
Supplementary Information 
  
Supplementary Note 1. Assessing relationships between covariates and social 
network position characteristics 
         Statistical tests were performed to investigate if covariates used in the current 
study were significantly associated with social network position characteristics. 
Associations between each social network position characteristic and continuous 
covariates were tested with Pearson correlations; associations between each social 
network position characteristic and categorical variables were assessed with t-tests. 

Age. Age was not significantly associated with out-degree centrality (r = -0.017, p 
= 0.855), in-degree centrality (r = -0.106, p = 0.267), eigenvector centrality (r = -0.105, p 
= 0.271), betweenness centrality (r = 0.057, p = 0.551), or constraint (r = -0.089, p = 
0.348). 

Gender. Male and female subjects did not significantly differ in their out-degree 
centrality (t(110) = 1.20, p = 0.232), in-degree centrality (t(110) = 1.45, p = 0.783), 
eigenvector centrality (t(110) = 1.45, p = 0.391), betweenness centrality (t(110) = 1.45, p 
= 0.160), or constraint (t(110) = 1.45, p = 0.151). 

Handedness. Left-handed and right-handed subjects did not significantly differ in 
their out-degree centrality (t(110) = 1.60, p = 0.874), in-degree centrality (t(110) = -0.216 
p = 0.830), eigenvector centrality (t(110) = -0.226, p = 0.822), betweenness centrality 
(t(110) = 0.765, p = 0.446), or constraint (t(110) = -0.371, p = 0.711). 

Cohort. Subjects in cohort 1 and subjects in cohort 2 did not significantly differ in 
their out-degree centrality (t(110) = -0.848, p = 0.400), in-degree centrality (t(110) = -
0.994, p = 0.323), eigenvector centrality (t(110) = -0.906, p = 0.368), betweenness 
centrality (t(110) = -1.124, p = 0.265), or constraint (t(110) = -0.526, p = 0.600). 
Subjects in cohort 1 and subjects in cohort 3 did not significantly differ in their out-
degree centrality (t(110) = -0.316, p = 0.753), in-degree centrality (t(110) = -0.282, p = 
0.779), eigenvector centrality (t(110) = -0.055, p = 0.957), betweenness centrality 
(t(110) = -0.754, p = 0.454), or constraint (t(110) = -0.971, p = 0.335). Subjects in cohort 
2 and subjects in cohort 3 did not significantly differ in their out-degree centrality (t(110) 
= 0.507, p = 0.614), in-degree centrality (t(110) =  0.691, p = 0.492), eigenvector 
centrality (t(110) =  0.895, p = 0.373), betweenness centrality (t(110) =  0.310, p = 
0.757), or constraint (t(110) = -0.604, p = 0.547). The lack of significant differences in 
social network position characteristics across cohorts is to be expected given, for 
example, that we normalized data within cohort prior to aggregating data across cohorts 
for subsequent analyses. 

Extraversion. Extraversion was significantly associated with out-degree 
centrality (r = 0.264, p = 0.005), in-degree centrality (r = 0.481, p = 8.00 x 10-8), 
eigenvector centrality (r = 0.373, p = 5.16 x 10-5), betweenness centrality (r = 0.330, p = 
3.73 x 10-4), and constraint (r = 0.316, p = 6.95 x 10-4). 



Supplementary Note 2. Testing if patterns of white matter microstructure across 
major white matter tracts are predictive of social network position characteristics 

We complemented our main analyses, which were specifically focused on tracts 
between regions implicated in social and affective processing, by conducting an 
exploratory analysis of major, well-established white matter tracts. To do so, we used 
Freesurfer’s TRActs Constrained by UnderLying Anatomy (TRACULA) tool1, an 
algorithm for automated global probabilistic tractography, which reconstructs 18 major 
white matter tracts for each subject. We then performed the following procedure to 
characterize the predictors used in the predictive modeling analysis. Each subject’s FA 
map was thresholded at 0.20. For each subject, each tract was thresholded at 20% of 
the maximum value, binarized, and used as a mask to extract the mean FA from the 
corresponding subject’s FA image. This procedure yielded 18 predictors that captured a 
pattern of white matter microstructural integrity distributed across major white matter 
tracts in each subject’s brain. 

Similar to our main analyses, we first implemented a data-driven, machine 
learning approach to predict individuals’ social network position characteristics based on 
their patterns of microstructural integrity distributed across these 18 well-established 
white matter tracts using a ridge regression-based algorithm (see Methods in the main 
text). Using a leave-one-subject-out cross-validation scheme, the algorithm significantly 
predicted individuals’ eigenvector centrality (r = 0.215, p = 0.011) and betweenness 
centrality (r = 0.186, p = 0.025) based on patterns of white matter microstructural 
integrity distributed across all 18 white matter tracts (see Methods). Each reported 
correlation value reflects the relationship between the actual social network position 
characteristic values and the values predicted by a given model. This analytical 
procedure was then repeated while controlling for demographic characteristics (age, 
gender), extraversion, handedness, and cohort. Patterns of microstructural integrity 
across the 18 major white matter tracts were significantly predictive of in-degree 
centrality (r = 0.233, p = 0.007) and eigenvector centrality (r = 0.291, p = 0.001) when 
controlling for these variables. 



Assessing relations between social network position characteristics 
 Statistical tests were performed to investigate the relationships between the 
social network characteristics. Associations between each social network position were 
tested with Pearson correlations (Supplementary Table 1).  
 
Supplementary Table 1. Correlations between social network characteristics.  

 
Out-degree 
centrality 

In-degree 
centrality 

Eigenvector 
centrality 

Betweenness 
centrality 

In-degree 
centrality 0.51***    

Eigenvector 
centrality 0.87*** 0.80***   

Betweenness 
centrality 0.89*** 0.59*** 0.76***  

Constraint 0.73*** 0.72*** 0.81*** 0.68*** 
Note: Constraint was negated to yield a measure of brokerage.  ***p < .001 
  
  



Supplementary Table 2. Functionally defined ROIs in the affective processing network.  
ROI Label Hemisphere Voxel count Region(s) Notes 

Aff-1 left 99 
rostral anterior cingulate 
cortex  

Aff-2 left 273 
ventromedial prefrontal 
cortex  

Aff-3 left 502 dorsomedial prefrontal cortex  

Aff-4 left 134 insula  

Aff-5 left 729 orbitofrontal cortex  

Aff-6 left 224 amygdala 
Masked using anatomical 
amygdala mask 

Aff-7 left 261 temporal pole 
Masked using anatomical 
temporal pole mask 

Aff-8 left 332 superior frontal gyrus  

Aff-9 left 209 
dorsal-rostral anterior 
cingulate cortex  

Aff-10 right 243 amygdala 
Masked using anatomical 
amygdala mask 

Aff-11 right 86 
caudal anterior cingulate 
cortex  

Aff-12 right 304 dorsomedial prefrontal cortex  

Aff-13 right 147 
dorsal-rostral anterior 
cingulate cortex  

Aff-14 right 981 inferior frontal gyrus  

Aff-15 right 198 insula  

Aff-16 right 106 
rostral anterior cingulate 
cortex  

Aff-17 right 498 temporal pole 
Masked using anatomical 
temporal pole mask 

Aff-18 right 262 
ventromedial prefrontal 
cortex  

Note: Where noted, cortical ROIs that were additionally masked using anatomical masks based on the 
Desikan-Killiany atlas as implemented in FreeSurfer and subcortical ROIs that were additionally masked 
based on anatomical masks based on automatic subcortical segmentation in FreeSurfer (see Methods for 
more details)2–4. These masks were generated for each participant using FreeSurfer’s recon-all 
command.  



Supplementary Table 3. Functionally defined ROIs in the face processing network.  

ROI Label Hemisphere Voxel count Region(s) Notes 

Face-1 left 224 amygdala 
Masked using anatomical 
amygdala mask 

Face-2 left 803 inferior temporal gyrus  

Face-3 left 386 
posterior superior temporal 
sulcus  

Face-4 left 459 occipital pole  

Face-5 left 90 lingual cortex 
Masked using anatomical lingual 
cortex mask 

Face-6 left 798 lateral occipital cortex 
Masked using anatomical lateral 
occipital cortex mask 

Face-7 left 892 fusiform cortex 
Masked using anatomical 
fusiform cortex mask 

Face-8 left 337 inferior temporal cortex 
Masked using anatomical inferior 
temporal cortex mask 

Face-9 right 243 amygdala 
Masked using anatomical 
amygdala mask 

Face-10 right 424 inferior frontal gyrus  

Face-11 right 104 lingual cortex 
Masked using anatomical lingual 
cortex mask 

Face-12 right 980 lateral occipital cortex 
Masked using anatomical lateral 
occipital cortex mask 

Face-13 right 808 fusiform cortex 
Masked using anatomical 
fusiform cortex mask 

Face-14 right 282 middle temporal cortex 
Masked using anatomical middle 
temporal cortex mask 

Face-15 right 484 inferior temporal cortex 
Masked using anatomical inferior 
temporal cortex mask 

Face-16 right 230 
posterior superior temporal 
sulcus 

Masked using anatomical 
superior temporal sulcus mask 

Face-17 right 160 temporal pole 
Masked using anatomical 
temporal pole mask 

Face-18 right 354 
anterior inferior temporal 
cortex 

Masked using anatomical 
anterior inferior temporal cortex 
mask 

Note: Where noted, cortical ROIs that were additionally masked using anatomical masks based on the 
Desikan-Killiany atlas as implemented in FreeSurfer and subcortical ROIs that were additionally masked 
based on anatomical masks based on automatic subcortical segmentation in FreeSurfer (see Methods for 
more details)2–4. These masks were generated for each participant using FreeSurfer’s recon-all 
command. 



Supplementary Table 4. Functionally defined ROIs in the mentalizing network. 
ROI Label Hemisphere Voxel count Region(s) Notes 

Ment-1 left 1013 precuneus  

Ment-2 left 586 
dorsomedial prefrontal 
cortex  

Ment-3 left 341 
ventromedial prefrontal 
cortex  

Ment-4 left 77 insula  

Ment-5 left 1661 angular gyrus  

Ment-6 left 733 supramaginal gyrus  

Ment-7 left 459 
posterior superior 
temporal sulcus  

Ment-8 left 154 middle temporal gyrus  

Ment-9 left 676 temporal pole  

Ment-10 right 221 
ventromedial prefrontal 
cortex  

Ment-11 right 820 
dorsomedial prefrontal 
cortex  

Ment-12 right 1024 precuneus  

Ment-13 right 2127 
inferior frontal gyrus, 
dorsal prefrontal cortex  

Ment-14 right 1169 
temporal pole, anterior 
temporal cortex  

Ment-15 right 3374 occipitotemporal cortex  

Ment-16 right 1003 supramaginal gyrus  

Ment-17 right 282 
posterior superior 
temporal sulcus  

Ment-18 right 388 
supplementary motor 
cortex  

Note: Where noted, cortical ROIs that were additionally masked using anatomical masks based on the 
Desikan-Killiany atlas as implemented in FreeSurfer and subcortical ROIs that were additionally masked 
based on anatomical masks based on automatic subcortical segmentation in FreeSurfer (see Methods for 
more details)2–4. These masks were generated for each participant using FreeSurfer’s recon-all 
command.  



Supplementary Table 5. Functionally defined ROIs in the mirroring network.  
ROI Label Hemisphere Voxel count Region(s) Notes 

Mirr-1 left 1576 lateral occipital cortex  

Mirr-2 left 529 temporoparietal junction  

Mirr-3 left 1439 
precentral gyrus, inferior 
frontal gyrus  

Mirr-4 left 2608 superior parietal lobule  

Mirr-5 left 956 
supramarginal gyrus, 
postcentral gyrus  

Mirr-6 left 703 premotor cortex  

Mirr-7 right 291 
supplementary motor 
cortex  

Mirr-8 right 347 precuneus  

Mirr-9 right 743 premotor cortex  

Mirr-10 right 1123 supramarginal gyrus  

Mirr-11 right 378 temporoparietal junction  

Mirr-12 right 390 lateral occipital cortex  

Mirr-13 right 330 lingual cortex  

Mirr-14 right 1053 
precentral gyrus, inferior 
frontal gyrus  

Mirr-15 right 2766 occipitotemporal cortex  

Mirr-16 right 472 occipital pole  

Mirr-17 right 2872 superior parietal lobule  

Mirr-18 right 36 
posterior cingulate 
cortex  

Mirr-19 right 542 
supramarginal gyrus, 
postcentral gyrus  

Note: Where noted, cortical ROIs that were additionally masked using anatomical masks based on the 
Desikan-Killiany atlas as implemented in FreeSurfer and subcortical ROIs that were additionally masked 
based on anatomical masks based on automatic subcortical segmentation in FreeSurfer (see Methods for 
more details)2–4. These masks were generated for each participant using FreeSurfer’s recon-all 
command. 
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