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Supplementary Methods

Data collection and processing

The National Health and Nutrition Examination Survey (NHANES) from the National Center for Health

Statistics (NCHS)(http://www.cdc.gov/nchs/nhanes.htm) conducts interviews and physical examinations

to assess the health and nutrition data for all ages in the United States. The interviews include demographic,

socioeconomic, dietary, and health-related questions. The examinations include medical, dental, physiological

measurements, and laboratory tests administered by highly trained medical personnel. Since 1999, data were

collected and released at 2-year intervals. Each year NHANES examines a nationally representative sample of

roughly 5,000 individuals across the Unites States. The design of the sample changed periodically. Oversam-

pled subgroups for 1999–2006 included non-Hispanic black persons, Mexican-American persons, low-income

white persons (beginning in 2000), adolescents aged 12–19, and persons aged 70 and over. Oversampled sub-

groups for 2007–2010 included all Hispanic persons, non-Hispanic black persons, low-income white persons,

and persons aged 80 and over (https://www.cdc.gov/nchs/data/series/sr\ 01/sr01\ 056.pdf). In this

study, we include NHANES data sampled between 1999 and 2014. All-cause mortality is ascertained by a

linked NHANES mortality file that provides follow-up mortality data from the date of survey participation

through December 31, 2015. We exclude participants under age 18 because they are not eligible for public

release mortality data (https://www.cdc.gov/nchs/data/datalinkage/public-use-2015-linked-mor

tality-file-description.pdf).

Our study includes samples with known mortality status who participated in NHANES 1999-2014

(n = 47, 261). In the raw data, individuals 85 and over are topcoded at 85 years of age in NHANES

1999-2006 and individuals 80 and over are topcoded at 80 years of age in NHANES 2007-2014. To keep

consistency, we topcode individuals 80 and over at 80 years of age. The histogram of the the samples’

age in di↵erent data collection cycles are shown in Supplementary Figure 2. We include all demographic,

laboratory, examination, and questionnaire features that could be automatically matched across di↵erent

NHANES cycles. We exclude variables that are missing for more than 50% of the participants and highly

correlated features with correlations greater than 0.98; after filtering and one-hot encoding, 151 features

remain (Supplementary Data 1). We impute missing data using MissForest8, a nonparametric random

forest-based multiple imputation method for mixed-type data, with seven iterations. We predict all-cause

mortality for two broad categories: (1) follow-up times of 1-year, 3-year, and 5-year and (2) age groups of

<40, 40-65, 65-80, and �80 years old. For di↵erent follow-up times, we remove samples with unconfirmed

mortality status. For di↵erent age groups, we predict 5-year mortality. The demographic characteristics and

sample size of the data for di↵erent tasks are shown in Supplementary Table 1.
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We use UK Biobank samples as an external validation dataset. Participants were enrolled in the UK

Biobank from April, 2007, to July, 2010, from 21 assessment centres across England, Wales, and Scotland

using standardised procedures. When participants agreed to take part in UK Biobank, they visited their

closest assessment centre to provide baseline information, physical measures, and biological samples. We

include the 51 features that are overlapping between NHANES and UK Biobank dataset (Supplementary

Data 1). We exclude samples with missing values. All-cause mortality included all deaths occurring before

May, 2021. We include 384,762 samples aged 37-72 years with confirmed 5-year mortality status. Of these

samples, 6,336 died after 5 years. The histograms of age, gender and body mass index of UK Biobank

samples are shown in Supplementary Figure 3.

Predictive modeling

To model mortality, we use gradient boosted trees (GBTs). GBTs are nonparametric methods composed

of iteratively trained decision trees. The final ensemble of trees captures non-linearity and interactions

between predictors. The dataset is randomly divided into training (80%) and testing (20%) sets. We use the

implementation XGBoost1 (https://xgboost.readthedocs.io/en/latest/python/index.html) with a

learning rate set to 0.002 , subsample ratio set to 0.5 and 10,000 trees of max depth 3. For comparison, we also

train logistic regression models and deep neural networks. For logistic regression, we use L2 regularization.

The L2 regularization weight was set to 100. For neural networks, we use a single layer with 1,000 nodes, and

max iteration set to 1,000. The hyperparameters specified above are chosen by GridSearch and 5-fold cross

validation. Other hyperparameter values are left at their default values. Models’ performance is measured

with the area under the receiver operator characteristic curve (AUROC) and the area under the precision-

recall curve (AUPRC). We bootstrap the test set for 1,000 times to assess the statistical significance of the

di↵erence in AUROC and AUPRC for pairs of models. Specifically, we resample with replacement from

the test set 1,000 times and compare the models’ performance on resampled test sets. We report a p-value

which is the percentage of time that logistic regression or the neural network’s performance is better than

or equal to gradient boosted trees, divided by the number of resampled test sets. All models are built using

the Scikit-learn package in Python 3.7.

Model interpretation

To explain the GBT models, we utilize TreeExplainer7, which provides a local explanation of the impact

of input features on individual predictions. Specifically, TreeExplainer calculates exact SHAP6 (SHapley

Additive exPlanations) values for tree-based models. When explaining the mortality prediction models, we

randomly select 10,000 background samples from the training set and 5,000 foreground samples from the

test set.

SHAP (SHapley Additive exPlanation) values

SHAP (SHapley Additive exPlanation) values attribute to each feature the change in the expected model

prediction when conditioning on that feature. The change of the model’s prediction when the feature is

masked is recorded across all possible subsets of features, yielding an average change in prediction resulting

from the inclusion of a feature in the model:
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where �i is the feature attribution (SHAP value) of feature i in model f for data point x, R is the set of

all feature permutations, PR
i is the set of all features before i in the ordering R, M is the number of input

features, and fx is an estimate of the conditional expectation of the model’s prediction: fx(S) ⇡ E[f(x) | xS]
where xS is the set of observed features.

SHAP values which guarantee a set of desirable theoretical properties, including additivity and consis-

tency. Additivity states that when approximating the original model f for a specific input x, the SHAP

values sum up to the output f(x):

f(x) = �0(f) +
MX

i=1

�i(f, x), (4)

The sum of feature attributions (SHAP values) matches the original model output f(x), where �0(f) =

E[f(z)] = fx(;). Consistency states that if a model changes so that some feature’s contribution increases or

stays the same regardless of the other inputs, that input’s attribution should not decrease. Therefore, SHAP

values are consistent and accurate calculations of each feature’s contribution to the model’s prediction.

SHAP interaction values and main e↵ects

The SHAP interaction e↵ects is based on the Shapley interaction index from game theory. While standard

feature attribution results in a vector of values, one for each feature, attributions based on the Shapley

interaction index result in a matrix of feature attributions. The main e↵ects are on the diagonal and the

interaction e↵ects on the o↵-diagonal. The SHAP interaction values are defined as:

�i,j(f, x) =
X

S✓M\{i,j}

|S|!(M � |S|� 2)!

2(M � 1)!
ri,j(f, x, S), (5)

when i 6= j, and

rij(f, x, S) = fx(S [ {i, j})� fx(S [ {i})� fx(S [ {j}) + fx(S). (6)

where M is the set of all M input features. In Equation 5 the SHAP interaction value between feature i

and feature j is split equally between each feature so �i,f (f, x) = �j,i(f, x) and the total interaction e↵ect

is �i,f (f, x) + �j,i(f, x).

The main e↵ects for a prediction can then be defined as the di↵erence between the SHAP values and

the o↵-diagonal SHAP interaction values for a feature:

�i,i(f, x) = �i(f, x)�
X

j 6=i

�i,j(f, x). (7)

*Partial dependence plots and additional perspective to reference interval We use partial dependence

plots to show the change in mortality risk for all values of a laboratory feature. Partial dependence plots

show the marginal e↵ect a set of features has on the prediction of an ML model. The partial function fS is

estimated by:

fS(xS) =
1

n

nX

i=1

f(xS , x
(i)
C ). (8)

In this formula, f is a ML model and the S are features for which the partial dependence function should

be plotted. In our study, S is the laboratory feature of interest and xS is the given value of the feature. x(i)
C
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is actual feature values for the features of no interest in the test set, and n is the number of instances in

the test set. The partial function tells us the average marginal e↵ect on the prediction for given value(s) of

features S. We extend the partial function to the relative mortality risk RRS :

RRS(xS) = fS(xS)/(
1

n

nX

i=1

f(x(i))). (9)

In other words, the relative mortality risk is defined as the average value of the model’s predicted prob-

ability when we fix a specific feature to a given value divided by the average value of the model’s predicted

probability. We further define the relative risk percentage (RRP) as follows:

RRPS =
max(RRS(xS), xS in RI)� 1

max(RRS(xS))� 1
, (10)

where RI stands for reference interval. High relative risk percentage indicates that the values within the

reference interval have a relatively high mortality risk. The partial dependence plots of selected laboratory

feature values on 1-, 3-, and 10-year mortality risk are shown in Supplementary Figure 5.

Model interpretation plots

In this section we describe a number of plotting types for model explanation visualization.

SHAP value, SHAP main e↵ect value and SHAP interaction value plots In SHAP value/SHAP

main e↵ect value/SHAP interaction value plots, every point corresponds to a single sample where the x-axis

is the value of the feature and the y-axis is the SHAP value/SHAP main e↵ect value/SHAP interaction

value. The coloring of the points often denotes the value of a separate feature.

Summary plot Summary plots show the feature attributions (SHAP values) for many samples and multi-

ple features in order of global feature importance (the mean absolute SHAP values). Summary plots stack

multiple subplots for each feature. For the feature plots, every point corresponds to a single sample where

the x-axis is the feature attribution value and the y-axis is vertical dispersion representing the frequency of

samples with a particular feature attribution value. Finally, the color of each point represents the normalized

feature value, with red representing a high value and blue representing a low one. Intermediary feature values

are interpolations between red and blue.

Individualized explanation plot Individualized explanation plots show the feature attributions (SHAP

values) for an individual in terms of how they drive the model’s prediction for the individual away from the

average model prediction across the baseline distribution. The width of the bars indicate the SHAP value

with red indicating a positive a↵ect and blue indicating a negative one. The features corresponding to the

largest bars are below with their actual values for the individual.

Supervised distance

Supervised distance and hierarchical clustering

Supervised distance can accurately measure feature redundancy based on a specific prediction task. As

Supplementary Figure 11 shows, to calculate the supervised distance between feature i and feature j, we
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first train a uni-variate GBT model to predict the label (e.g. 5-year mortality in our study) using feature

i. Then, we can obtain the Predictioni which is the output of the fitted uni-variate GBT. Next, we fit

another uni-variate GBT to predict Predictioni using feature j. We define the output of the new GBT as

Predictionj
i . All hyperparameter values of the uni-variate GBTs are set to their default values. Following

the same above steps, we can obtain Predictioni
j . The supervised distance between feature i and feature j

(supervised distance(i,j)) is defined as:

supervisedR2(i, j) = max(0, 1�mean(
(Predictioni � Predictionj

i )
2

var(Predictioni)
)) (11)

supervised distance(i, j) = max(1� supervisedR2(i, j), 1� supervisedR2(j, i)) (12)

where var(x) is the variance of the vector x, mean(x) is the average of the vector x. Supervised distance is

scaled roughly between 0 and 1, where 0 distance means the features perfectly redundant and 1 means they

are completely independent.

To explore the redundant feature groups, we hierarchically cluster all features according to the supervised

distance. Specifically, we use complete linkage hierarchical clustering which merges in each step the two

clusters whose merger has the smallest diameter. The hierarchical clustering tree is shown in Supplementary

Figure 12.

Redundant feature groups experiments training details

Reducing redundancy model To identify the most representative feature in a redundant feature group,

we train GBTs using one feature in the redundancy group and all features outside the group for 5-year

mortality prediction. Then we compare the feature importance ranking of the redundant features by calcu-

lating the mean absolute SHAP values using TreeExplainer. The hyperparameters of the GBTs are chosen

by GridSearch and 5-fold cross validation. The max depth is selected from {1, 3, 5, 7, 9} and the subsample

ratio is selected from {0.2, 0.5, 0.8, 1.0}. Other hyperparameter values are left at their default values.

Single feature model We further analyze the predictive power of the redundant features by fitting 5-

year mortality prediction GBTs using one feature in the redundant feature group. Specifically, we use one

feature in the redundant feature group and two important confounders, age and gender, to train a GBTs

for 5-year mortality prediction. All hyperparameter values are set to their default values. We compare the

AUCs of the models. We bootstrap the test set for 1,000 times and compare the models’ performance on

resampled test sets. The averages of the AUCs are reported.

Supervised distance-based feature selection

We propose a supervised distance-based feature selection method to select predictive and less-redundant

feature sets. The workflow of our feature selection method is shown in Supplementary Figure 11. The dataset

is randomly divided into training (80%) and testing (20%) sets. Firstly, we fit a GBT for 5-year mortality

prediction on all features using the training set and rank the features by mean absolute SHAP values from

TreeExplainer. The hyperparameters of the GBTs are chosen by GridSearch and 5-fold cross validation.

The max depth is selected from {1, 3, 5, 7, 9} and the subsample ratio is selected from {0.2, 0.5, 0.8, 1.0}. The
max number of trees is set to 1000. We use 20% of the training samples as validation set for early stopping.

The number of early stopping rounds is set to 100. Since age and gender are important confounders, we
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would like to keep them in the selected feature set. Therefore, we cluster features except age and gender

into a specific number of groups using supervised distances-based hierarchical clustering and select the most

important feature in each cluster. Then, we add age and gender to the selected feature set and re-fit the

model. Next, we rerun the clustering using the new feature set except age and gender. This process is

repeated until all remaining features cluster to a single group. In every iteration, we remove 5 features. The

models are evaluated on the testing set with bootstrapping for 1,000 times. We report the average of the

AUROCs and the minimum supervised distance within the selected feature sets. The selected features in

each iteration are listed in Supplementary Data 1.

5-year mortality risk scores

Mortality risk scores training details

IMPACT mortality risk scores are defined to be the prediction of the 5-year mortality prediction models. For

comparison, we train linear (https://scikit-survival.readthedocs.io/en/latest/api/generated/s

ksurv.linear\ model.CoxPHSurvivalAnalysis.html) and gradient boosted tree-based Cox proportional

hazard models (https://scikit-survival.readthedocs.io/en/latest/api/generated/sksurv.en

semble.GradientBoostingSurvivalAnalysis.html). We do a temporal validation of the risk scores by

assessing their performances in the samples collected in 2009-2014 (N = 7, 034). Specifically, the samples

collected in 1999-2008 (N = 28, 820) are randomly divided into training (80%) and testing (20%) sets. The

sample size, the number of deceased samples and the histogram of age in the training set with the testing

set and the temporal validation set are shown in Supplementary Figure 13. To compare with Intermountain

gender-specific risk scores, we evaluate the models on di↵erent gender groups. The models are trained on

the whole training set and evaluate on di↵erent gender groups in the testing set. Furthermore, considering

the di↵erent feature collection cost for the general public and medical professionals, we build the risk scores

starting from di↵erent feature sets. For the general public, the models are trained on all demographics,

questionnaire features and examination features that are accessible at home for general public, For medical

professionals, the models are trained on all demographics and laboratory features. All trained models are

evaluated on di↵erent gender groups of the samples collected in 2009-2014 for temporal validation.

The hyperparameters are chosen by GridSearch and 5-fold cross validation. For XGBoost 5-year mortality

prediction models, the max depth is selected from {1, 3, 5, 7, 9} and the subsample ratio is selected from

{0.2, 0.5, 0.8, 1.0}. The max number of trees is set to 1000. We use 20% of the training samples as validation

set for early stopping. The number of early stopping rounds is set to 100. For linear Cox proportional

hazard models, the regularization parameter ↵ is selected from {0.01, 0.1, 1, 10, 100}. For tree-based Cox

proportional hazard models, the max depth is selected from {1, 3, 5, 7, 9} and the subsample ratio is selected

from {0.2, 0.5, 0.8, 1.0}. Other hyperparameter values are left at their default values.

We explain the mortality prediction model in terms of its probability predictions. Specifically, we rescale

the SHAP values (in the log-odds space) to be in the probability space directly. The rescaled SHAP values

now sum to the probability output of the model.

Recursive feature elimination

Recursive feature elimination works by searching for a subset of features by starting with all features in the

training dataset and successively removing features until the desired number of features remains. Firstly,

we train a model on the full dataset with all features. Then we rank features by importance (mean absolute
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SHAP values) and remove the least important features. Another model is trained on the resulting feature

set, and the process iterates until only the desired number of features are left. Starting from 151 features,

we remove 6 features at the first iteration. Then, we remove 5 features in each iteration until only one

feature is left. We bootstrap the test set for 1,000 times and assess the predictive performance. Specifically,

we resample with replacement from the test set 1,000 times and report the average and the 95% confidence

interval of the AUROCs. The selected features in each iteration are listed in Supplementary Data 1.

Intermountain mortality risk score

Intermountain mortality risk scores4 are built using complete blood count and basic metabolic profile. Specif-

ically, 13 laboratory features are used to predict 30 days, 1-year and 5-year mortality. Logistic regression

was used to model the risk prediction equations with adjustment for age and sex. Dummy variables modeled

each category, with the referent defined as the lowest risk group (except for age categories: 18-29, 30-39,

40-49 [referent], 50-59, 60-69, 70-79, and �80 years). A scalar score value was derived for each variable

category by multiplying its �-coe�cient by 3 and rounding to the nearest integer (referent value = zero).

Each individual’s risk score became the sum of the score values based on his or her individual data. Since

all of the features used in the Intermountain risk scores are included in our NHANES dataset, we evaluate

the Intermountain risk score on our NHANES testing set with bootstrapping for 1,000 times.

Comparing the predictive power of popular mortality risk scores and biological ages with

IMPACT

Since not all features used in the popular mortality risk scores and biological ages are included in the

NHANES dataset (except for Intermountain risk scores; see Supplementary Methods), it would not be fair

to compare the existing mortality scores and biological ages computed based on a partial set of features with

the IMPACT model based on the NHANES dataset. Therefore, we chose to show the AUROCs reported in

the original papers. As the AUROCs are not sensitive to the base rate, we assume that these scores would

be consistent among di↵erent datasets if the risk scores and biological ages generalize well.

Table 1 compares the AUROCs between an existing mortality score or a biological age as reported in the

original paper and the IMPACT-20 model tested for the corresponding follow-up time and age ranges in the

NHANES dataset. Here, IMPACT-20 means the IMPACT model when the top 20 features were used; we

chose 20 features because in Figures 8a-b, the IMPACT model with 20 features obtains an AUROC that is

almost the same as the performance of the model using all features, and using fewer than 20 features leads

to a dramatic decline in accuracy.

To get the top 20 most important features for 1-year and 10-year mortality predictions, we repeat the same

mortality risk scores training and recursive feature elimination process for 1-year and 10-year predictions. We

perform temporal validation to show the generalizability of the IMPACT-20 risk scores on data collected at

di↵erent time periods. To have similar base rates and age distributions in the test set and temporal validation

set, we use the samples from di↵erent collection cycles as the temporal validation set for di↵erent follow-up

times. For 1-year mortality prediction, we use the samples collected in 1999-2012 as the training/testing set

and the samples collected in 2013-2014 as the temporal validation set. For 5-year mortality prediction, we

use the samples collected in 1999-2008 as the training/testing set and those collected in 2009-2014 as the

temporal validation set. For 10-year mortality prediction, we use the samples collected in 1999-2000 as the

training/testing set and those collected in 2001-2014 as the temporal validation set. With respect to the

5-year mortality risk scores, samples that are not included in the temporal validation set are randomly split
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into 80% for training and 20% for testing. The sample size, number of deceased samples, and histogram of

age in the training set, with the testing and temporal validation sets, are shown in Supplementary Figure

13. In Table 1, the “AUROC” column shows the AUROCs reported in the original paper. The “AUROC

of IMPACT-20” column shows the performance of 1-year, 5-year and 10-year IMPACT models trained with

the selected top 20 features (listed in Supplementary Tables 2-3). The IMPACT-20 models are trained on

samples of all ages and evaluated on the samples within the same age range in the original paper. We

bootstrap the test set and the temporal validation set for 1,000 times when measuring the AUROCs.

Supplementary Notes

Supplementary Note 1 External validation of the NHANES mortality prediction

model on the UK Biobank (UKB) dataset

We aim to validate whether the performance and explanations of the NHANES mortality prediction model

generalize to an unseen population (UKB). To do so, we train a new tree-based 5-year mortality prediction

model on the NHANES dataset using the 51 overlapping features between NHANES and UKB. As shown in

Supplementary Figure 8h, the classification accuracy on the UKB test set of the model trained on NHANES

samples (AUROC = 0.7780) and UKB samples (AUROC = 0.7974) are close, which shows the generalizability

of the NHANES model. Supplementary Figure 7a shows the feature importances of the 51 features of the

NHANES (51 features) and UKB models. The SHAP values of both models are calculated using the same

UKB samples. We observe that the top 20 most important features are largely consistent, with 14 features

the same for both models. The p-value of the Fisher’s exact test (p-value = 0.0004) shows that the overlap

between the top 20 most important features of both models is significant. The Spearman’s correlation

coe�cient of both models’ feature importance is 0.6969 (p-value < 0.0001). Supplementary Figures 7b-g

show noteworthy results of the NHANES (51 features) model explained by UKB samples: the SHAP main

e↵ect of red cell distribution width, serum albumin and serum uric acid, and the relative 5-year mortality

risk of gamma glutamyl transferase, lymphocyte percent and serum albumin. The trends shown in these

figures are consistent with previous findings from both the NHANES (151 features) and UKB (51 features)

models. Additional validation results on the UKB dataset are presented in Supplementary Figure 8.

Supplementary Note 2 Discoveries for mortality prediction using di↵erent age

groups

IMPACT identifies important features for mortality prediction in di↵erent age groups.

Supplementary Figure 9a shows the top 20 most important features and relative importance in 5-year

mortality prediction models using di↵erent age groups (<40, 40-65, 65-80 and �80). Some features become

more important for older subpopulations, such as alanine aminotransferase (ALT), the fifth most important

feature in the model using samples over 80 years. Supplementary Figure 9e shows the main e↵ect of ALT for

age�80, which shows the negative relationship between ALT and 5-year mortality. Moreover, some features

are less important for older subpopulations than younger ones. One example is uric acid level, the sixth most

important feature in the age<40 model and the 59th most important in the age�80 model. Supplementary

Figure 9b plot the main e↵ect and SHAP value of uric acid in the age<40 model, showing that low uric acid

levels increase mortality risk prediction. However, in the age 40-65 model, higher uric acid is associated with

higher mortality risk (Supplementary Figure 9d). Previous work shows that low uric acid in blood serum
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can injure the endothelium and induce oxidative stress-related disease9,11, and that hyperuricemia (high

uric acid) is associated with various adverse health outcomes, including hypertension, stroke, cardiovascular

disease and cancer2,3,5,10. The numerous downstream e↵ects of high uric acid and low uric acid might explain

the di↵erent relationship between uric acid and mortality in di↵erent age groups. Moreover, the reference

range of uric acid di↵ers for males and females (2.4-6.0 mg/dL for females and 3.4-7.0 mg/dL for males).

This di↵erence is shown in Figure 9c, where women have lower uric acid, which can increase mortality risk.

Supplementary Note 3 Explaining the mortality predictions using di↵erent

baseline distributions

In the Results section, we use TreeExplainer to explain an explicand relative to a baseline distribution drawn

uniformly from all training samples (Figure 3a) This explanation substantially emphasizes age because it

compares the explicand to the general population baselines that include individuals of all ages. However, in

practice, epidemiologists are more interested in an individual’s strong risk factors compared with people of

the same age. To show this, we can manually select baselines from the samples that have similar age with the

explicand. We take the middle-aged (40-50) baseline distribution and the older (60-70) baseline distribution

as two examples. Specifically, we use the testing samples in the specific age range as the explicands (i.e.,

samples being explained) and training samples in the same age range as the baselines (i.e., background

samples) when calculating the SHAP values. The SHAP summary plots are shown in Supplementary Figures

10a-b. From the figures, we observe that age is no longer the most important feature. Also, compared with

Figure 3a, the SHAP value ranges are relatively similar. Therefore, we can identify the strong mortality

predictors other than age for di↵erent age groups using di↵erent baseline distributions. Supplementary

Figures 10c,e show the individualized explanations of a healthier vs unhealthier sample using baselines from

the general population. We observe that age contributes a lot to the prediction. However, as shown in

Supplementary Figures 10d,f, the contribution of other important risk factors increases when we use older

baselines. These examples illustrate that using the baselines with similar age can help identify strong risk

factors besides age.
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Di↵erent follow-up times
1-year
(n=47,261)

3-year
(n=41,434)

5-year
(n=35,854)

10-year
(n=21,986)

Number of deaths 577 (1.22%) 1,897 (4.58%) 3,074 (8.57%) 5,295 (24.08%)
Age,years 46 (30-63) 46 (30-64) 46 (30-64) 48 (30-67)
Sex

Male 22,778 (48.20%) 19,998 (48.26%) 17,276 (48.18%) 10,630 (48.35%)
Female 24,483 (51.80%) 21,436 (51.74%) 18,578 (51.82%) 11,356 (51.65%)

Ethnicity
Mexican American 8,947 (19.93%) 8,164 (19.70%) 7,543 (21.04%) 4,844 (22.03%)
Other Hispanic 3,452 (7.03%) 2,929 (7.07%) 2,335 (6.51%) 979 (4.45%)

Non-Hispanic White 21,428 (45.34%) 18,990 (45.83%) 17,081 (47.64%) 10,921 (49.67%)
Non-Hispanic Black 10,039 (21.24%) 8,821 (21.29%) 7,337 (20.46%) 4,353 (19.78%)

Other Race 3,395 (7.18%) 2,530 (6.11%) 1,558 (4.35%) 889 (4.04%)

Di↵erent age groups (follow-up time = 5-year)
Age < 40
(n=14,221)

40  Age < 65
(n=12,705)

65  Age < 80
(n=6,004)

Age � 80
(n=2,924)

Number of deaths 183 (1.29%) 648 (5.10%) 961 (16.01%) 1,282 (43.84%)
Age,years 27 (21-33) 51 (45-58) 71 (68-75) 80 (80-80)
Sex

Male 6,629 (46.61%) 6,263 (49.30%) 3,056 (50.90%) 1,328 (45.42%)
Female 7,592 (53.39%) 6,442 (50.70%) 2,948 (49.10%) 1,596 (54.58%)

Ethnicity
Mexican American 3,663 (25.76%) 2,622 (20.64%) 1,046 (17.52%) 212 (7.25%)
Other Hispanic 993 (6.98%) 906 (7.13%) 329 (5.48%) 107 (3.66%)

Non-Hispanic White 5,686 (39.98%) 5,825 (45.85%) 3,319 (55.28%) 2,251 (76.98)
Non-Hispanic Black 3,143 (22.10%) 2,793 (21.98%) 1,125 (18.74%) 276 (9.44)

Other Race 736 (5.18%) 559 (4.40%) 185 (3.08%) 78 (2.67%)

Supplementary Table 1: Population characteristics for the study cohorts. Data are median (IQR), or n/N
(%).

10



  10       20        30       40        50       60        70 

Age

N
um

be
r 

of
 sa

m
pl

es

N
um

be
r 

of
 sa

m
pl

es

N
um

be
r 

of
 sa

m
pl

es

N
um

be
r 

of
 sa

m
pl

es

Gender

Race

Body Mass Index (kg/m^2)
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3-year  m or tal i t y 41,434 39,537 1,897
5-year  m or tal i t y 35,854 32,780 3,074
10-year  m or tal i t y 21,986 5,295 16,691

Age < 40 14,221 14,038 183
40 ? Age < 65 12,705 12,057 648
65 ? Age < 80 6,004 5,043 961

Age ? 80 2,924 1,642 1,282
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Supplementary Figure 1: (a–d) Histograms of age, gender, race, and body mass index in the NHANES
dataset. (e) The sample size and number of living and deceased samples for di↵erent follow-up times and
di↵erent age groups. For di↵erent age groups, the follow-up time is set to 5 years.
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Supplementary Figure 2: (a–h) Histograms of age in di↵erent two-year data collection cycles.
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Supplementary Figure 3: (a–c) Histograms of age, gender, and body mass index in the UK Biobank dataset.
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Logistic 
Regression

Neural
Network

Gradient
Boosted Trees

AUPRC on di f ferent mor tal i ty prediction tasks
Im pr oving pr edict i on power

1-year  m or tal i t y 0.1405 0.2307 0.1016

3-year  m or tal i t y 0.3787 0.4397 0.3507

5-year  m or tal i t y 0.5131 0.5464 0.4838

10-year  m or tal i t y 0.7980 0.8212 0.7066

Age < 40 0.0441 0.1047 0.0423

40 ? Age < 65 0.3436 0.3823 0.2931

65 ? Age < 80 0.5263 0.5790 0.4717

Age ? 80 0.7447 0.7071 0.6766

*

***

***

*

***

***

***

***

***

***

*

***

***

******

*****

Supplementary Figure 4: The area under the precision-recall curve (AUPRC) of gradient boosted tree models
outperforms both linear models and neural networks for seven of our prediction models. (⇤ ⇤ ⇤) represents a
p-value < 0.001, (⇤⇤) represents a p-value < 0.01, and (⇤) represents a p-value < 0.05. P-values are computed
using bootstrap resampling over the tested time points while measuring the di↵erence in area between the
curves.
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Refer ence inter val : 0-30 U/L Refer ence inter val : 20-35 g/L Refer ence inter val : 20%-40%

Refer ence inter val : 35-50 g/L Refer ence inter val : 0-0.48 um ol /L Refer ence inter val : 80-100 fL

1-year  m or tal i t y

Refer ence inter val : 0-30 U/L Refer ence inter val : 20-35 g/L Refer ence inter val : 20%-40%

Refer ence inter val : 35-50 g/L Refer ence inter val : 0-0.48 um ol /L Refer ence inter val : 80-100 fL

3-year  m or tal i t y

Refer ence inter val : 0-30 U/L Refer ence inter val : 20-35 g/L

Refer ence inter val : 35-50 g/L Refer ence inter val : 0-0.48 um ol /L Refer ence inter val : 80-100 fL

10-year  m or tal i t y

Fem aleMale

Refer ence inter val : 7-55 IU/L Refer ence inter val : 7-45 IU/L

Fem aleMale

Refer ence inter val : 2.86-8.57 m m ol /L Refer ence inter val : 2.14-7.50 m m ol /L

Fem aleMale

Fem aleMale

Refer ence inter val : 2.86-8.57 m m ol /L Refer ence inter val : 2.14-7.50 m m ol /L

Refer ence inter val : 7-55 IU/L Refer ence inter val : 7-45 IU/L

Fem aleMale
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Refer ence inter val : 2.86-8.57 m m ol /L Refer ence inter val : 2.14-7.50 m m ol /L

Refer ence inter val : 7-55 IU/L Refer ence inter val : 7-45 IU/L

Refer ence inter val : 40%-60%

Supplementary Figure 5: E↵ect of varying laboratory feature values on 1-, 3- and 10-year mortality

risk. These partial dependence plots show the change in relative 1-, 3- and 10-year mortality risk for all
values of a given laboratory feature. The grey histograms on each plot show the distribution of values for
that feature in the test set. The green shaded region shows the reference interval of each feature.
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Monocyte number  (1000 cel ls/uL)
 

White blood cel l  count (1000 cel ls/uL)
 

Creatinine, serum (umol/L)
 

Body Mass Index (kg/m^2)
 

Total bi l i r ubin (umol/L)
 

Aspar tate aminotransferase AST (IU/L)

NHANES Not NHANES Total

UK Biobank 14 6 20

Not UK Biobank 6 25 31

Total 20 31 51

Top 20 featur e set
f

Ex ter nal  val i dat i on of  the IMPACT f r am ewor k  on UKB dataset

Supplementary Figure 6: External validation of the IMPACT framework on UKB dataset. (a)
SHAP summary plot for the 5-year mortality prediction model trained on UKB (51 features) dataset. (b,c)
The main e↵ect of serum albumin and platelet count on 5-year mortality of the model trained on UKB (51
features) dataset. (d,e) The relative 5-year mortality risk of alanine aminotransferase ALT on male and female
samples of the model trained on UKB (51 features) dataset. (f) The contingency table of the Fisher’s exact
test that evaluates the significance of the overlap between the top 20 most important overlapping features in
the model trained on NHANES (151 features) dataset and the model trained on UKB (51 features) dataset.
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Supplementary Figure 7: External validation of the NHANES mortality prediction model on the

UKB dataset. (a) Feature importance ranking of models trained on the NHANES (51 features) dataset
and the UKB (51 features) dataset. The SHAP values are calculated using UKB samples. For each model,
the figure shows the 20 most important features of prediction (ordered by importance). The purple line
indicates that the feature is in the top 20 features of two models. Blue and red lines indicate the feature is
in the top 20 features of one model but not in the top 20 features of the other. The p-value of the Fisher’s
exact test examines the overlap between the top 20 most important overlapping features in NHANES and
UKB models (the contingency table in Supplementary Figure 8G). The Spearman’s correlation coe�cient is
calculated using the feature importance of the overlapping features in NHANES and UKB. (⇤⇤ ⇤) represents
a p-value < 0.001. (b–d) The main e↵ect of red cell distribution width, urine albumin and serum uric
acid on 5-year mortality of the model trained on the NHANES (51 features) dataset and explained using
UKB samples. (e–g) The relative 5-year mortality risk of gamma glutamyl transferase, lymphocyte percent
and serum albumin of the model trained on the NHANES (51 features) dataset and explained using UKB
samples.
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Tr ain on NHANES (51 featur es), 
test  on Uk  Biobank 0.0165 0.7780 0.1119

b

Ex ter nal  val i dat i on of  the NHANES m or tal i t y pr edict i on m odel  on UKB dataset

Supplementary Figure 8: External validation of the NHANES mortality prediction model on the

UKB dataset. (a) SHAP summary plot for the 5-year mortality prediction model trained on NHANES (51
features) dataset and explained using UKB samples. (b) The predictive performance of the models trained on
the NHANES (51 features) and UKB (51 features) datasets. The AUROCs are calculated on the testing set
by bootstrapping 1,000 times. (c,d) The main e↵ect of serum albumin and platelet count on 5-year mortality
of the model trained on the NHANES (51 features) dataset and explained using UKB samples. (e,f) The
relative 5-year mortality risk of alanine aminotransferase ALT on male and female samples of the model
trained on the NHANES (51 features) dataset and explained using UKB samples. (g) The contingency table
of the Fisher’s exact test that evaluates the significance of the overlap between the top 20 most important
overlapping features in the model trained on the NHANES (51 features) dataset and the model trained on
the UKB (51 features) dataset. Both models are explained using UKB samples.
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Supplementary Figure 9: Understanding important risk factors for mortality prediction in dif-

ferent age groups. (a) Relative importance of input features in <40, 40-65, 65-80 and �80 age groups.
For each model, the figure shows the 20 most impactful features on prediction (ranked from most to least
important). The purple line indicates that the feature is in the top 20 features of two models. Blue and red
lines indicate the feature is in the top 20 features of one model, but not in the top 20 features of the other.
(b) The main e↵ect of serum uric acid on 5-year mortality in the <40 age group. (c) The SHAP value of
serum uric acid in the <40 age group 5-year mortality model. (d) The main e↵ect of serum uric acid on
5-year mortality in the 40-65 age group. (e) The main e↵ect of alanine aminotransferase on 5-year mortality
in the �80 age group.
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Supplementary Figure 10: Explaining the 5-year mortality predictions using di↵erent baseline

distributions. (a) Explaining the middle-aged subpopulation (40-50 years old) with the baselines of the
same age range. (b) Explaining the older subpopulation (60-70 years old) with the baselines of the same age
range. (c,d) The individualized explanation for an individual aged 62 using the general population baselines
and the older (60-70) baselines. (e,f) the individualized explanation for an individual aged 66 using the
general population baselines and the older (60-70) baselines.
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Supplementary Figure 11: (a) The workflow of supervised distance calculation. (b) The workflow of
supervised-distance feature selection.
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Supplementary Figure 12: The cluster tree of supervised distance based hierarchical clustering. The color
threshold is set to 0.98.
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Supplementary Figure 13: (a) Population characteristics of the training/testing and temporal validation sets
with di↵erent follow-up times. (b–g) Histograms of age in the training/testing set and temporal validation
set with di↵erent follow-up times.
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Supplementary Figure 14: (a,b) The AUROC of the models using di↵erent feature sets after recursive
feature elimination. Lines are mean performance over 1000 random train/test splits, and shaded bands are
95 percent normal confidence intervals. (a) The AUROC of the models tested on the male group in the
test set of NHANES 1999-2008. (b) The AUROC of the models testing on the male group in the temporal
validation set (NHANES 2009-2014).
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Importance
Ranking

IMPACT-20 IMPACT-20 (Demo+Lab)

1 Age Age
2 Albumin, urine (ug/mL) Blood lead (umol/L)
3 Arm Circumference (cm) Albumin, urine (ug/mL)
4 Gender (0-Male, 1-Female) Ratio of family income to poverty
5 Blood lead (umol/L) Education Level - Adults 20+
6 Ratio of family income to poverty Red cell distribution width (%)
7 Albumin, serum (g/L) Chloride, serum (mmol/L)
8 Red cell distribution width (%) Blood cadmium (nmol/L)
9 Received Hepatitis B 3 dose series Lymphocyte percent (%)
10 General health condition Mean cell volume (fL)
11 Mean cell volume (fL) Red blood cell count (million cells/uL)
12 Number of months working in the main job Albumin, serum (g/L)
13 Self-reported greatest weight (pounds) Creatinine, serum (umol/L)
14 Education Level - Adults 20+ Cotinine, Serum (ng/mL)
15 Lymphocyte percent (%) Platelet count (1000 cells/uL)
16 Require special healthcare equipment (0-No, 1-Yes) Potassium, serum (mmol/L)
17 Chloride, serum (mmol/L) Sodium, serum (mmol/L)
18 Blood cadmium (nmol/L) Alanine aminotransferase ALT (IU/L)
19 Weight (kg) Blood urea nitrogen (mmol/L)
20 Shortness of breath on stairs/inclines (0-No, 1-Yes) Race (Non-Hispanic White)

Importance
Ranking

IMPACT-20 (Demo+Exam+Ques)
IMPACT

(CBC+BMP with age and gender)
1 Age Age
2 Require special healthcare equipment (0-No, 1-Yes) Red cell distribution width (%)
3 Arm Circumference (cm) Mean cell volume (fL)
4 General health condition Chloride, serum (mmol/L)
5 Education Level - Adults 20+ Gender (0-Male, 1-Female)
6 Gender (0-Male, 1-Female) Glucose, refrigerated serum (mmol/L)
7 Congestive heart failure (0-No, 1-Yes) Red blood cell count (million cells/uL)
8 Ratio of family income to poverty White blood cell count (1000 cells/uL)
9 Diastolic: Blood pres (2nd rdg) mm Hg Potassium, serum (mmol/L)
10 Systolic: Blood pres (2nd rdg) mm Hg Creatinine, serum (umol/L)
11 Avg # alcoholic drinks/day - past 12 mos Platelet count (1000 cells/uL)
12 Cancer (0-No, 1-Yes) Blood urea nitrogen (mmol/L)
13 Self-reported weight-age 25 (pounds) Sodium, serum (mmol/L)
14 Number of months working in the main job Hemoglobin, serum (g/dL)
15 Self-reported greatest weight (pounds) Mean cell hemoglobin (pg)
16 Duration of longest job (months) Total calcium, serum (mmol/L)
17 Smoked at least 100 cigarettes in life (0-No, 1-Yes) Mean platelet volume (fL)
18 Shortness of breath on stairs/inclines (0-No, 1-Yes)
19 60 sec. pulse (30 sec. pulse * 2)
20 Current self-reported height (inches)

Supplementary Table 2: The selected top 20 features of the 5-year mortality risk scores using di↵erent
feature types and the features included in CBC and BMP panels.
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Importance
Ranking

IMPACT-20 (1-year mortality prediction) IMPACT-20 (10-year mortality prediction)

1 Age Age
2 Albumin, serum (g/L) Albumin, urine (ug/mL)
3 Albumin, urine (ug/mL) Blood lead (umol/L)
4 Lymphocyte percent (%) General health condition
5 Blood lead (umol/L) Albumin, serum (g/L)
6 Education Level - Adults 20+ Arm Circumference (cm)
7 Red cell distribution width (%) Red cell distribution width (%)
8 Cholesterol, serum (mmol/L) Chloride, serum (mmol/L)
9 Blood mercury, total (ug/L) Education Level - Adults 20+
10 General health condition Blood cadmium (nmol/L)
11 Red blood cell count (million cells/uL) Creatinine, serum (umol/L)
12 Basophils percent (%) Received Hepatitis B 3 dose series
13 Require special healthcare equipment (0-No, 1-Yes) Self-reported greatest weight (pounds)
14 Arm Circumference (cm) Body Mass Index (kg/m**2)
15 Upper Arm Length (cm) Systolic: Blood pres (2nd rdg) mm Hg
16 Blood cadmium (nmol/L) Mean cell hemoglobin (pg)
17 Chloride, serum (mmol/L) Gamma glutamyl transferase (U/L)
18 Avg # alcoholic drinks/day - past 12 mos Potassium, serum (mmol/L)
19 Systolic: Blood pres (1st rdg) mm Hg Blood mercury, total (ug/L)
20 Blood urea nitrogen (mmol/L) How do you consider your weight?

Supplementary Table 3: Selected top 20 features of the 1-year and the 10-year mortality risk scores.
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