933	Supplementary Information
934	
935	Ecogenomics reveals viral communities across the Challenger Deep oceanic trench
936	
937	
938 939	Ying-Li Zhou ^{1,2, #} , Paraskevi Mara ^{3, #} , Dean Vik ⁴ , Virginia P. Edgcomb ³ , Matthew B. Sullivan ^{4,5} , Yong Wang ^{1,6, *}
940 941	¹ Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, China
942	² University of the Chinese Academy of Sciences, Beijing, China
943 944	³ Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
945 946	⁴ Department of Microbiology and Center of Microbiome Science, The Ohio State University, Columbus, OH, USA
947 948	⁵ Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, OH, USA
949 950	⁶ Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
951	# These authors contributed equally
952	* Yong Wang
953	Email: wangyong@sz.tsinghua.edu.cn
954	
955	Supplementary Information includes:
956	Supplementary Figures 1-10.
957	Supplementary Tables 1 and 2.
958 959	Legends for Supplementary Data 1-11. Supplementary Data 1-11 are provided in separate excel files.

- 962 Supplementary Fig. 1. Protein-sharing network between viral contigs from Challenger
- 963 Deep (n = 1 628), other hadal and non-hadal deep-sea (n = 2 885) and wetland sediments
- 964 (n = 1 212), Global Ocean Virome 2.0 (n = 195 728), thawed permafrost soils (n=1 907),
- and vContact2 RefSeq prokaryotic viral genomes (n = 2 010). Nodes (circles) represent
- 966 viral contigs. Shared edges (lines) indicate shared protein content. Well-supported viral
- 967 clusters containing CD vOTUs were shown in this figure.

969 Supplementary Fig. 2. Normalized coverages of viral populations (species level) in CD 970 and reference deep-sea metagenomes. Each row represents an individual CD metagenome, 971 while each column represents an individual CD viral population. The normalized relative 972 abundance values (log2-transformed) are shown in color scale. Red, blue and black lines 973 represent the hierarchical clustering of slope, bottom-axis and other deep-sea sediments, 974 respectively.

977 Supplementary Fig. 3. Relative abundance of the 15 most abundant viral populations for
978 slope and bottom-axis samples. The bubbles indicate the normalized coverage (coverage

per giga base), and the predicted lifestyle of viruses for each sample.

982 Supplementary Fig. 4. Sequencing depth of CD viromes in number of total paired reads 983 per metagenome. (a) The number of paired-end reads mapped to CD vOTUs. (b) 984 Percentage of paired-end reads mapped to CD vOTUs in metagenomes. *p*-value was 985 estimated using the two-sided Wilcoxon test. For boxplots, centre line indicates median, 986 bounds of box indicate 25th and 75th percentiles, and whiskers indicate minimum and 987 maximum.

Supplementary Fig. 5 Overview of putative AMGs in CD viral communities. (a) Number
of putative AMGs involved ranked by AMGs prevalence in CD virome (top fifteen shown).
(b) Abundance of viruses that have genes belonging to the fifteen most prevalent AMGs
identified in CD sediment viromes. The genes identified in various KEGG-described
metabolisms are listed in Supplementary Data 9. Relative abundances were log2
transformed and normalized with a z-score method based on normalized vOTUs coverage.

998 Supplementary Fig. 6. Bray-Curtis dissimilarity principal coordinate analyses (PCoA) of
999 the viral AMGs. The pink and blue areas covered slope and bottom-axis samples,
1000 respectively.

Supplementary Fig. 7. Similarity of each Cys protein (CysC/CysH) with the five closest
homologues recruited from public viromes and the eggNOG database, respectively. Three
CysC (a) and six CysH proteins (b) from CD viral contigs. Boxplots represent the median
with 25th and 75th percentiles, and whiskers show the 1.5 interquartile range.

1011Supplementary Fig. 8. Maximum-likelihood phylogenetic tree between the identified CD1012CysH proteins (this study) and the CysH proteins found in eggNOG database (V5.0). The1013tree is rooted in the mid-point. Two CysH homologs from Uniport database are in blue,1014and indicate protein function based on experimental evidence. Bootstrap values (1 0001015replicates) \geq 70% are indicated at nodes.

Supplementary Fig. 9. Total arsenic and mercury concentrations ($\mu g g^{-1}$ of dry sediment) 1020 in 13 CD sites (5 400-10 911 m depth). *p* values were estimated using two-sided Wilcoxon

1021 test for pairwise comparisons. CD sediments were analyzed for total arsenic and mercury

1022 using Atomic Fluorescence Spectrometry. Bar graphs identify mean and standard error bars.

1026 Supplementary Fig. 10. Genome maps of the viral contigs that contain LPS and dTDP-

1027 L-rhamnose synthetic genes. The maps indicate the positions of these genes in the

1028 viromes, and the upstream and/or downstream phage genes. Viral genes were annotated

1029 by CheckV and VIBRANT. AMGs, non-phage-like and uncharacterized genes are shown

1030 in blue, pink and gray, respectively. Detailed functional annotation of the viral scaffolds

1031 can be found in Supplementary Data 8.

Cruise	Sample station	Sampling method	Latitude [North]	Longitude [East]	Water Depth [m]	Position in trench	Layers for metagenome [cmbsf]	Layers for metatranscriptome [cmbsf]
DY37I	MC02	push core (submersible)	11.764	141.976	5 400	slope	8-10; 28-30	/
DY37I	[D1T1 [#]	push core (submersible)	11.801	142.117	5 533	slope	0-2; 4-6	\
DY37I	[D1T2 [#]	push core (submersible)	11.801	142.117	5 533	slope	4-6; 24-26	١
TS01	T1B5	box core (hydrographic cable)	10.924	141.799	7 061	slope	0-2; 8-10; 28-30; 38-40	\
TS01	T1B3	box core (hydrographic cable)	11.553	141.873	7 082	slope	0-3	\
TS01	T1B8	box core (hydrographic cable)	11.602	142.228	7 143	slope	2-4; 16-18	\
TS01	T1L6	push core (lander)	11.091	142.073	7 850	slope	0-2 (two push cores)	\
TS01	T1B10	box core (hydrographic cable)	11.195	141.812	8 638	slope	0-2; 36-38; 44-46	\
TS01	T1B11	box core (hydrographic cable)	11.228	141.689	9 150	slope	0-3	\
TS03	T3L11	push core (lander)	11.325	142.191	10 908	bottom-axis	0-3; 6-9; 12-15; 18-21	6-9; 12-15; 18-21
TS03	T3L8	push core (lander)	11.327	142.194	10 909	bottom-axis	0-3; 6-9; 12-15; 18-21	\
TS03	T3L14	push core (lander)	11.325	142.189	10 911	bottom-axis	0-2; 4-6; 6-8; 12-14; 18-20	\
TS01	T1L10	push core (lander)	11.328	142.202	10 900	bottom-axis	0-3; 6-9; 12-15; 18-21	\

1032 Supplementary Table 1. Sampling sites and sampling methods used for collecting the sediment samples in CD

1033 #: sediment samples from two slope sites (~ 100m apart) collected in a single dive of the submersible "Jiaolong".

Environment	Ocean virome	Ocean and sea regions (number of samples)	Total number of	Sequencing	Data size	Reference
Source	The Merine	Anotic Occan (56) Canadian Anotic and Chulcahi	A vincement from 182	Life Sciences 454	(GD) 0.191	1
Ocean water	Viromes of Four Oceanic Regions	Sea), North Atlantic Ocean (42; Sargasso Sea (1), Gulf of Mexico (41)), North Pacific Ocean (85; British Columbia coastal waters)	integrative samples	pyrosequencing	0.181	
	Temperate and subtropical seawater	Saanich Inlet (11), Strait of Georgia (85), Gulf of Mexico (46)	142	Roche 454 Titanium	1.9 *	2
	Tara Oceans Viromes (TOV)	Mediterranean Sea (7), Red Sea (5), Indian Ocean (16), North Atlantic Ocean (0), South Atlantic Ocean (12), Southern Ocean (1), North Pacific Ocean (2), South Pacific Ocean (0)	43	Illumina HiSeq 2000	218 *	3
	Global Ocean Viromes (GOV)	Mediterranean Sea (8), Red Sea (6), Indian Ocean (27), North Atlantic Ocean (4), South Atlantic Ocean (19), Southern Ocean (4), North Pacific Ocean (15), South Pacific Ocean (21)	104	Illumina HiSeq 2000	925	4
	Baltic Sea Viromes	Baltic Sea (11)	21	Roche 454 pyrosequencing	NA	5
	Global Ocean Viromes 2.0 (GOV 2.0) [#]	Arctic Ocean (38), North Atlantic Drift Province (3; station 155), all GOV samples (104)	145	Illumina HiSeq 2000	3950	6
Hadal and non-hadal	Hadal sediment viromes	Izu-Ogasawara Trench (1), Mariana Trench (1)	2	454 GS FLX Titanium	0.029	7
deep-sea sediment	Arctic Ocean metagenome	Arctic Ocean: Southern Knipovich Ridge (3) Gakkel Ridge, Loki's castle (1)	4	Illumina HiSeq 2500	244	8
	Southwest Indian Ocean bulk metagenome	Southwest Indian Ocean (6)	6	Illumina Hiseq- 2500	373	9
	Cold seep bulk metagenome [#]	Haakon Mosby mud volcano (6); Eastern North Pacific ODP site 1244 (7); Mediterranean Sea- Amon mud volcano (1); Santa Monica Mounds (1); Eastern Gulf of Mexico (3); Scotian Basin (8); and Western Gulf of Mexico (7)	40	Illumina (MiSeq, NextSeq 500, HiSeq 1500, HiSeq 2500, HiSeq 1000	411	10

1035 Supplementary Table 2. List of marine viruses related datasets

Hadal sediment	Marina Trench (2), Kermadec Trench (2), Yap	7	Illumina HiSeq	250	11
bulk	Trench (3)		2500, HiSeq X		
metagenome#			Ten		
Challenger Deep	Slope (20) and bottom-axis (17) sites of	37 metagenomes and	Illumina MiSeq,	283	This study
bulk	Challenger Deep in Mariana Trench	3 metatranscriptomes	Illumina HiSeq		
metagenome			2500,		

1036 * Estimated by multiplying the number of reads by the average read length

1037 # Shows datasets used for comparisons in this study

1039 Supplementary references

- 1040 1. Angly FE, *et al.* The marine viromes of four oceanic regions. *PLOS Biol* 4, 2121-2131 (2006).
 1042
- 1043
 2. Labonté JM, Suttle CA. Previously unknown and highly divergent ssDNA viruses
 1044 populate the oceans. *ISME J* 7, 2169-2177 (2013).
- 1046 3. Brum JR, *et al.* Patterns and ecological drivers of ocean viral communities. *Science* 348, 1261498 (2015).
- 1048

1054

1057

1064

1067

1070

- 1049
 4. Roux S, *et al.* Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses. *Nature* 537, 689-693 (2016).
- 1052 5. Allen LZ, *et al.* The Baltic sea virome: diversity and transcriptional activity of DNA and RNA viruses. *mSystems* 2, e00125-00116 (2017).
- 1055 6. Gregory AC, *et al.* Marine DNA viral macro- and microdiversity from pole to pole.
 1056 *Cell* 177, 1109–1123 (2019).
- 1058
 7. Yoshida M, Takaki Y, Eitoku M, Nunoura T, Takai K. Metagenomic analysis of viral communities in (hado)pelagic sediments. *PLoS One* 8, e57271 (2013).
 1060
- 8. Bäckström D, *et al.* Virus genomes from deep sea sediments expand the ocean
 megavirome and support independent origins of viral gigantism. *mBio* 10, e0249702418 (2019).
- 1065 9. Zheng X, *et al.* Extraordinary diversity of viruses in deep-sea sediments as revealed by
 1066 metagenomics without prior virion separation. *Environ Microbiol* 23, 728-743 (2021).
- 1068 10. Li Z, *et al.* Deep sea sediments associated with cold seeps are a subsurface reservoir of viral diversity. *ISME J* 15, 2366–2378 (2021).
- 1071 11. Jian H, *et al.* Diversity and distribution of viruses inhabiting the deepest ocean on
 1072 Earth. *ISME J* 15, 3094–3110 (2021).
- 1073
- 1074
- 1075