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Supplemental Methods 

 

Qualitative Networks 

 

Qualitative networks are an extension of Boolean networks described in detail in [1]. Of note, 

the nodes representing molecular expression are discrete variables with more than two states. 

This means higher resolution in expression levels. Additionally, the activity of a variable is 

determined by an algebraic target function rather than a table of values. The formalism is 

defined below. 

 

A Qualitative network 𝑄(𝐶, 𝑇, 𝑁) consists of components in 𝐶 which can take values in 

{0,1, . . , 𝑁}. 𝑁 is a constant integer with any possible values above one, and is called the node 

granularity. If 𝑁 is one, the model is a Boolean network. 𝑇 is the set of target functions, which 

are the functions that determines the level toward which each component moves at the 

following time step. At each time step, each component moves by a maximum of one level. 

The update of each component 𝑐𝑖 ∈ 𝐶 can therefore be mathematically defined as: 

 

𝑐𝑖(𝑡 + 1)  =  {

𝑐𝑖  +  1 if targeti(𝑠(𝑡))  >  𝑐𝑖

𝑐𝑖  −  1 if targeti(𝑠(𝑡))  <  𝑐𝑖

𝑐𝑖           if targeti(𝑠(𝑡))  =  𝑐𝑖

 

 

with 𝑠(𝑡) the current state of the network and targeti ∈ 𝑇 the target function of 𝑐𝑖. targeti returns 

a value in {0,1, . . , 𝑁}. The default target function is the difference between the amount of 

activation acti and the amount of inhibition inhi a component 𝑐𝑖 is subject to. Both are averaged 

by the total number of activating/inhibiting components and are defined as follows: 

 

acti  =  
∑ 𝛼𝑗𝑖𝑐𝑗𝛼𝑗𝑖>0 

∑ 𝛼𝑗𝑖𝛼𝑗𝑖>0 
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inhi  =  
∑ 𝛼𝑗𝑖𝑐𝑗𝛼𝑗𝑖<0 

∑ 𝛼𝑗𝑖𝛼𝑗𝑖<0 
 

 

All models are built using the BioModelAnalyzer (BMA) tool [2] (https://biomodelanalyzer.org/), 

and analysed using LTL [3] and stability analysis [4]. BMA includes two types of edges 

representing respectively the activation or the inhibition of a node. 

Computational network model construction: description and literature review 

To build and validate a computational network model, the process must iterate over three 

fundamental steps: 

• Develop a “specification”- a set of specific biological phenotypes and gene activities 

associated with each input condition (for example, the genotype or environment) 

• Create a network using genes of interest and their interactions as nodes and edges. 

Phenotypes are also modelled as nodes in the network 

• Refine the “target functions” on each gene and phenotype that govern how the gene 

responds to the activity of upstream element 

A “correct” model will match all input specifications. As the model is expanded to include 

extended specifications or more genes, this cycle of testing and refinement must be repeated. 

The MPN model includes four genotypes in the specifications; wild-type JAK2/TET2, TET2 

loss of function, JAK2 gain of function, and the JAK2/TET2 double mutant (Table 1). Variables 

are discrete and range from zero to two, representing inactive, resting, and hyperactive states. 

 

 

Gene network construction 

Genes included in the network were selected based on their relationships with the three core 

genes (TET2, JAK2, and HOXA9), and their involvement in control of modelled phenotypes. 

SPI1 and CEBPA have well defined roles in monocyte and macrophage lineages [5]. SPI1 



4 
 

activates CEBPA in early progenitors [6, 7] and CEBPA helps the transition from CMP to GMP 

[8]. Both genes are essential for myeloid differentiation and are downregulators of progenitor 

proliferation.  

Differentiation is associated with a reduced cell proliferation [9]. Our model includes MYB and 

E2F1 as upstream effectors for CMP and GMP expansion [10, 11] which are both inactivated 

by SPI1 and CEBPA [12-14]. Furthermore, we include GATA1 in our network as part of JAK2 

pathway and its role in determining the erythroid lineage. Both GATA1 and JAK2 genes have 

been shown to be important players in MEP progenitor production and erythropoiesis [15, 16]. 

GATA1 is additionally required for KLF1 activation, a marker of erythroid differentiation [17]. 

KLF1 has also been established as a downstream target of phosphorylated TET2 in erythroid 

cell lines and TET2 phosphorylation is induced by JAK2 [18]. JAK2 is an upstream regulator 

of GATA1 via AKT [19], but also plays an role in MEP expansion with STAT5 and MAPK 

activation of the anti-apoptotic gene BCL2L1 [20, 21].  

Whilst JAK2 is associated with erythroid differentiation, it also can play a role in determining 

the myeloid lineage through STAT3 mediated activation of SPI1 [22].  

Finally, SPI1 and GATA1 mutually inhibit one another [23]. This feature is necessary for 

erythroid/myeloid lineage commitment [24]. We additionally include RUNX1 as a link between 

those hematopoietic genes and our JAK2/TET2/HOXA9 motif through RUNX1 activation by 

HOXA9. RUNX1 upregulation has been associated with HOXA9 upregulation in early stem 

and progenitor cells [25, 26] and therefore is a strong candidate to link our motif with our 

hematopoietic genetic regulators. RUNX1 is found in the earliest stages of haematopoiesis 

which makes this gene essential for a fully functional haematopoiesis [27]. We therefore link 
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this gene to the rest of our network through its downstream targets SPI1 for the myeloid 

lineage [28] and with GATA1 for the erythroid lineage [29, 30]. 

 

Model genotype/phenotype specifications 

The model specifications are defined in Table 1 in the paper and are described in more details 

in this section. In the wild-type state, the model is stable with all variables (genes and 

phenotypes) equal to one. In the single TET2 loss-of-function mutation state, the cell has 

increased stem cell self-renewal [31], elevated CMP expansion [32] and diminished overall 

differentiation [33] with a skew towards the granulocyte-monocyte lineage [34]. This is tested 

in our model by looking for stability, with an increase in GMP expansion, whilst MEP expansion 

remains at its wild type levels. In the JAK2 mutant (overactivation) background, erythroid 

differentiation and MEP expansion are both increased [35, 36]. Furthermore, GMP expansion 

is also increased to reflect JAK2 stimulation of myeloid cells, but GMP differentiation remains 

at wild-type levels as the erythroid lineage specifically is preferred [37].  

Finally, the double mutant is a bifurcating system with two fixed points and no cyclic attractors. 

Each fixed point represents alternative orders of TET2/JAK2 mutations; that is to say, TET2 

first or JAK2 first double mutants. We characterised those states using Ortmann et al [38]. 

Both fixed points have an increased stem cell self-renewal due to TET2 loss. GMP and MEP 

expansion are also increased in both states as TET2 loss promotes granulocyte-monocyte 

development, while JAK2 favours the erythroid lineage. However, following observations in 

Ortmann et al [38], in our model TET2 first mutants have an increased CMP expansion not 

observed in JAK2 first. Additionally, the differentiation loss in JAK2 single mutants is retrieved 

by JAK2 overexpression, resulting in GMP differentiation being in its normal state in both 

double mutants. Experiments have shown that JAK2 first double mutant patients have an 

increased number of mature erythroid cells, and so erythroid differentiation is increased in 

JAK2 first but not TET2 first double mutant. In total, both double mutants share four common 
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phenotypes. Only CMP expansion and erythroid differentiation differ between the two fixed 

points consistent with patient characteristics described in Ortmann et al [38]. 

 

 

RUNX1, MYB and MYC general expression trend in [36] are consistent with our model. 

We plot RUNX1, MYB and MYC expression for the different genotypes in the data and 

compare them to their expression in our biological network. In Figure S1, S2 and S3, all 

genotypes come from [36] and therefore the genotypes "JAK2" and "TET2" refer to the single 

mutant mouse models, and "DM" is the double mutant with JAK2 mutated first. "WT" 

designates the wild type (no mutation) genotype. 

 

XGBoost 

We use XGBoost (eXtreme Gradient Boosting) to rank different gene pathways according to 

their relationship to the expression of a gene of interest. We selected pathways that have well 

established roles in cancer, and seek to identify which specific pathways and component 

genes have the highest correlation with the gene of interest and its expression level in the 

AML patients (TCGA RNASeq) [39].  

Following the selection of a specific gene of interest, we begin by splitting the patients into two 

groups of 30 patients with either highest or lowest expression of our gene. We use XGBoost 

binary classification to determine which pathways are the best to classify patients into the right 

cohort. Thirteen text files containing different subset of genes corresponding to popular cancer 

pathways were previously generated using the literature: cell cycle, EMT, MAPK, MYC, NFKB, 

NOTCH, NRF2, PI3K, RAS-RTK, TGF-β, TP53, WNT, and WNT downstream. Genes and 

papers used in this analysis are described in Table S4.  

A model is then trained and validated for each pathway. We used the logarithmic loss (logloss) 

function as the standard metric for binary classification evaluation, and set the 

colsample_bytree parameter to 0.3. By setting this value to 0.3, we limit the subset of genes 

used at each iteration to a randomly selected subset of genes, corresponding to 30% of the 
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total. This can reduce the apparent accuracy of the classifier by hiding highly correlated genes, 

but also reduces the likelihood that the result of the classification is based on a small subset. 

As such, we aim to increase the robustness of the accuracy across the whole pathway.  

We split the 173 AML patients into a training set (80%) and a validation set (20%). Each 

pathway is compared using their Matthew Correlation Coefficient (MCC). We choose the MCC 

score for its robustness property for groups of differing sizes. In our analyses, the MCC scores 

the competence of each pathway to classify our patients into the right cohort: 

 

𝑀𝐶𝐶 =  
𝑇𝑃 ×  𝑇𝑁 − 𝐹𝑃 ×  𝐹𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

 

True Positive (𝑇𝑃) and True Negative (𝑇𝑁) are counts representing how many times a pathway 

has correctly classified a patient into respectively the high or low cohort. False Positive (𝐹𝑃) 

represents the number of times a pathway has classified a patient with low expression into the 

high cohort, and vice versa for the False Negative (𝐹𝑁). 𝑀𝐶𝐶 score varies -1 and 1, but we 

translate it into percentage in our figures.  

 

We further use SHAP (SHapley Additive exPlanations) to explain the output of our XGBoost 

models. SHAP aims to ease the interpretability of complex models by representing the 

importance of model features with shapley values [40]. Documentation on SHAP and how to 

use it can be found on github (http://github.com/slundberg/shap). 
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MPN mouse models 

JAK2, TET2 and JAK2/TET2 double-mutant as published in Shepherd et al., Blood 2018 and 

wild-type (C57BL/6J, CD45.2) littermate controls mice were bred and maintained in the 

designated animal facilities of the Department of Biology at the University of York, UK. Mice 

were co-housed by sex in groups of 4–5 in individually ventilated cages on a 12:12 hour 

(7:00/19:00) light:dark cycle at 20–24°C with 45–65% humidity and provided water and food 

ad libitum. All experiments performed on mice were undertaken under UK Home Office 

Licence granted to Dr. Kent (PEAD116C1) which was approved by the local AWERB 

committee and UK Home Office. 

 

Lentiviral vectors and viral transfection 

Lentiviral vectors in a pGFP-C-shLenti backbone used in this study were a noneffective 

Scrambled shRNA control (TR30021, Origene) and four unique HOXA9 29mer shRNA 

constructs (TL500979-A, B, C and D). Viral production was performed with Lenti-X cells (HEK 

293T, Takara Bio Inc), by co-transfection with a packaging plasmid pCMV-dR8.91 (Gag-Pol), 

a pCMV VSV-g envelope and the plasmid of interest, using the Fugene transfection reagent 

(Promega) diluted in OptiMEM media (Gibco). Cells were maintained in low glucose 

Dulbecco’s Modified Eagle’s Medium (DMEM, Gibco), supplemented with 10% FBS, 1% 

Penicillin/Streptomycin and 4 mM L-Glutamine (Gibco). Cells were incubated at 37°C, 5% 

CO2. Media was replaced at four hours and in the morning after transfection. Viral supernatant 

was harvested at 48 hours and 72 hours post-transfection. Supernatant was filtered through 

a 0.45-µm pore syringe filter. Cell-free supernatant was concentrated by addition of Lenti-X 

concentration solution (Takara Bio Inc), followed by centrifugation at 1500 g, 4°C for 45 

minutes. Viral pellets were resuspended in Iscove’s Modified Dulbecco’s Medium (IMDM, 

Cytiva) and incubated for further 45 minutes at 4°C. Viral stocks were stored at -80°C until 

they were to be used. 
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Haematopoietic stem cell (HSC) isolation 

Femurs, tibias and iliac crests from 3 wild-type, 3 JAK2, 3 TET2 and 3 JAK/TET mice were 

collected to prepare whole bone marrow suspensions. Red blood cell lysis was achieved by 

treatment with Ammonium Chloride solution (StemCell Technologies) and lineage depletion 

was performed by immunomagnetic selection of mature lineage cells using the haematopoietic 

stem progenitor cell (HSPC) enrichment cocktail and EasySep magnetic beads (StemCell 

technologies). Cell preparations were stained with lineage markers CD11b (Mac-1) and 

Ly6G/Ly6C (Gr-1) in PE-Cy7, Ly6-A/E (Sca-1) in BV421 and CD117 (c-Kit) in APC-Cy7 (Table 

S5, S6). All antibodies were purchased from Biolegend Inc. HSC-enriched fractions were 

obtained using the Lineage-negative, Sca-1 positive and c-Kit positive (LSK) compartment 

and were isolated by Fluorescence-Activated Cell Sorting (FACS – Fig. S14,S15) using the 

Moflo Astrios cell sorter (Beckman Coulter). Pools consisting of ~4000 LSK cells were sorted 

into individual wells of a 96-well plate containing an initial volume of 50 µL of StemSpan 

medium (StemCell Technologies) supplemented with 10% FBS, 1% Penicillin/Streptomycin, 

1% L-glutamine (Gibco), 0.1 mM of 2β-Mercaptoethanol (Thermo Fisher), 300 ng/mL of Stem 

Cell Factor (SCF) and 20 ng/mL of interleukin (IL)-11 (StemCell Technologies). 

HOXA9 Gene knockdown  

Following isolation, LSK cells were incubated at 37°C, 5% CO2 for 30-60 minutes prior to 

transduction. For HOXA9 gene knockdown experiments, three biological replicates from each 

genotype for the two different conditions were used (noneffective scrambled control- and 

shHOXA9-transduced cells). Medium in each well was supplemented with Polybrene (Sigma 

Aldrich) at a final concentration of 10 ug/mL. Cells were transduced by adding cell-free viral 

supernatants and centrifuging the plates at 600 x g, for 30 minutes at 30°C. Cells were 

incubated overnight. The day after transduction, final volume in the wells was brought up to 

200 µL of medium to dilute the polybrene reagent and viral stock. Cells were incubated for a 

total of 48 hours before isolation for in vitro functional assays. 
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Colony-Forming Unit (CFU) Assays 

Plates containing transduced LSK cells were centrifuged for 5 minutes at 300 x g. Media was 

removed, and cells were rinsed with PBS (Sigma Aldrich) supplemented with 2% FBS (Gibco) 

by centrifugation as described above. CD45 in BV421 (Biolegend) was used to stain the cells 

prior to isolation by FACS. Live, CD45+, GFP+ LSK cells were sorted into Eppendorf tubes 

containing 300 µL of StemSpan medium (StemCell Technologies). The cell suspension was 

added into 2.7 mL of Methocult (methylcellulose) medium (StemCell Technologies), and cells 

were thoroughly vortexed for about 1 minute. The cell suspension was incubated for 10 

minutes at room temperature. Following incubation, 1.5 mL of cell mixture in Methocult was 

added into each well of a 6-well SmartDish (StemCell Technologies) to have two duplicate 

wells from each genotype and each transduction condition. CFU assay plates were incubated 

at 37°C, 5% CO2 for 14 days.  

Colony imaging and counting 

At day 14 of incubation, CFU assay plates were imaged on the StemVision system (StemCell 

Technologies). Colonies were characterised and counted after acquisition of high-quality 

images. Normalised number of colonies grown in each replicate was calculated per 100 

colonies plated into each well. Statistical analysis to determine statistically significant 

differences was done through an unpaired Student’s t test (GraphPad Prism, v 9.0.2). 
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Supplemental Figures 

 

 

Figure S1. FAB distribution in HOXA9 low and high patient cohorts for different high 

peak thresholds. The low-expressing cohort is kept constant at 0.005-1 log(TPM+1), whilst 

the high-expression cohort is defined by different boundaries. The threshold ranges, as 

expressed in log(TPM+1) : a) 4-5.5, b) 3.5-6 and c) 3-6.5. Those ranges were selected to 

represent the high peak and to be around the mean value of the peak located at about 4.5 

log(TPM+1). 
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Figure S2. Differential gene expression analyses do not show specific hematopoietic 

function difference between HOXA9 cohorts. Genes with high log2 fold-change are found 

upregulated in the high HOXA9 peak. As expected, the HOX family is showing high fold 

changes between cohorts. Right figure is the zoomed-in volcano plot.  
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Figure S3. HOXA9 high and low cohorts have divergent AML prognosis regardless of 

age. We use log-rank test to compare all groups. Survival is significantly different among 

groups (p = 3.9 × 10−8). We find that young patients (below 60 years old) with high HOXA9 

expression have a poorer survival probability (22 months) compared to young patients with 

low expression (26 months – p = 0.005). 
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Figure S4.  HOXA9 low and high expression can be used to stratify patients with AML. 

HOXA9 expression partially explains (a) French-American-British (FAB) and (b) molecular 

classifications of 121 AML patients. Using Sankey diagrams, we find that the M3 FAB subtype 

as well as the PML-RARα and CBF (CBFB-MYH11 and RUNX1-RUNXT1) translocations are 

solely linked to low expression of HOXA9 (31 patients). Similarly, the high cohort (80 patients) 

possesses specific AML subclasses: M0, M5, MLL/NUP98 translocations and complex 

cytogenetics. FAB classification clusters AML patients into 8 groups from M0 the most 

undifferentiated subtype, M3 and M5 the subtypes with the higher number of 

monocytic/granulocytic blasts and M6-M7 (not included here due to the low number of 

patients) associated to the erythroid and megakaryocyte lineages. (c) HOXA9 cohorts show 

distinct clinical characteristics: high cohort patients (80) are older, display a higher white blood 

cell counts (WBC) and tend to have higher percentage of blasts in the bone marrow (two-sided 

Wilcoxon-Mann-Whitney statistical test). Box plots represent interquartile range and whiskers 

1.5 * IQR.  
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Figure S5. Loss of HOXA9 feedback loop results in its overexpression and loss of 

bifurcation in the double mutant. In this model, when both JAK2 and TET2 are mutated, the 

phenotype is similar to the JAK2-first patients, where the number of differentiated cells 

increases which is not observed in patients with a first TET2 mutation [38]. 
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Figure S6. Loss of HOXA9 positive feedback loop can result in HOXA9 null activity. In 

this model, when both JAK2 and TET2 are mutated, the phenotype is similar to the TET2-first 

patients, where the number of common myeloid progenitors (CMP) increases which is not 

observed in patients with a first JAK2 mutation [38]. 
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Figure S7. Loss of HOXA9 positive feedback loop results in its wild-type expression 

while restoring the bifurcation in the double mutant, and introducing cycles. In this 

scenario, CMP expansion is stable which is an observed clinical characteristic of patients with 

different mutation orders for JAK2 and TET2 mutations [38]. 
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Figure S8. HOXA9 high and low cohorts of M2 AML patients show distinct survival 

probabilities. None of the 13 patients with high expression for HOXA9 survive past 20 months 

while three among the 10 patients with low expression reach 25 months (log-rank test - 𝑝 =

0.0009). 
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Figure S9. HOXA9 high and low cohorts of M4 AML patients show distinct survival 

probabilities. The Kaplan Meier curves for the survival of M4 patients indicates a trend 

towards lower survival probability for patients with high HOXA9 expression compared to the 

low-HOXA9 cohort (log-rank test - 𝑝 = 0.051). 
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Figure S10. RUNX1 expression in JAK2 first patients. JAK2 activation mutation increases 

RUNX1 expression when TET2 is unmutated. 
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Figure S11. RUNX1 expression in public MPN data follow the same trend as our model. 

Our model predicts RUNX1 to be higher in the JAK2 single and JAK2 first double mutants and 

lower in TET2 single mutants compared to the wild type (Table S2). Despite the low number 

of data points, the trends for RUNX1 expression in the different genotypes are consistent with 

our findings. 
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Figure S12. MYB expression in public MPN data follow the same trend as our model. 

Our model predicts MYB expression to be higher in the TET2 single mutants while JAK2 single 

and JAK2 first double mutants have a similar MYB expression compared to the wild type 

genotype (Table S2). Despite the low number of data points, using the violin figure we identify 

that the trends for MYB expression in the different genotypes are consistent with our findings. 

Red rectangles represent the median expression. 
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Figure S13. MYC expression in public MPN data follow the same trend as our model. 

Our model predicts MYC expression to be higher in the TET2 single mutants while JAK2 single 

and JAK2 first double mutants should show a lower expression compared the wild type 

genotype (Table S2). Despite the low number of data points, using the violin figure we identify 

that the trends for MYC expression in the different genotypes fit our findings for the TET2 

single mutant and the JAK2 first double mutant. Red rectangles represent the median 

expression. 
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Figure S14. Fluorescence activated cell sorting (FACS) isolation strategies for: (a) 

Lineage-negative, Sca-1+ and c-Kit+ (LSK) cells and (b) CD45+ GFP+ LSK cells. Populations 

are gated from live cells, and show the LSK and CD45+ and GFP+ gates. Cells were stained 

using the antibody panels and concentrations described in the text and Table S5,S6. 
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Figure S15. Cell population abundance in all samples and both conditions, expressed 

as % of live cells: (a) Lineage-negative, Sca-1+ and c-Kit+ (LSK) cells and (b) CD45+ GFP+ 

LSK cells. Sc: Scrambled. 
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Figure S16. Colony-forming unit assay images: Each condition has three biological 

replicates (1,2,3) and two technical replicates (A,B).  

  



27 
 

Supplemental Tables 

Upstream gene Interaction type Downstream gene Reference 

TET2 Activates HOXA9 [41] 

JAK2 Activates HOXA9 [42] 

HOXA9 Activates HOXA9 [43] 

HOXA9 Activates RUNX1 [25, 26] 

RUNX1 Activates SPI1 [28] 

RUNX1 Activates GATA1 [29, 30] 

SPI1 Inhibits GATA1 [23] 

GATA1 Inhibits SPI1 [23] 

SPI1 Activates  CEBPa [6] 

CEBPa Inhibits E2F1 [13] 

CEBPa Activates GMP differentiation [8] 

E2F1 Activates GMP expansion [11] 

RUNX1 Inhibits MYB Model prediction 

MYB Activates CMP expansion [10] 

TET2 Activates  SC self-renewal [31] 

GATA1 Activates KLF1 [17] 

GATA1 Inhibits MYC [44] 

MYC Activates MEP expansion [44] 

KLF1 Activates  Erythroid 

differentiation 

[17] 

TET2 Activates TET2p [18] 

JAK2 Activates TET2p [18] 

TET2p Activates KLF1 [18] 

JAK2 Activates STAT3 [45] 

JAK2 Activates STAT5 [45] 
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STAT3 Activates  SPI1 [22] 

STAT5 Activates AKT [19] 

AKT Activates GATA1 [19] 

STAT5 Activates MAPK [20] 

MAPK Activates  BCL2L1 [20] 

BCL2L1 Activates MEP expansion [21] 

TET2 Activates MEP expansion [34] 

MAPK Activates JNK1 [46] 

JNK1 Activates ITCH [47] 

ITCH Inhibits NOTCH [48] 

NOTCH Inhibits GMP expansion [49] 

 

Table S1. Gene interaction table for JAK2/TET2 BMA model. Studies are derived from 

human and mouse experiments. All interactions are derived from studies of blood cells. 
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 JAK2 mutant TET2 mutant JAK2 first DM TET2 first DM 

JAK2 2 1 2 2 

TET2 1 0 0 0 

TET2p 2 0 0 0 

HOXA9 2 0 2 0 

RUNX1 2 0 2 0 

SPI1 1 0 1 1 

GATA1 2 0 2 1 

MYB 1 2 1 2 

E2F1 1 2 1 1 

CEBPa 1 0 1 1 

KLF1 2 0 2 1 

MYC 0 2 0 1 

STAT3 2 1 2 2 

STAT5 2 1 2 2 

AKT 2 1 2 2 

MAPK 2 1 2 2 

JNK1 2 1 2 2 

ITCH 2 1 2 2 

NOTCH 0 1 0 0 

BCL2L1 2 1 2 2 

 

Table S2. Gene values in the single and double mutant end states. In the unmutated state, 

all variables have the value 1. 

  



30 
 

Node Target Function References Comments 

HOXA9 JAK2*TET2 + 2*max(0,(HOXA9-

1))*max(0,JAK2-1) 

[42],[41],[43

] 

Activation by JAK2, TET2 and itself. Memory property 

prediction. 

SPI1 STAT3 + min( (RUNX1-1) , (1-GATA1) )  [28], 

[23],[19] 

Activation by STAT3 and RUNX1 and inhibition loop with 

GATA1. Minimum function to have normal SPI1 

expression when GATA1 is underexpressed but 

decreased expression when GATA1 is overexpressed 

independently of RUNX1. 

GATA1 AKT+RUNX1-max(SPI1,1) [29, 23],[22] Activation by AKT and RUNX1 and inhibition loop with 

SPI1. Maximum function necessary as loss of SPI1 does 

not increase erythroid differentiation. 

MEP 

expansion 

min( BCL2L1+TET2 , max( MYC, BCL2L1) )  

[36],[44],[21

],[34],[35] 

TET2 loss reduces erythroid progenitors by skewing 

toward myeloid lineage. JAK2 positive regulation of the 

erythroid lineage is stronger than TET2 through MYC 

activation. 

 

Table S3. Target functions of the model variables. Except for the nodes indicated by this table, all nodes have the default target function of 

the BioModelAnalyzer (BMA) tool which is the difference between the average state of all the variables activating the current node and the 



31 
 

average of all the variables inhibiting it. If there is no activating variable in the model, the target function equals the difference between a 

constant representing the basal activity of the node and the inhibiting variables. The constant is calculated so that in the healthy state (no 

mutation), all variables equal 1. 
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Pathways References Genes 

Cell Cycle [50] ‘CDKN1A’, ‘CDKN1B’, ‘CDKN2A’, ‘CDKN2C’, ‘CCND2’, 

‘CCND3’, ‘CCNE1’, ‘CDK2’, ‘CDK4’, ‘CDK6’, ‘RB1’, ‘E2F1’, 

‘E2F3’ 

EMT [51] ‘VIM’, ‘SNAI1’, ‘FN1’, ‘MMP2’ 

MAPK [52] ‘GRB2’, ‘SOS1’, 'SOS2', 'HRAS', 'KRAS', 'BRAF', 'RAF1', 

'MAP2K1', 'MAP2K2', 'MAPK3', 'MAPK1' 

MYC [50] 'MAX', 'MGA', 'MLX', 'MLXIP', 'MNT', 'MXD1', 'MXD3', 'MXD4', 

'MXI1', 'MYC', 'MYCN' 

NFKB [53] 'NFKB1', 'NFKB2', 'RELA', 'RELB', 'REL', 'IKBKB', 'IKBKE', 

'IKBKG' 

NOTCH [50] 'ARRDC1', 'CREBBP', 'EP300', 'KAT2B', 'KDM5A', 'NOTCH1', 

'NOTCH2', 'NOTCH4', 'NRARP', 'PSEN2', 'LFNG', 'ITCH', 

'NCSTN', 'SPEN', 'JAG1', 'APH1A', 'FBXW7', 'FHL1', 'HDAC2', 

'CUL1', 'RFNG', 'NCOR1', 'NCOR2', 'HDAC1', 'NUMB', 

'MAML3', 'MFNG', 'CIR1', 'MAML1', 'MAML2', 'NUMBL', 

'PSEN1', 'PSENEN', 'RBPJ', 'RBX1', 'SAP30', 'SKP1', 'SNW1', 

'CTBP1', 'CTBP2', 'ADAM10', 'APH1B', 'ADAM17', 'DTX2', 

'DTX3L', 'DTX4', 'EGFL7' 

NFRF2 [50] 'NFE2L2', 'KEAP1', 'CUL3' 

PI3K [50] 'EIF4EBP1', 'AKT1', 'AKT2', 'AKT3', 'AKT1S1', 'DEPDC5', 

'INPP4B', 'MAPKAP1', 'MLST8', 'MTOR', 'NPRL2', 'NPRL3', 

'PDK1', 'PIK3CA', 'PIK3CB', 'PIK3R1', 'PIK3R2', 'PPP2R1A', 

'PTEN', 'RHEB', 'RICTOR', 'RPTOR', 'RPS6', 'RPS6KB1', 

'STK11', 'TSC1', 'TSC2' 

RTK-RAS [50] 'SPRED2', 'SHOC2', 'PPP1CA', 'SCRIB', 'PIN1', 'KSR1', 

'PEBP1', 'ERF', 'PEA15', 'JAK2', 'IRS2' 
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TGF-Beta [50] 'TGFBR1', 'TGFBR2', 'ACVR1B', 'SMAD2', 'SMAD3', 'SMAD4' 

TP53 [50] 'TP53', 'MDM2', 'MDM4', 'ATM', 'CHEK2', 'RPS6KA3' 

WNT  [50] 'CHD8', 'LEF1', 'LRP5', 'LZTR1', 'PORCN', 'TLE1', 'TLE3', 

'TLE4', 'CTNNB1', 'DVL1', 'DVL2', 'DVL3', 'FRAT1', 'FRAT2', 

'FZD1', 'FZD2', 'FZD5', 'FZD6', 'APC', 'AXIN1', 'GSK3B', 

'RNF43', 'TCF7', 'TCF7L2', 'CHD4' 

WNT 

downstream 

[54] 'VIM', 'APOE', 'LILRB1', 'LEF1', 'ARHGAP4', 'MAP4K2', 

'TCF4', 'BIRC5', 'CDC25B', 'MSL1', 'TCF7', 'PEPD', 

'CDKN2A', 'MYC', 'BTRC', 'PROCR', 'MYCN', 'ENPP2', 

'TGIF1', 'RUNX2', 'MITF', 'DUSP6', 'LBH', 'FN1', 'PDCL', 

'LMO2', 'MYCBP', 'PLCG2', 'EFNB1', 'RHOU', 'MMP2', 'ID2', 

'RARG', 'VCAN', 'IFI30', 'IL1B', 'VEGFA', 'IL32', 'UBE2I', 

'CD44', 'ITGB7', 'TSHR', 'ENC1', 'JUN', 'PTTG1', 'CREM', 

'SNAI1', 'SIAH2', 'PLAUR', 'CYBB', 'BGLAP', 'PPARD', 

'FOSL1', 'DUSP1', 'FOS', 'PTGS2', 'JAG1', 'KLF10' 

 

Table S4. Selected pathways and genes used in the XGBoost analyses. 
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Antibody Fluorochrome Clone Cat. Number Concentration Volume/sample 
(100 ul) 

Sca-1  BV421 D7 BioLegend 
108127 

1:100 1 

c-Kit APC-Cy7 2B8 BioLegend 
105826 

1:100 1 

CD11b PE-Cy7 M1/70 BioLegend 
101216 

1:200 0.5 

Gr-1 PE-Cy7 RB6-8C5 BioLegend 
108416 

1:200 0.5 

PBS --- --- --- --- 94 ul 

7AAD ---- --- Invitrogen A1310 1:1000 1:1000 

    Total 
volume/mouse 

100 ul 

Table S5. Antibody panel for LSK isolation 
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Antibody Fluorochrome Clone Cat. Number Concentration Volume/sample (50 

ul) 

CD45 BV421 30-F11 BioLegend 
103133 

1:100 0.5 

PBS --- --- --- --- 49.5 ul 

7AAD ---- --- Invitrogen 
A1310 

1:1000 1:1000 

    Total 
volume/mouse 

50 ul 

Table S6. Antibody panel for LSK isolation 
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