3	N	Y	PR
H1703	High	56	С	м	ADSQ	Mes	Y	674	MUT	WT	WT	WT	WT	Primary	1	N	Ν	
H2009	High	68	С	F	ADN	Epi	Y	1196	MUT	Codon 12	WT	WT	WT	Lymph Node	4	Y	N	PD
H2122	High	46	с	F	ADN	Epi	Y	233	MUT	Codon 12	FS	WT	WT	Distant Metastasis	4	N	N	PD
H2258	High	46	с	м	ADN	Epi	Y	97	MUT	WT	WT	WT	WT	Distant Metastasis	3	Y	N	PD
H2291	High			м	ADN	Epi	N	701	MUT	Codon 12	WT	Other	WT	Lymph Node		N	N	
H292	High	32	в	F	MEC	Epi	N	520	WT	Codon 12	WT	WT	WT	Lymph Node	4	N	N	PD
H522	High	60	С	м	ADN	Mes	Y	439	MUT	WT	WT	WT	WT	Primary	2	N	N	ND
H596	High	73	С	м	ADSQ	Epi		620	MUT	WT	WT	WT	WT	Primary	3	N	Y	
HBEC3-KT	High	65		F	Immortalized Benign		Y		WT	WT	WT	WT	WT					
HBEC30-KT	High	62	с	F	Immortalized Benign		Y		WT	WT	WT	WT	WT					
HCC3051	High	63	в	м	LCC	Mes		306	MUT	WT	WT	WT	WT					
HCC4019	High	40	с	м	ADN	Epi	Y	502	MUT	Codon 12	WT	WT	MUT		4			
HCC4054	High	73	с	м	ADN			280	MUT	Codon 12	WT	WT	WT	Primary	1			
HCC44	High	54	С	F	ADN	Mes		408	MUT	Codon 12	FS	WT	MUT	Distant Metastasis				
HCC515	High	39	с	F	ADN	Epi		980	MUT	Codon 13	SS	WT	MUT	Lymph Node				
HCC78	High	55	С	м	ADN	Epi		260	MUT	Codon 12	WT	Other	WT	Distant Metastasis				
HCC827	High	38	С	F	ADN	Epi		251	MUT	WT	WT	Exon 19	WT	Primary				
HOP-62	High			F	ADN	Mes		708	MUT	Codon 12	WT	WT	WT					
H1373	High	56	в	м	ADN	Epi	Y	981	MUT	Codon 12	WT	WT	WT	Primary	3	Y	Y	ND
HCC2108	High			м	ADN	Mes		178	MUT	Other	MS	WT	WT	Lymph Node				
HCC2450	High	52	с	м	scc	Epi		1926	WT	WT	WT	Other	WT		3			
A549	Low	58	с	м	ADN	Mes		462	WT	Codon 12	NS	WT	MUT	Primary				
H1299	Low	43	С	м	LCC	Mes	Y	524	MUT	WT	WT	WT	WT	Lymph Node	3	N	Y	PD
H1437	Low	60	с	м	ADN	Epi	Y	366	MUT	WT	HD	WT	WT	Distant Metastasis	1	N	N	
H1563	Low			м	ADN	Mes		763	WT	WT	NS	WT	WT	Primary		N	N	
H1792	Low	50	с	м	ADN	Mes	Y	518	MUT	Codon 12	WT	WT	MUT	Distant Metastasis	4	N	N	PD
H1819	Low	55	с	F	ADN	Epi	Y	295	MUT	WT	WT	WT	WT	Lymph Node	3	Y	N	PR
H1944	Low	62	с	F	ADN	Mes	Y	643	WT	Codon 13	MS	WT	MUT	Distant Metastasis	3	N	Y	
H1993	Low	47	с	F	ADN	Epi	Y	525	MUT	WT	NS	WT	MUT	Lymph Node	3	N	N	
H2030	Low			м	ADN	Mes	N	493	MUT	Codon 12	NS	WT	MUT	Lymph Node		N	N	
H2085	Low	45		м	ADN	Epi		474	MUT	WT	WT	WT	WT	Primary		Ν	N	

H226	Low			м	SCC M	Mes		374	WT	WT	WT	WT	WT	Distant Metastasis		N	N	
H23	Low	51	в	м	ADN	Mes	Y	1182	MUT	Codon 12	NS	WT	MUT	Primary		N	N	PD
H3255	Low	47	с	F	ADN	Epi	N	322	MUT	WT	WT	Exon 21	WT		3			
H358	Low		с	м	ADN	Epi		1194	MUT	Codon 12	WT	WT	WT	Primary		N	N	
H460	Low			м	LCC	Mes		588	WT	Other	NS	WT	MUT	Distant Metastasis		Ν	N	
H820	Low	53	с	м	ADN	Epi		358	MUT	WT	WT	Exon 19	WT	Lymph Node	4	Y	N	PD
HCC1171	Low	58	с	м	NSCLC	Epi		373	MUT	Codon 12	WT	WT	WT	Primary				
HCC2935	Low	39	с	м	ADN	Epi	N	339	MUT	WT	WT	Exon 19	MUT	Primary				
HCC461	Low	69	с	м	ADN	Mes		164	WT	Codon 12	WT	Other	WT	Primary				
Calu-6	Low	61	с	F	ADN	Mes		314	MUT	Other	WT	WT	WT	Primary				
EKVX	Low			м	ADN	Mes		617	MUT	WT	MS	WT	WT					
H1048	Low	53		F	SCLC	Epi		995	MUT	WT	WT	WT	WT	Distant Metastasis		N	N	
H1395	Low	55	с	F	ADN	Mes	Y	208	WT	WT	FS	WT	WT	Primary	2	N	N	
H157	Low	59	с	м	SCC	Mes	Y	1608	MUT	Codon 12	WT	WT	MUT	Distant Metastasis	3	N	N	PD
H1734	Low	56	с	F	ADN	Mes		715	MUT	Codon 13	FS	WT	WT	Primary		N	N	
H2073	Low	47	с	F	ADN	Mes	Y	487	MUT	WT	NS	WT	WT	Primary	3	Y	N	
H2086	Low	45		м	ADN	Epi		460	MUT	WT	WT	WT	WT	Lymph Node		N	N	
H441	Low	33		м	ADN	Epi		768	MUT	Codon 12	WT	WT	WT	Distant Metastasis	3	N	N	
H446	Low	61	с	м	SCLC	Mes		866	MUT	WT	WT	WT	WT	Distant Metastasis				
H838	Low	59	с	м	ADN	Mes	Y	680	MUT	WT	FS	WT	MUT	Lymph Node	3	N	N	
HCC15	Low	55	в	м	SCC	Mes		674	MUT	WT	WT	WT	WT	Lymph Node				
HCC1833	Low	69	с	F	ADN	Epi		394	MUT	WT	MS	WT	WT	Primary				
HCC193	Low	71	с	F	ADN	Epi		263	MUT	WT	WT	WT	WT	Distant Metastasis				
HCC4087	Low	82	с	F	ADSQ		Y	235	MUT	Codon 13	WT	WT	MUT					
HCC446	Low	49		F	ADN			161	MUT	WT	WT	WT	WT	Primary				
Calu-1	Low	47	с	м	MEC	Mes		383	MUT	Codon 12	WT	WT	WT	Distant Metastasis				
DFCI024	Low			F	ADN	Mes	N	477	WT	Codon 12	WT	WT	MUT					
H1573	Low	35	с	F	ADN	Epi	Y	1526	MUT	Codon 12	MS	WT	MUT	Distant Metastasis	4	N	Y	
H1755	Low	65	с	F	ADN	Epi	Y	491	MUT	WT	MS	WT	MUT	Distant Metastasis	4	N	N	
H1975	Low			F	ADN	Epi	N	450	MUT	WT	WT	Exon 20	WT	Primary		N	N	
H2087	Low	69	с	м	ADN	Epi	Y	602	MUT	WT	WT	WT	WT	Lymph Node	1	N	N	PD
H2172	Low			F	NSCLC	Mes		1623	MUT	WT	HD	Other	MUT	Primary		N	N	
H2347	Low	54	с	F	ADN	Epi		919	MUT	Codon 13	WT	WT	WT	Primary	1	N	N	
H2887	Low	31		м	NSCLC	Mes		152	MUT	Codon 12	WT	WT	WT		4			
H647	Low	56	с	м	ADSQ	Epi	N	407	MUT	Codon 13	SS	WT	MUT	Distant Metastasis	3	N	Y	
H650	Low			м	ADN	Mes	N	2077	MUT	Other	WT	WT	WT	Lymph Node		N	N	
H661	Low	43	с	м	LCC	Mes		791	MUT	WT	WT	WT	MUT	Lymph Node	3	Y	Y	MR
H920	Low	44	с	м	ADN	Mes	Y	1288	MUT	WT	WT	WT	MUT	Lymph Node	4	N	Y	PD

HCC2374	Low	69	в	F	LCN	Epi		806	MUT	Codon 12	WT	WT	WT	Primary			
HCC95	Low	65	с	М	SCC	Epi		288	MUT	WT	WT	WT	WT	Distant Metastasis	4		
HSAEC1-KT	Low	22	в	м	Immortalized Benign		Y		WT	WT	WT	WT	WT				

698	Legend: C = Caucasian, B = Black, M = Male, F = Female, ADN = adenocarcinoma, MEC =
699	Muco-epidermoid carcinoma, LCN = Large cell neuroendocrine, ADSQ = adenosquamous, SCC
700	= Squamous cell carcinoma, LCC = Large cell, M = Mesothelioma, NSCLC = Non-small cell
701	lung cancer, SCLC = Small cell lung cancer, P = Primary site, L = Lymph node metastasis, M =
702	Metastasis/Malignant pleural/pericardial effusion, Mes = Mesenchymal, Epi = Epithelial, TMB =
703	Total mutational burden, Y = Yes, N = No, WT = Wild Type, MUT = Mutant, Codon 12 = KRAS
704	Codon 12 mutant, Codon 13 = KRAS Codon 13 mutant, HD = Homozygous deletion, NS =
705	Nonsense substitution, FS = Frameshift substitution, MS = Missense substitution, SS = Splice
706	site mutation, Exon 19 = EGFR Exon 19 mutant, Exon 20 = EGFR Exon 20 mutant, Exon 21 =
707	EGFR Exon 21 mutant, Other = alterative mutation sites; PR = Partial response; PD =
708	Progressive disease; ND = No disease; MR = Metabolic response; Blank cells indicate
709	unavailable data
710	
711	
712	
713	
714	
715	
716	
717	
718	

- 719 Supplemental Table S2: Transcriptome and DNA mutation profile-matched TCGA-deposited
- 720 NSCLC clinical samples to patient-derived NSCLC samples studied in the co-culture model.
- 721 Lung cancer cell lines were matched to patient-derived lung tumor specimens from the TCGA
- 722 NSCLC datasets using RNAseq expression and somatic mutation data (Supplemental
- 723 Methods). Specifically, the best tumor specimen match for each cell line was chosen based on
- the Pearson correlation of 2000 genes together with a mutation similarity score for 700 cancer-
- related genes.

Cell line	TCGA-Matched Patient Sample
H596	TCGA-66-2759-01
HCC827	TCGA-75-6203-01
HOP-62	TCGA-64-5775-01
H1373	TCGA-38-4629-01
H1693	TCGA-J2-A4AD-01
HCC515	TCGA-05-4395-01
HCC3051	TCGA-22-0944-01
HCC44	TCGA-05-4395-01
H1650	TCGA-75-6207-01
H1355	TCGA-05-4415-01
H2122	TCGA-05-4415-01
H2009	TCGA-55-A493-01
HCC2108	TCGA-05-4415-01
H2258	TCGA-62-A46Y-01
H2030	TCGA-05-4415-01
H1437	TCGA-50-5939-01
H820	TCGA-95-8494-01
EKVX	TCGA-MP-A4TA-01
H1792	TCGA-05-4395-01
HCC461	TCGA-55-8090-01
HCC1171	TCGA-MP-A4T4-01
H1993	TCGA-55-7913-01
H23	TCGA-05-4415-01
H441	TCGA-95-7567-01
H2085	TCGA-97-8175-01
H1819	TCGA-60-2711-01
H647	TCGA-05-4395-01
H2887	TCGA-05-4433-01
H2073	TCGA-05-4415-01
HCC95	TCGA-43-6770-01
Calu-6	TCGA-95-8494-01

	A webi	i							
HCC1	5	TCGA-05-4415-01							
H208	7	TCGA-95-8494-01							
H175	5	TCGA-66-2754-01							
H173	4	TCGA-05-4415-01							
H234	7	TCGA-95-7567-01							

726 727

728	Supplemental	Materials	and	Methods
-----	--------------	-----------	-----	---------

729

730 Fingerprinting ID

All cell lines were verified by DNA fingerprinting with the Promega Fusion system (Cat#
DC2408) which consists of 24 short tandem repeat (STR) markers. These loci collectively

provide a genetic profile with a random match probability of 10⁻²⁸. Fingerprints were compared

against our database of more than 10,000 reference fingerprints that were collected from ATCC

735 (www.atcc.org), DSMZ (www.dsmz.de), JCRB (cellbank.nibiohn.go.jp), RIKEN (en.brc.riken.jp),

736 Cellosaurus (web.expasy.org/cellosaurus), and from our own resources. ⁴² A match is called

737 between two fingerprints when at least 80% of the alleles are identical according to the shared

allele match algorithm defined by the International Cell Line Authentication Committee.

739

740 **qPCR**

741 RNA was extracted with the RNeasy Mini Kit (QIAGEN) and QIAcube robot (QIAGEN) following

the manufacturer's recommended protocol. 1 µg of total RNA was mixed with qScript cDNA

743 SuperMix for cDNA synthesis (BioRad) per the manufacturer's protocol. After reverse

transcription, qRT-PCR was performed with SYBR Green (BioRad) following the manufacturer's

recommended protocol for marker (Actin, iNos, II6, Arg1, Ym-1, II-1b, Socs3). Mouse specific

746 primers were used to ensure only macrophage transcripts would be detected. All primers were

ross-examined for no activity on human RNA. qRT-PCR was performed on a CFX384 Touch

748 Real-Time PCR Detection System (BioRad). The cycling program was 95°C for 10 min, 95°C for

749 15 s, and 60°C for 40 cycles. Each sample was run in quadruplicate, normalized to the actin

- probe, and then normalized to macrophage baseline, and analyzed by the comparative CT
- 751 method.

Supplemental Table S3: Primers

Gene Name	Forward Primer	Reverse Primer
Actin	CTGAGAGGGAAATCGTGCGT	AGGGTGTAAAACGCAGCTCAG
Arginase-1	CTCCAAGCCAAAGTCCTTAGAG	AGGAGCTGTCATTAGGGACATC
iNOS	GTTCAGCTACGCCTTCAACAC	CAAGGCCAAACACAGCATACC
II-6	CGTGGAAATGAGAAAAGAGTTGTGC	TGGTACTCCAGAAGACCAGAGG
Ym-1	TCTGGGTACAAGATCCCTGAA	TTTCTCCAGTGTAGCCATCCTT
ΙΙ-1β	TGCCACCTTTTGACAGTGATG	TTCTTGTGACCCTGAGCGAC
Socs3	CAAAAATCCAGCCCCAACGG	GGCTGGCTCCACTTGAAAGA

752

753

754 qPCR data processing and analysis

755 All qPCR processing was completed in R (see Supplemental File 2: "Co-culture qPCR R

756 **code.R**"). All PCR results were first combined in a single table containing 7 columns

757 (Supplemental File 3: "Co-culture qPCR raw data"-Note: available on request): Group

(which refers to different PCR plate results analyzed together as a biological replicate group),

Plate (name of the PCR plate), Plate_Sort (for sorting plates by date), Well, Target, Sample,

760 and Cq. Technical replicates for each assay within each plate were averaged, excluding Cq

values = 40, unless all such values for a given assay were 40. The resulting average was called

762 Cq mean. Next, for each sample within each plate, the Cq mean values (there is one for each 763 target) were normalized to the Cq_mean of Actin for that sample. Specifically, for sample "x" 764 and target "y", the Actin normalized value equaled Cq mean(sample x, target y) -765 Cq mean(sample x, Actin). These normalized values were generally positive since Actin is 766 highly expressed (lower Cq value). However, these values were discarded when Actin Cq > 25767 as these indicated a problem with the PCR assay. We then normalized each sample to the 768 macrophage sample control, of which there was one per group (one group may comprise 769 multiple plates). If an assay was done on more than one plate within a group, the median of its 770 normalized values was used (called act_norm_Cq_median). Thus, for sample x and target y, the 771 macrophage normalized values = act_norm_Cq_median(sample x, target y) -772 act norm Cq median(macrophage control, target y). These values (called mac norm Cq) may 773 be either positive (higher expression in the macrophage control), or negative (higher expression 774 in the test sample). The final results were calculated as 2^(-mac norm Cq) and represent 775 expression fold change compared to the macrophage control (Supplemental File 4: "Co-776 culture gPCR processed data"- Note: available on request). Box plots of negative 777 mac_norm_Cq values were generated for each sample and target, with the datapoints 778 representing the biological replicates (Supplemental File 1: "Co-culture qPCR box plots"). 779 The standard deviation for Arginase-1 expression was calculated for each sample, to show 780 reproducibility for this gene (Supplemental File 5: "Co-culture gPCR box plots - arginase 781 summary" and Supplemental Figure 1A). A heatmap shows the group mean values for each 782 sample-target pair (same as the mean of each box plot) (Supplemental File 6: "Co-culture 783 **gPCR processed data for heatmap**" and **Figure 2.C**).

784

785 DNA/RNA extraction for sequencing

DNA for exome or genome sequencing was purified from frozen cell line pellets using DNeasy
reagents and protocols with QIAcube robot (QIAGEN). DNA spectra were quantitated using
spectrophotometer (Nanodrop) and samples diluted with nuclease free water (Ambion). Cell
lines were grown to approximately 70%–80% confluence, washed 2X with PBS and directly
lysed from culture flasks using RLT buffer (QIAGEN). Lysates were snap frozen and stored at 80°C. RNA was purified from lysates using RNeasy kit and QIAcube robot (QIAGEN).

792

793 RNA sequencing

794 RNA samples isolated from multicellular co-cultures experiments were submitted to Novogene 795 genome sequencing company (Sacramento, CA) or UT Southwestern Next Generation 796 Sequencing Core. The processing centers performed quantitative and qualitative assessment of 797 the RNA samples including the RNA integrity and contamination. Novogene prepared the 798 libraries using poly-Y oligoattached magnetic beads. UTSW NGSC prepared the libraries with 799 Illumina's TruSeg Stranded mRNA library prep kit (Illumina, catalog # RS-122-2101) following 800 manufacturer protocols. Novogene sequenced the libraries on the their HiSeg/MiSeg Illumina 801 machines with 150 nucleotide paired-end reads for an average of 60 million total reads. UTSW 802 NGSC sequenced the libraries with the Illumina NextSeg 500 using V2 reagents and 75 803 nucleotide single-end reads for an average of 50 million reads. Reads were aligned to the 804 human reference genome GRCh38 and/or mouse reference genome GRCm38 using STAR-2.7 805 (https://github.com/alexdobin/STAR) followed by read duplicate removal with MarkDuplicates 806 (gatk-4.1.2.0; https://gatk.broadinstitute.org). For co-culture samples, human reads were 807 removed by comparing alignment scores (AS flags in bam files) in the human and mouse 808 alignments: reads for which the human AS value was higher than the mouse AS value were 809 removed (gatk-4.1.2.0 FilterSamReads). FPKM values were generated with cufflinks-2.2.1 810 (http://cole-trapnell-lab.github.io/cufflinks/). These were then normalized (upper-quartile

- 811 normalization: Bullard et al, Bioinformatics 2010, 11:94), and log-transformed. The bulk RNAseq
 812 data will be available GEO accession number GSE200627.
- 813

814 TCGA Matchup

815 We compared each lung cancer cell line with each lung tumor from the TCGA NSCLC datasets 816 using RNAseg expression and somatic mutation data. The expression similarity measure was 817 the Pearson correlation (between the tumor lines and the TCGA samples) on the 2,000 most 818 variably expressed genes (derived from the combined cell line and TCGA RNAseg datasets) 819 while the mutation similarity measure used a concordance value on 700 cancer genes (Cancer 820 Gene Census, COSMIC, https://cancer.sanger.ac.uk/census) defined as the number of genes 821 mutated in both cell line and TCGA samples divided by the number of genes mutated in either 822 sample (with genes weighted by their mutation frequency in the tumor sets). Note: the R code 823 for this matchup algorithm is available upon request (luc.girard@utsouthwestern.edu) to allow 824 anyone to repeat this analyses. A combined score showed the degree of similarity between 825 these cell lines and TCGA specimen is available Bulk RNA sequencing from TCGA matched 826 samples were processed using CIBERSORT to deconvolute relative immune cell populations 827 within the TME. 22

828

829 Human umbilical cord blood sample processing

Human umbilical cord blood samples were obtained from UT Southwestern-Parkland Memorial
Hospital, in compliance with all associated regulations and approvals of use regarding human
cord blood (STU: 112010-047) at UT Southwestern Medical Center. Sterile blood was obtained
at the time of cesarean section from de-identified human umbilical cords that are normally
discarded. The procedure is approved through a protocol exempt from informed consent as

approved by the UT Southwestern Medical Center Institutional Review Board and the Office for
Human Research Protections (OHRP) supported by the U.S. Department of Health and Human
Services. To ensure anonymity, links between the donor's medical and social histories including
fetal sex are not maintained.

839

840 Primary human umbilical cord blood-derived monocyte isolation and macrophage841 differentiation

842 Mononuclear cells were isolated through Ficoll (Cytiva, Cat# 17544203) differential

843 centrifugation. Harvested mononuclear cells were then subjected to washing and red blood cell

844 Iysis. Human primary monocytes were then negatively enriched through immunomagnetic

selection (Stem Cell Technologies, Cat# 19359). Isolated human primary monocytes were then

seeded at 1 x 10⁶ cells/ml in a 10-cm petri dish cultured with RPMI1640 (Millipore Sigma,

847 R8758) supplemented with 10% heat deactivated FBS (ThermoFisher Scientific, Cat#

848 26140079) to avoid potential immunogenicity. Human M-CSF (50 ng/ml) was supplemented to

849 the medium to allow macrophage induction every 2 days for 7 days. Macrophages alone were

850 seeded at 1.0 x 10⁵ cells per well, similar to the mouse-macrophage co-culture protocol. Positive

851 controls for M1 and M2 polarization were established with LPS (20 ng/mL, 4-hour stimulation)

and IL-4 (20 ng/mL, 18-hour stimulation), respectively. Co-culture replicates were established

853 with identical proportions of patient-derived NSCLC cells, CAFs, and macrophages as the

854 mouse-macrophage co-culture model.

855

856 Flow Cytometry Analysis

857 Co-cultured cells were scraped and collected from media. Samples were incubated with human
858 anti-Fc blocker (BD Biosciences, Cat# 564220) for 15 min at 4°C to block potential non-specific

binding of conjugated antibodies. Anti-human CD45, Pacific Blue (Biolegend, Cat# 304021),
anti-human CD68 (pan-macrophage marker), PE-Cyanine 7 (BD Biosciences, Cat# 565595),
and anti-human CD206 (M2-like phenotype marker), APC (BD Bioscience, Cat# 321138) were
incubated with harvested co-culturing cells for 30 min at 4°C. Fixable viability Dye eFluor 780
(eBioscience, Cat# 65-0865-18) was used to exclude dead cells. Data were collected and
analyzed on CytoFLEX flow cytometer (Beckman Coulter Inc.) and associated software.
Unstained samples and tumor cell only samples were used for gating out negative populations.

866

867 Immunohistochemistry (IHC) and quantification

868 For IHC, tumors were fixed in 10% Formalin (VWR, catalog # 89370-094) for 72 hours with 869 slight agitation at RT, then embedded in paraffin, sectioned into 5-micron slices and placed onto 870 positively charged slides. Immunohistochemistry (IHC) was performed as previously described. 871 ²⁰ Slides were heated at 60°C for 10 minutes, deparaffinized and rehydrated. Antigen retrieval 872 was performed with a Biocare Medical Decloaking Chamber at 110°C for 17 minutes using 873 Antigen Unmasking Solution, TRIS-BASED (Fisher Scientific, catalog # NC9800748) then 874 allowed to cool to room temperature for 30 minutes. Slides were washed for 5 minutes with 875 PBS, incubated in ice-cold 10% methanol for 10 minutes at room temperature, washed with de-876 ionized water for 5 minutes, then tissue was blocked for 30 minutes using appropriate blocking 877 solution. Blocking buffer was removed, then primary antibody diluted in Renaissance Buffer 878 (BioCare Catalog # PD905 L) and added to samples at 4°C overnight with agitation. Samples 879 were washed 3 times with 0.5% PBST for 5 minutes, once with PBS for 5 minutes, then 880 secondary antibody solution was added for 30 minutes with agitation at room temperature. 881 Samples were washed once with 0.2% PBST for 5 minutes, twice with 0.5% PBST for 5 882 minutes, then a solution of 1:250 with the appropriate opal dye in 1X Plus Amplification Diluent 883 (PerkinElmer, catalog # FP1498) was made and added to samples for 3 minutes. After 3

884 minutes, the solution was guickly aspirated and washed with .05% PBST 3 times, then washed 885 with PBS + 2 mM EDTA for 10 minutes. Sub-sequential staining rounds follow the same 886 protocol for each stained marker, apart from Antigen Unmasking Solution, citrate-based (Fisher 887 Scientific, catalog # H-3300) is used instead of Antigen Unmasking Solution, TRIS-BASED 888 (Fisher Scientific, catalog # NC9800748). The final staining round DAPI was added during the 889 secondary incubation at 1 ug/mL concentration. Slides were then mounted with Vectamount AQ 890 Aqueous Mounting Medium (Fisher Scientific catalog # H550160) and cover slipped (VWR 891 catalog # 48404-133). Images were captured at 40X magnification using Vectra Polaris Slide 892 Scanner (AKOYA Biosciences, Delaware, USA). Images were then deconvoluted and re-893 stitched using Phenochart and inForm software (Akoya Biosciences). The reconstituted images 894 underwent multiplex quantitative analysis using HALO software (Akoya Biosciences). Tumor 895 borders, regions of necrosis, and visible stroma were annotated and cross-checked to each 896 tissue's associated H&E stain. For individual macrophage subtype characterization, Arginase-897 1(+) macrophages were characterized as F4/80+/ARG (+). Primary tumor cells were marked as 898 pan-cytokeratin (+). All nuclei were identified with DAPI staining. Cell quantity, distribution in the 899 tumor area, and density of each subtype of macrophage were analyzed for the overall tumor 900 area, areas of necrosis, and stromal regions. Spatial infiltrative analyses into regions of necrosis 901 or stroma were also conducted. Quantitative data were abstracted from analyses from each 902 tumor section and analyzed on GraphPad Prism statistical analysis software (GraphPad 903 Software, CA, USA). Quantitative IHC cell count and density analyses were conducted using 904 Mann-Whitney U non-parametric Y-tests.

905 Tissue was stained with multiple rounds of antigen retrieval.

906 1st: Blocking buffer = Rodent Block (Biocare Medical catalog # RBM961H), Primary = Pan-

907 Cytokeratin (Fisher Scientific # NC0581968, 1:300), Secondary = anti-Mouse HRP (Fisher

908 Scientific # NC0141382), Opal – Opal 520 (Perkin Elmer # FP1487001KT)

- 909 **2nd**: Blocking Buffer = 2.5% Goat Serum (Fisher Scientific # NC0533036), Primary = Arginase1
- 910 (Cell Signaling # 936685, 1:500), Secondary = anti-Rabbit HRP (Fisher Scientific # MP-7451),
- 911 Opal = Opal 570 (Perkin Elmer # FP1488001KT)
- 912 **3rd**: Blocking Buffer = 2.5% Goat Serum (Fisher Scientific # NC0533036), Primary = F4/80
- 913 (Fisher Scientific # NC1397643, 1:500), Secondary = anti-Rabbit HRP (Fisher Scientific # MP-
- 914 7451), Opal = Opal 620 (Fisher Scientific # NC1612059)
- 915 4th: DAPI (Sigma Aldrich # D9542-10MG) added to secondary block solution for the final round
- 916 of staining for nuclear identification
- 917
- 918