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Supplementary Methods

Data collection and processing

The National Health and Nutrition Examination Survey (NHANES) from the National Center for Health
Statistics (NCHS)(http://www.cdc.gov/nchs/nhanes.htm) conducts interviews and physical examinations
to assess the health and nutrition data for all ages in the United States. The interviews include demographic,
socioeconomic, dietary, and health-related questions. The examinations include medical, dental, physiological
measurements, and laboratory tests administered by highly trained medical personnel. Since 1999, data were
collected and released at 2-year intervals. Each year NHANES examines a nationally representative sample of
roughly 5,000 individuals across the Unites States. The design of the sample changed periodically. Oversam-
pled subgroups for 1999-2006 included non-Hispanic black persons, Mexican-American persons, low-income
white persons (beginning in 2000), adolescents aged 12-19, and persons aged 70 and over. Oversampled sub-
groups for 2007-2010 included all Hispanic persons, non-Hispanic black persons, low-income white persons,
and persons aged 80 and over (https://www.cdc.gov/nchs/data/series/sr\_01/sr01\_056.pdf). In this
study, we include NHANES data sampled between 1999 and 2014. All-cause mortality is ascertained by a
linked NHANES mortality file that provides follow-up mortality data from the date of survey participation
through December 31, 2015. We exclude participants under age 18 because they are not eligible for public
release mortality data (https://www.cdc.gov/nchs/data/datalinkage/public-use-2015-1inked-mor
tality-file-description.pdf).

Our study includes samples with known mortality status who participated in NHANES 1999-2014
(n = 47,261). In the raw data, individuals 85 and over are topcoded at 85 years of age in NHANES
1999-2006 and individuals 80 and over are topcoded at 80 years of age in NHANES 2007-2014. To keep
consistency, we topcode individuals 80 and over at 80 years of age. The histogram of the the samples’
age in different data collection cycles are shown in Supplementary Figure 2. We include all demographic,
laboratory, examination, and questionnaire features that could be automatically matched across different
NHANES cycles. We exclude variables that are missing for more than 50% of the participants and highly
correlated features with correlations greater than 0.98; after filtering and one-hot encoding, 151 features
remain (Supplementary Data 1). We impute missing data using MissForest®, a nonparametric random
forest-based multiple imputation method for mixed-type data, with seven iterations. We predict all-cause
mortality for two broad categories: (1) follow-up times of 1-year, 3-year, and 5-year and (2) age groups of
<40, 40-65, 65-80, and >80 years old. For different follow-up times, we remove samples with unconfirmed
mortality status. For different age groups, we predict 5-year mortality. The demographic characteristics and

sample size of the data for different tasks are shown in Supplementary Table 1.



We use UK Biobank samples as an external validation dataset. Participants were enrolled in the UK
Biobank from April, 2007, to July, 2010, from 21 assessment centres across England, Wales, and Scotland
using standardised procedures. When participants agreed to take part in UK Biobank, they visited their
closest assessment centre to provide baseline information, physical measures, and biological samples. We
include the 51 features that are overlapping between NHANES and UK Biobank dataset (Supplementary
Data 1). We exclude samples with missing values. All-cause mortality included all deaths occurring before
May, 2021. We include 384,762 samples aged 37-72 years with confirmed 5-year mortality status. Of these
samples, 6,336 died after 5 years. The histograms of age, gender and body mass index of UK Biobank

samples are shown in Supplementary Figure 3.

Predictive modeling

To model mortality, we use gradient boosted trees (GBTs). GBTSs are nonparametric methods composed
of iteratively trained decision trees. The final ensemble of trees captures non-linearity and interactions
between predictors. The dataset is randomly divided into training (80%) and testing (20%) sets. We use the
implementation XGBoost! (https://xgboost.readthedocs.io/en/latest/python/index.html) with a
learning rate set to 0.002 , subsample ratio set to 0.5 and 10,000 trees of max depth 3. For comparison, we also
train logistic regression models and deep neural networks. For logistic regression, we use L2 regularization.
The L2 regularization weight was set to 100. For neural networks, we use a single layer with 1,000 nodes, and
max iteration set to 1,000. The hyperparameters specified above are chosen by GridSearch and 5-fold cross
validation. Other hyperparameter values are left at their default values. Models’ performance is measured
with the area under the receiver operator characteristic curve (AUROC) and the area under the precision-
recall curve (AUPRC). We bootstrap the test set for 1,000 times to assess the statistical significance of the
difference in AUROC and AUPRC for pairs of models. Specifically, we resample with replacement from
the test set 1,000 times and compare the models’ performance on resampled test sets. We report a p-value
which is the percentage of time that logistic regression or the neural network’s performance is better than
or equal to gradient boosted trees, divided by the number of resampled test sets. All models are built using

the Scikit-learn package in Python 3.7.

Model interpretation

To explain the GBT models, we utilize TreeExplainer”, which provides a local explanation of the impact
of input features on individual predictions. Specifically, TreeExplainer calculates exact SHAP® (SHapley
Additive exPlanations) values for tree-based models. When explaining the mortality prediction models, we
randomly select 10,000 background samples from the training set and 5,000 foreground samples from the

test set.

SHAP (SHapley Additive exPlanation) values

SHAP (SHapley Additive exPlanation) values attribute to each feature the change in the expected model
prediction when conditioning on that feature. The change of the model’s prediction when the feature is
masked is recorded across all possible subsets of features, yielding an average change in prediction resulting

from the inclusion of a feature in the model:
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where ¢; is the feature attribution (SHAP value) of feature ¢ in model f for data point x, R is the set of
all feature permutations, Pf? is the set of all features before i in the ordering R, M is the number of input
features, and f, is an estimate of the conditional expectation of the model’s prediction: f,(S) =~ E[f(x) | xg]
where zg is the set of observed features.

SHAP values which guarantee a set of desirable theoretical properties, including additivity and consis-
tency. Additivity states that when approximating the original model f for a specific input x, the SHAP

values sum up to the output f(x):
M
f(x) = do(f) + Y dilf, ), (4)
i=1

The sum of feature attributions (SHAP values) matches the original model output f(x), where ¢o(f) =
E[f(z)] = £x(0). Consistency states that if a model changes so that some feature’s contribution increases or
stays the same regardless of the other inputs, that input’s attribution should not decrease. Therefore, SHAP

values are consistent and accurate calculations of each feature’s contribution to the model’s prediction.

SHAP interaction values and main effects

The SHAP interaction effects is based on the Shapley interaction index from game theory. While standard
feature attribution results in a vector of values, one for each feature, attributions based on the Shapley
interaction index result in a matrix of feature attributions. The main effects are on the diagonal and the

interaction effects on the off-diagonal. The SHAP interaction values are defined as:
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where M is the set of all M input features. In Equation 5 the SHAP interaction value between feature i
and feature j is split equally between each feature so ®; ;(f,z) = ®;:(f,x) and the total interaction effect
is @ ¢ (f,2) + @5(f, ).

The main effects for a prediction can then be defined as the difference between the SHAP values and

the off-diagonal SHAP interaction values for a feature:

Oi(f,2) = dilf ) = Y ®ii(f, ). (7)
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*Partial dependence plots and additional perspective to reference interval We use partial dependence
plots to show the change in mortality risk for all values of a laboratory feature. Partial dependence plots
show the marginal effect a set of features has on the prediction of an ML model. The partial function fg is

estimated by:
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In this formula, f is a ML model and the S are features for which the partial dependence function should

be plotted. In our study, S is the laboratory feature of interest and xg is the given value of the feature. :U(é)



is actual feature values for the features of no interest in the test set, and n is the number of instances in
the test set. The partial function tells us the average marginal effect on the prediction for given value(s) of

features S. We extend the partial function to the relative mortality risk RRg:

RRs(ws) = fs(es)/ (-3 f0)) )

In other words, the relative mortality risk is defined as the average value of the model’s predicted prob-
ability when we fix a specific feature to a given value divided by the average value of the model’s predicted

probability. We further define the relative risk percentage (RRP) as follows:

max(RRg(zs),xs in RI) — 1

P =
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where RI stands for reference interval. High relative risk percentage indicates that the values within the
reference interval have a relatively high mortality risk. The partial dependence plots of selected laboratory

feature values on 1-, 3-, and 10-year mortality risk are shown in Supplementary Figure 5.

Model interpretation plots

In this section we describe a number of plotting types for model explanation visualization.

SHAP value, SHAP main effect value and SHAP interaction value plots In SHAP value/SHAP
main effect value/SHAP interaction value plots, every point corresponds to a single sample where the x-axis
is the value of the feature and the y-axis is the SHAP value/SHAP main effect value/SHAP interaction

value. The coloring of the points often denotes the value of a separate feature.

Summary plot Summary plots show the feature attributions (SHAP values) for many samples and multi-
ple features in order of global feature importance (the mean absolute SHAP values). Summary plots stack
multiple subplots for each feature. For the feature plots, every point corresponds to a single sample where
the x-axis is the feature attribution value and the y-axis is vertical dispersion representing the frequency of
samples with a particular feature attribution value. Finally, the color of each point represents the normalized
feature value, with red representing a high value and blue representing a low one. Intermediary feature values

are interpolations between red and blue.

Individualized explanation plot Individualized explanation plots show the feature attributions (SHAP
values) for an individual in terms of how they drive the model’s prediction for the individual away from the
average model prediction across the baseline distribution. The width of the bars indicate the SHAP value
with red indicating a positive affect and blue indicating a negative one. The features corresponding to the

largest bars are below with their actual values for the individual.

Supervised distance
Supervised distance and hierarchical clustering

Supervised distance can accurately measure feature redundancy based on a specific prediction task. As

Supplementary Figure 11 shows, to calculate the supervised distance between feature i and feature j, we



first train a uni-variate GBT model to predict the label (e.g. 5-year mortality in our study) using feature
i. Then, we can obtain the Prediction; which is the output of the fitted uni-variate GBT. Next, we fit
another uni-variate GBT to predict Prediction; using feature j. We define the output of the new GBT as
Predictiong . All hyperparameter values of the uni-variate GBTs are set to their default values. Following
the same above steps, we can obtain Predictionj-. The supervised distance between feature i and feature j

(supervised distance(i,j)) is defined as:

(Prediction; — Prediction])?

var(Prediction;)

supervised R%(i, j) = max (0,1 — mean(

) (11)

supervised distance(i, j) = max(1 — supervised R*(i,7), 1 — supervised R*(j,1)) (12)

where var(x) is the variance of the vector x, mean(z) is the average of the vector x. Supervised distance is
scaled roughly between 0 and 1, where 0 distance means the features perfectly redundant and 1 means they
are completely independent.

To explore the redundant feature groups, we hierarchically cluster all features according to the supervised
distance. Specifically, we use complete linkage hierarchical clustering which merges in each step the two
clusters whose merger has the smallest diameter. The hierarchical clustering tree is shown in Supplementary

Figure 12.

Redundant feature groups experiments training details

Reducing redundancy model To identify the most representative feature in a redundant feature group,
we train GBTs using one feature in the redundancy group and all features outside the group for 5-year
mortality prediction. Then we compare the feature importance ranking of the redundant features by calcu-
lating the mean absolute SHAP values using TreeExplainer. The hyperparameters of the GBTs are chosen
by GridSearch and 5-fold cross validation. The max depth is selected from {1,3,5,7,9} and the subsample
ratio is selected from {0.2,0.5,0.8,1.0}. Other hyperparameter values are left at their default values.

Single feature model We further analyze the predictive power of the redundant features by fitting 5-
year mortality prediction GBTs using one feature in the redundant feature group. Specifically, we use one
feature in the redundant feature group and two important confounders, age and gender, to train a GBTs
for 5-year mortality prediction. All hyperparameter values are set to their default values. We compare the
AUCGs of the models. We bootstrap the test set for 1,000 times and compare the models’ performance on

resampled test sets. The averages of the AUCs are reported.

Supervised distance-based feature selection

We propose a supervised distance-based feature selection method to select predictive and less-redundant
feature sets. The workflow of our feature selection method is shown in Supplementary Figure 11. The dataset
is randomly divided into training (80%) and testing (20%) sets. Firstly, we fit a GBT for 5-year mortality
prediction on all features using the training set and rank the features by mean absolute SHAP values from
TreeExplainer. The hyperparameters of the GBTs are chosen by GridSearch and 5-fold cross validation.
The max depth is selected from {1, 3,5, 7,9} and the subsample ratio is selected from {0.2,0.5,0.8,1.0}. The
max number of trees is set to 1000. We use 20% of the training samples as validation set for early stopping.

The number of early stopping rounds is set to 100. Since age and gender are important confounders, we



would like to keep them in the selected feature set. Therefore, we cluster features except age and gender
into a specific number of groups using supervised distances-based hierarchical clustering and select the most
important feature in each cluster. Then, we add age and gender to the selected feature set and re-fit the
model. Next, we rerun the clustering using the new feature set except age and gender. This process is
repeated until all remaining features cluster to a single group. In every iteration, we remove 5 features. The
models are evaluated on the testing set with bootstrapping for 1,000 times. We report the average of the
AUROCSs and the minimum supervised distance within the selected feature sets. The selected features in

each iteration are listed in Supplementary Data 1.

5-year mortality risk scores
Mortality risk scores training details

IMPACT mortality risk scores are defined to be the prediction of the 5-year mortality prediction models. For
comparison, we train linear (https://scikit-survival.readthedocs.io/en/latest/api/generated/s
ksurv.linear\ model.CoxPHSurvivalAnalysis.html) and gradient boosted tree-based Cox proportional
hazard models (https://scikit-survival.readthedocs.io/en/latest/api/generated/sksurv.en
semble.GradientBoostingSurvivalAnalysis.html). We do a temporal validation of the risk scores by
assessing their performances in the samples collected in 2009-2014 (N = 7,034). Specifically, the samples
collected in 1999-2008 (N = 28,820) are randomly divided into training (80%) and testing (20%) sets. The
sample size, the number of deceased samples and the histogram of age in the training set with the testing
set and the temporal validation set are shown in Supplementary Figure 13. To compare with Intermountain
gender-specific risk scores, we evaluate the models on different gender groups. The models are trained on
the whole training set and evaluate on different gender groups in the testing set. Furthermore, considering
the different feature collection cost for the general public and medical professionals, we build the risk scores
starting from different feature sets. For the general public, the models are trained on all demographics,
questionnaire features and examination features that are accessible at home for general public, For medical
professionals, the models are trained on all demographics and laboratory features. All trained models are
evaluated on different gender groups of the samples collected in 2009-2014 for temporal validation.

The hyperparameters are chosen by GridSearch and 5-fold cross validation. For XGBoost 5-year mortality
prediction models, the max depth is selected from {1,3,5,7,9} and the subsample ratio is selected from
{0.2,0.5,0.8,1.0}. The max number of trees is set to 1000. We use 20% of the training samples as validation
set for early stopping. The number of early stopping rounds is set to 100. For linear Cox proportional
hazard models, the regularization parameter « is selected from {0.01,0.1,1,10,100}. For tree-based Cox
proportional hazard models, the max depth is selected from {1,3,5,7,9} and the subsample ratio is selected
from {0.2,0.5,0.8,1.0}. Other hyperparameter values are left at their default values.

We explain the mortality prediction model in terms of its probability predictions. Specifically, we rescale
the SHAP values (in the log-odds space) to be in the probability space directly. The rescaled SHAP values

now sum to the probability output of the model.

Recursive feature elimination

Recursive feature elimination works by searching for a subset of features by starting with all features in the
training dataset and successively removing features until the desired number of features remains. Firstly,

we train a model on the full dataset with all features. Then we rank features by importance (mean absolute



SHAP values) and remove the least important features. Another model is trained on the resulting feature
set, and the process iterates until only the desired number of features are left. Starting from 151 features,
we remove 6 features at the first iteration. Then, we remove 5 features in each iteration until only one
feature is left. We bootstrap the test set for 1,000 times and assess the predictive performance. Specifically,
we resample with replacement from the test set 1,000 times and report the average and the 95% confidence

interval of the AUROCSs. The selected features in each iteration are listed in Supplementary Data 1.

Intermountain mortality risk score

Intermountain mortality risk scores* are built using complete blood count and basic metabolic profile. Specif-
ically, 13 laboratory features are used to predict 30 days, 1-year and 5-year mortality. Logistic regression
was used to model the risk prediction equations with adjustment for age and sex. Dummy variables modeled
each category, with the referent defined as the lowest risk group (except for age categories: 18-29, 30-39,
40-49 [referent], 50-59, 60-69, 70-79, and >80 years). A scalar score value was derived for each variable
category by multiplying its S-coefficient by 3 and rounding to the nearest integer (referent value = zero).
Each individual’s risk score became the sum of the score values based on his or her individual data. Since
all of the features used in the Intermountain risk scores are included in our NHANES dataset, we evaluate

the Intermountain risk score on our NHANES testing set with bootstrapping for 1,000 times.

Comparing the predictive power of popular mortality risk scores and biological ages with
IMPACT

Since not all features used in the popular mortality risk scores and biological ages are included in the
NHANES dataset (except for Intermountain risk scores; see Supplementary Methods), it would not be fair
to compare the existing mortality scores and biological ages computed based on a partial set of features with
the IMPACT model based on the NHANES dataset. Therefore, we chose to show the AUROCS reported in
the original papers. As the AUROCSs are not sensitive to the base rate, we assume that these scores would
be consistent among different datasets if the risk scores and biological ages generalize well.

Table 1 compares the AUROCs between an existing mortality score or a biological age as reported in the
original paper and the IMPACT-20 model tested for the corresponding follow-up time and age ranges in the
NHANES dataset. Here, IMPACT-20 means the IMPACT model when the top 20 features were used; we
chose 20 features because in Figures 8a-b, the IMPACT model with 20 features obtains an AUROC that is
almost the same as the performance of the model using all features, and using fewer than 20 features leads
to a dramatic decline in accuracy.

To get the top 20 most important features for 1-year and 10-year mortality predictions, we repeat the same
mortality risk scores training and recursive feature elimination process for 1-year and 10-year predictions. We
perform temporal validation to show the generalizability of the IMPACT-20 risk scores on data collected at
different time periods. To have similar base rates and age distributions in the test set and temporal validation
set, we use the samples from different collection cycles as the temporal validation set for different follow-up
times. For 1-year mortality prediction, we use the samples collected in 1999-2012 as the training/testing set
and the samples collected in 2013-2014 as the temporal validation set. For 5-year mortality prediction, we
use the samples collected in 1999-2008 as the training/testing set and those collected in 2009-2014 as the
temporal validation set. For 10-year mortality prediction, we use the samples collected in 1999-2000 as the
training/testing set and those collected in 2001-2014 as the temporal validation set. With respect to the

5-year mortality risk scores, samples that are not included in the temporal validation set are randomly split



into 80% for training and 20% for testing. The sample size, number of deceased samples, and histogram of
age in the training set, with the testing and temporal validation sets, are shown in Supplementary Figure
13. In Table 1, the “AUROC” column shows the AUROCSs reported in the original paper. The “AUROC
of IMPACT-20" column shows the performance of 1-year, 5-year and 10-year IMPACT models trained with
the selected top 20 features (listed in Supplementary Tables 2-3). The IMPACT-20 models are trained on
samples of all ages and evaluated on the samples within the same age range in the original paper. We

bootstrap the test set and the temporal validation set for 1,000 times when measuring the AUROCs.

Supplementary Notes

Supplementary Note 1 External validation of the NHANES mortality prediction
model on the UK Biobank (UKB) dataset

We aim to validate whether the performance and explanations of the NHANES mortality prediction model
generalize to an unseen population (UKB). To do so, we train a new tree-based 5-year mortality prediction
model on the NHANES dataset using the 51 overlapping features between NHANES and UKB. As shown in
Supplementary Figure 8h, the classification accuracy on the UKB test set of the model trained on NHANES
samples (AUROC = 0.7780) and UKB samples (AUROC = 0.7974) are close, which shows the generalizability
of the NHANES model. Supplementary Figure 7a shows the feature importances of the 51 features of the
NHANES (51 features) and UKB models. The SHAP wvalues of both models are calculated using the same
UKB samples. We observe that the top 20 most important features are largely consistent, with 14 features
the same for both models. The p-value of the Fisher’s exact test (p-value = 0.0004) shows that the overlap
between the top 20 most important features of both models is significant. The Spearman’s correlation
coefficient of both models’ feature importance is 0.6969 (p-value < 0.0001). Supplementary Figures 7h-g
show noteworthy results of the NHANES (51 features) model explained by UKB samples: the SHAP main
effect of red cell distribution width, serum albumin and serum uric acid, and the relative 5-year mortality
risk of gamma glutamyl transferase, lymphocyte percent and serum albumin. The trends shown in these
figures are consistent with previous findings from both the NHANES (151 features) and UKB (51 features)

models. Additional validation results on the UKB dataset are presented in Supplementary Figure 8.

Supplementary Note 2 Discoveries for mortality prediction using different age

groups

IMPACT identifies tmportant features for mortality prediction in different age groups.
Supplementary Figure 9a shows the top 20 most important features and relative importance in 5-year
mortality prediction models using different age groups (<40, 40-65, 65-80 and >80). Some features become
more important for older subpopulations, such as alanine aminotransferase (ALT), the fifth most important
feature in the model using samples over 80 years. Supplementary Figure 9e shows the main effect of ALT for
age>80, which shows the negative relationship between ALT and 5-year mortality. Moreover, some features
are less important for older subpopulations than younger ones. One example is uric acid level, the sixth most
important feature in the age<40 model and the 59th most important in the age>80 model. Supplementary
Figure 9b plot the main effect and SHAP value of uric acid in the age<40 model, showing that low uric acid
levels increase mortality risk prediction. However, in the age 40-65 model, higher uric acid is associated with

higher mortality risk (Supplementary Figure 9d). Previous work shows that low uric acid in blood serum



911 and that hyperuricemia (high

can injure the endothelium and induce oxidative stress-related disease
uric acid) is associated with various adverse health outcomes, including hypertension, stroke, cardiovascular
disease and cancer?3:%19, The numerous downstream effects of high uric acid and low uric acid might explain
the different relationship between uric acid and mortality in different age groups. Moreover, the reference
range of uric acid differs for males and females (2.4-6.0 mg/dL for females and 3.4-7.0 mg/dL for males).

This difference is shown in Figure 9c¢, where women have lower uric acid, which can increase mortality risk.

Supplementary Note 3 Explaining the mortality predictions using different

baseline distributions

In the Results section, we use TreeExplainer to explain an explicand relative to a baseline distribution drawn
uniformly from all training samples (Figure 3a) This explanation substantially emphasizes age because it
compares the explicand to the general population baselines that include individuals of all ages. However, in
practice, epidemiologists are more interested in an individual’s strong risk factors compared with people of
the same age. To show this, we can manually select baselines from the samples that have similar age with the
explicand. We take the middle-aged (40-50) baseline distribution and the older (60-70) baseline distribution
as two examples. Specifically, we use the testing samples in the specific age range as the explicands (i.e.,
samples being explained) and training samples in the same age range as the baselines (i.e., background
samples) when calculating the SHAP values. The SHAP summary plots are shown in Supplementary Figures
10a-b. From the figures, we observe that age is no longer the most important feature. Also, compared with
Figure 3a, the SHAP value ranges are relatively similar. Therefore, we can identify the strong mortality
predictors other than age for different age groups using different baseline distributions. Supplementary
Figures 10c,e show the individualized explanations of a healthier vs unhealthier sample using baselines from
the general population. We observe that age contributes a lot to the prediction. However, as shown in
Supplementary Figures 10d,f, the contribution of other important risk factors increases when we use older
baselines. These examples illustrate that using the baselines with similar age can help identify strong risk

factors besides age.



Different follow-up times

1-year 3-year 5-year 10-year
(n=47,261) (n=41,434) (n=35,854) (n=21,986)
Number of deaths 577 (1.22%) 1,897 (4.58%) 3,074 (8.57%) 5,295 (24.08%)
Age,years 46 (30-63) 46 (30-64) 46 (30-64) 48 (30-67)
Sex
Male 22,778 (48.20%) | 19,998 (48.26%) | 17,276 (48.18%) | 10,630 (48.35%)
Female 24,483 (51.80%) | 21,436 (51.74%) | 18,578 (51.82%) | 11,356 (51.65%)
Ethnicity

Mexican American

8,947 (19.93%)

8,164 (19.70%)

7,543 (21.04%)

4,844 (22.03%)

Other Hispanic

3,452 (7.03%)

2,929 (7.07%)

2,335 (6.51%)

979 (4.45%)

Non-Hispanic White

21,428 (45.34%)

18,990 (45.83%)

17,081 (47.64%)

10,921 (49.67%)

Non-Hispanic Black

10,039 (21.24%)

8,821 (21.29%)

7,337 (20.46%)

4,353 (19.78%)

Other Race

3,395 (7.18%)

2,530 (6.11%)

1,558 (4.35%)

889 (4.04%)

Different age groups (follow-up time = 5-year)

Age < 40 40 < Age < 65 65 < Age < 80 Age > 80
(n=14,221) (n=12,705) (n=6,004) (n=2,924)
Number of deaths 183 (1.29%) 648 (5.10%) 961 (16.01%) 1,282 (43.84%)
Age,years 27 (21-33) 51 (45-58) 71 (68-75) 80 (80-80)
Sex
Male 6,629 (46.61%) | 6,263 (49.30%) | 3,056 (50.90%) | 1,328 (45.42%)
Female 7,592 (53.39%) | 6,442 (50.70%) | 2,948 (49.10%) | 1,596 (54.58%)
Ethnicity

Mexican American

3,663 (25.76%)

2,622 (20.64%)

1,046 (17.52%)

212 (7.25%)

Other Hispanic

(
993 (6.98%)

(
906 (7.13%)

(
329 (5.48%)

107 (3.66%)

Non-Hispanic White

5,686 (39.98%)

5,825 (45.85%)

3,319 (55.28%)

2,251 (76.98)

Non-Hispanic Black

(
3,143 (22.10%)

(
2,793 (21.98%)

(
1,125 (18.74%)

276 (9.44)

Other Race

736 (5.18%)

559 (4.40%)

185 (3.08%)

78 (2.67%)

Supplementary Table 1: Population characteristics for the study cohorts.
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5-year mortality 35,854 32,780 3,074
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Age <40 14,221 14,038 183
40 < Age <65 12,705 12,057 648
65 < Age < 80 6,004 5,043 961
Age =80 2,924 1,642 1,282

Supplementary Figure 1: (a—d) Histograms of age, gender, race, and body mass index in the NHANES
dataset. (e) The sample size and number of living and deceased samples for different follow-up times and
different age groups. For different age groups, the follow-up time is set to 5 years.
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Supplementary Figure 3: (a—c) Histograms of age, gender, and body mass index in the UK Biobank dataset.
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Improving prediction power

AUPRC on different mortality prediction tasks

Logistic Gradient Neural
Regression Boosted Trees  Network

1-year mortality 0.1405 — »+—0.2307 — ==—0.1016
3-year mortality 0.3787 — #+ —0.4397 — #+—0.3507
5-year mortality 0.5131 — =+ —0.5464 — =+ —0.4838
10-year mortality 0.7980 — #+—0.8212 — *+—0.7066
Age <40 0.0441 0.1047 — = —0.0423

40 < Age < 65 0.3436 0.3823 — =+—0.2931
65 < Age < 80 0.5263 — = —0.5790 — =+ —0.4717
Age =80 0.7447 0.7071 0.6766

Supplementary Figure 4: The area under the precision-recall curve (AUPRC) of gradient boosted tree models
outperforms both linear models and neural networks for seven of our prediction models. (* * %) represents a
p-value < 0.001, (x%) represents a p-value < 0.01, and (x) represents a p-value < 0.05. P-values are computed
using bootstrap resampling over the tested time points while measuring the difference in area between the
curves.
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Supplementary Figure 5: Effect of varying laboratory feature values on 1-, 3- and 10-year mortality
risk. These partial dependence plots show the change in relative 1-, 3- and 10-year mortality risk for all
values of a given laboratory feature. The grey histograms on each plot show the distribution of values for
that feature in the test set. The green shaded region shows the reference interval of each feature.
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Supplementary Figure 6: External validation of the IMPACT framework on UKB dataset. (a)
SHAP summary plot for the 5-year mortality prediction model trained on UKB (51 features) dataset. (b,c)
The main effect of serum albumin and platelet count on 5-year mortality of the model trained on UKB (51
features) dataset. (d,e) The relative 5-year mortality risk of alanine aminotransferase ALT on male and female
samples of the model trained on UKB (51 features) dataset. (f) The contingency table of the Fisher’s exact
test that evaluates the significance of the overlap between the top 20 most important overlapping features in
the model trained on NHANES (151 features) dataset and the model trained on UKB (51 features) dataset.
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External validation of the NHANES mortality prediction model on UKB dataset
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Supplementary Figure 7: External validation of the NHANES mortality prediction model on the
UKB dataset. (a) Feature importance ranking of models trained on the NHANES (51 features) dataset
and the UKB (51 features) dataset. The SHAP wvalues are calculated using UKB samples. For each model,
the figure shows the 20 most important features of prediction (ordered by importance). The purple line
indicates that the feature is in the top 20 features of two models. Blue and red lines indicate the feature is
in the top 20 features of one model but not in the top 20 features of the other. The p-value of the Fisher’s
exact test examines the overlap between the top 20 most important overlapping features in NHANES and
UKB models (the contingency table in Supplementary Figure 8G). The Spearman’s correlation coefficient is
calculated using the feature importance of the overlapping features in NHANES and UKB. (x* %) represents
a p-value < 0.001. (b-d) The main effect of red cell distribution width, urine albumin and serum uric
acid on 5-year mortality of the model trained on the NHANES (51 features) dataset and explained using
UKB samples. (e-g) The relative 5-year mortality risk of gamma glutamyl transferase, lymphocyte percent
and serum albumin of the model trained on the NHANES (51 features) dataset and explained using UKB
samples.
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External validation of the NHANES mortality prediction model on UKB dataset
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Supplementary Figure 8: External validation of the NHANES mortality prediction model on the
UKB dataset. (a) SHAP summary plot for the 5-year mortality prediction model trained on NHANES (51
features) dataset and explained using UKB samples. (b) The predictive performance of the models trained on
the NHANES (51 features) and UKB (51 features) datasets. The AUROCS are calculated on the testing set
by bootstrapping 1,000 times. (c,d) The main effect of serum albumin and platelet count on 5-year mortality
of the model trained on the NHANES (51 features) dataset and explained using UKB samples. (e,f) The
relative 5-year mortality risk of alanine aminotransferase ALT on male and female samples of the model
trained on the NHANES (51 features) dataset and explained using UKB samples. (g) The contingency table
of the Fisher’s exact test that evaluates the significance of the overlap between the top 20 most important
overlapping features in the model trained on the NHANES (51 features) dataset and the model trained on
the UKB (51 features) dataset. Both models are explained using UKB samples.
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Supplementary Figure 9: Understanding important risk factors for mortality prediction in dif-
ferent age groups. (a) Relative importance of input features in <40, 40-65, 65-80 and >80 age groups.
For each model, the figure shows the 20 most impactful features on prediction (ranked from most to least
important). The purple line indicates that the feature is in the top 20 features of two models. Blue and red
lines indicate the feature is in the top 20 features of one model, but not in the top 20 features of the other.
(b) The main effect of serum uric acid on 5-year mortality in the <40 age group. (c¢) The SHAP value of
serum uric acid in the <40 age group 5-year mortality model. (d) The main effect of serum uric acid on
5-year mortality in the 40-65 age group. (e) The main effect of alanine aminotransferase on 5-year mortality

in the >80 age group.
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Supplementary Figure 10: Explaining the 5-year mortality predictions using different baseline
distributions. (a) Explaining the middle-aged subpopulation (40-50 years old) with the baselines of the
same age range. (b) Explaining the older subpopulation (60-70 years old) with the baselines of the same age
range. (c,d) The individualized explanation for an individual aged 62 using the general population baselines
and the older (60-70) baselines. (e,f) the individualized explanation for an individual aged 66 using the
general population baselines and the older (60-70) baselines.
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Supplementary Figure 12: The cluster tree of supervised distance based hierarchical clustering. The color

threshold is set to 0.98.
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Training set (80%) + Testing set (20%) Temporal validation set
Follow-up Numb Numb
time | Collection ur;lf €' | Number Base rate | Collection ulg)nf €T | Number Base rate
cycles samples of deaths cycles | oo ples of deaths
1-year | 1999-2012 | 41,179 524 1.27% |2013-2014| 6,082 53 0.81%
S5-year | 1999-2008 | 28,820 2,247 7.80% [2009-2014| 7,034 827 11.76%
10-year | 1999-2000 | 5,444 931 17.10% |2001-2014| 16,542 4,364 26.38%
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Supplementary Figure 13: (a) Population characteristics of the training/testing and temporal validation sets
with different follow-up times. (b—g) Histograms of age in the training/testing set and temporal validation

set with different follow-up times.
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Supplementary Figure 14: (a,b) The AUROC of the models using different feature sets after recursive
feature elimination. Lines are mean performance over 1000 random train/test splits, and shaded bands are
95 percent normal confidence intervals. (a) The AUROC of the models tested on the male group in the
test set of NHANES 1999-2008. (b) The AUROC of the models testing on the male group in the temporal
validation set (NHANES 2009-2014).
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Importance

Ranki IMPACT-20 IMPACT-20 (Demo+Lab)
anking
1 Age Age
2 Albumin, urine (ug/mL) Blood lead (umol/L)
3 Arm Circumference (cm) Albumin, urine (ug/mL)
4 Gender (0-Male, 1-Female) Ratio of family income to poverty
5 Blood lead (umol/L) Education Level - Adults 20+
6 Ratio of family income to poverty Red cell distribution width (%)
7 Albumin, serum (g/L) Chloride, serum (mmol/L)
8 Red cell distribution width (%) Blood cadmium (nmol/L)
9 Received Hepatitis B 3 dose series Lymphocyte percent (%)
10 General health condition Mean cell volume (fL)
11 Mean cell volume (fL) Red blood cell count (million cells/ul.)
12 Number of months working in the main job Albumin, serum (g/L)
13 Self-reported greatest weight (pounds) Creatinine, serum (umol/L)
14 Education Level - Adults 20+ Cotinine, Serum (ng/mL)
15 Lymphocyte percent (%) Platelet count (1000 cells/uL)
16 Require special healthcare equipment (0-No, 1-Yes) | Potassium, serum (mmol/L)
17 Chloride, serum (mmol/L) Sodium, serum (mmol/L)
18 Blood cadmium (nmol/L) Alanine aminotransferase ALT (IU/L)
19 Weight (kg) Blood urea nitrogen (mmol/L)
20 Shortness of breath on stairs/inclines (0-No, 1-Yes) | Race (Non-Hispanic White)
Importance IMPACT
Ranking IMPACT-20 (Demo-+Exam-+Ques) (CBC+BMP with age and gender)
1 Age Age
2 Require special healthcare equipment (0-No, 1-Yes) | Red cell distribution width (%)
3 Arm Circumference (cm) Mean cell volume (fL)
4 General health condition Chloride, serum (mmol/L)
5 Education Level - Adults 20+ Gender (0-Male, 1-Female)
6 Gender (0-Male, 1-Female) Glucose, refrigerated serum (mmol/L)
7 Congestive heart failure (0-No, 1-Yes) Red blood cell count (million cells/uL)
8 Ratio of family income to poverty White blood cell count (1000 cells/ulL)
9 Diastolic: Blood pres (2nd rdg) mm Hg Potassium, serum (mmol/L)
10 Systolic: Blood pres (2nd rdg) mm Hg Creatinine, serum (umol/L)
11 Avg # alcoholic drinks/day - past 12 mos Platelet count (1000 cells/uL)
12 Cancer (0-No, 1-Yes) Blood urea nitrogen (mmol/L)
13 Self-reported weight-age 25 (pounds) Sodium, serum (mmol/L)
14 Number of months working in the main job Hemoglobin, serum (g/dL)
15 Self-reported greatest weight (pounds) Mean cell hemoglobin (pg)
16 Duration of longest job (months) Total calcium, serum (mmol/L)
17 Smoked at least 100 cigarettes in life (0-No, 1-Yes) | Mean platelet volume (fL)
18 Shortness of breath on stairs/inclines (0-No, 1-Yes)
19 60 sec. pulse (30 sec. pulse * 2)
20 Current self-reported height (inches)

Supplementary Table 2: The selected top 20 features of the 5-year mortality risk scores using different
feature types and the features included in CBC and BMP panels.
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Importance

IMPACT-20 (1-year mortality prediction)

IMPACT-20 (10-year mortality prediction)

Ranking
1 Age Age
2 Albumin, serum (g/L) Albumin, urine (ug/mL)
3 Albumin, urine (ug/mL) Blood lead (umol/L)
4 Lymphocyte percent (%) General health condition
5 Blood lead (umol/L) Albumin, serum (g/L)
6 Education Level - Adults 20+ Arm Circumference (cm)
7 Red cell distribution width (%) Red cell distribution width (%)
8 Cholesterol, serum (mmol/L) Chloride, serum (mmol/L)
9 Blood mercury, total (ug/L) Education Level - Adults 20+
10 General health condition Blood cadmium (nmol/L)
11 Red blood cell count (million cells/uL) Creatinine, serum (umol/L)
12 Basophils percent (%) Received Hepatitis B 3 dose series
13 Require special healthcare equipment (0-No, 1-Yes) | Self-reported greatest weight (pounds)
14 Arm Circumference (cm) Body Mass Index (kg/m**2)
15 Upper Arm Length (cm) Systolic: Blood pres (2nd rdg) mm Hg
16 Blood cadmium (nmol/L) Mean cell hemoglobin (pg)
17 Chloride, serum (mmol/L) Gamma glutamyl transferase (U/L)
18 Avg # alcoholic drinks/day - past 12 mos Potassium, serum (mmol/L)
19 Systolic: Blood pres (1st rdg) mm Hg Blood mercury, total (ug/L)
20 Blood urea nitrogen (mmol/L) How do you consider your weight?

Supplementary Table 3: Selected top 20 features of the 1-year and the 10-year mortality risk scores.
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