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Supplementary Table 1. A performance comparison of silent communication systems 

based on strain gauges 

Sensing 
Technique 

Material 
Gauge 
factor  

Channel 
Attachment 

position 
Language 

(type) 
Class Accuracy Reference 

Strain 
Single crystalline 

silicon 
155 8  Face 

English 
(verbal)  

100 words  87.53% This work 

Strain Graphene - 1  
Throat 

(Vocal cord) 

English + 
motion 

(verbal + 
nonverbal) 

15 words 
+ 4 

motions 

55% (words) 
85% (motion) 

[1] 

Strain Au nanomesh 
7.26 ~ 
46.3 

18  Face 
English vowels 

(verbal) 
3 vowels -  [2] 

Strain 
Graphene-coated 

silk-spandex 
19.6 ~ 
34.3  

10  Fingers 
Gesture 

(nonverbal) 
4 gestures  96.07  [3] 

Strain + 
vision 

Single-walled 
carbon nanotube /  

polydimethylsiloxane 
- 5  

Hand 
(Fingers) 

Gesture 
(nonverbal) 

10 
gestures 

100% (normal) 
96.7% (noisy)  

[4] 

Strain Carbon grease 8  5  Fingers 
Sign language 

(nonverbal) 
10 

gestures 
98% [5] 



 

Supplementary Figure 1. Decision of sensor locations through area feature analysis (R-

CAM). a, Picture of 24 randomly partitioned compartments of facial skin near the mouth (left) 

and area change of 24 jaw polygons in the time domain while the word “ALPHA” is silently 

spoken (right). b, R-CAM analysis of 26 NATO words, indicating which compartments have 

significant areal change. It was confirmed that the areal change of the sections under the lower 

lip was the most remarkable while speaking the words silently. 

 



 

Supplementary Figure 2. Decision of sensor locations through area feature analysis 

(ablation study). a–b, Recognition accuracy of 26 NATO codes with some designated 

compartments masked.  

This experiment evaluated the effectiveness of the sensor positioning. The dataset is classified 

into 26 NATO codes. A model based on a 3D convolutional network is used. When we trained 

using all the area features, the model’s accuracy is 94%. When we use half of the area feature 

on the left side while masking the other half on the right side, the accuracy is 88%. This can be 

interpreted as having sufficient information with only half of the area feature because the whole 

muscles move symmetrically from side to side when we speak. When the performance of about 

four lower lip areas is compared with that of about four upper lip areas, the result of the former 

(75%) is better than that of the latter (51%). Additionally, we evaluated the performance with 

the area features of three lower lip areas and one upper lip area. Although the result (73%) is 

slightly lower than that of four lower lip areas (75%), a position shift of one sensor to an upper 

lip area enables a more convenient attachment of the sensors. 

 



 

Supplementary Figure 3. Block diagram of sEMG data acquisition flow. The facial skin 

movements during silent speech are captured in the form of resistance change by epidermal 

strain sensors. The resistance change induces the voltage change by the voltage divider (Vs = 

3V and RL = 20 kΩ) and is monitored by the voltage input module of the DAQ system. The 

collected raw data are pre-processed with the Savitzky–Golay filter and converted to a 3D array 

format before being feature-extracted with a 3D convolutional neural network (CNN). 

 

 

Supplementary Figure 4. Photograph of the strain data monitoring DAQ setup. The 

photograph consists of a voltage output module (NI PXIe-6738), voltage input module (NI 

PXIe-6365), voltage divider circuit, and an embedded controller (NI PXIe-8840) for measuring 

strain data with a frequency of 300 Hz. 

  



Supplementary Note 1. Details in FEA simulation 

The uniaxial stretching of the serpentine Si strain sensors in the mesh layout was simulated 

with the Piezoresistive Multiphysics model in COMSOL. Without loss of generality, the 

multilayered structures on the PDMS substrate (i.e., PI/Au/Cr/PI/PDMS and PI/Si/PI/PDMS) 

were modeled using a composite 2D shell with an effective Young’s modulus of 𝐸𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 =

∑𝐸𝑖ℎ𝑖 ∑ℎ𝑖⁄  , where 𝐸𝑖  and ℎ𝑖  are the Young’s modulus and thickness of each layer, 

respectively (Supplementary Table 1). The resistance change (Δ𝜌) of the piezoresistive sensor 

is related to the piezoresistive coefficient (𝜋 ) and stress tensor (S) as Δ𝜌 = 𝜋 ∙ 𝑆 . In the 

COMSOL simulation, the piezoresistive coefficient of p-type, single-crystal Si is given as 

𝜋 =

[
 
 
 
 
 
6.6 −1.1 −1.1

−1.1 6.6 −1.1
−1.1 −1.1 6.6

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

138.1 0 0
0 138.1 0
0 0 138.1]

 
 
 
 
 

·10−10 (1/𝑃𝑎). 

As the electrical resistance can be easily obtained as the ratio of the applied electrical potential 

(e.g., 5 V) to the measured current, applying the tensile strain along the given direction yields 

a change of resistance in the Si strain sensor with 45° orientation6, 7 upon stretching, which 

agrees reasonably well with the experimental measurements (Figs. 2d–e). 

 

Supplementary Table 2. Material properties and thickness of each layer 

 

  



Supplementary Table 3. Hyperparameters for 3D CNN-based deep-learning model 

 

 

Supplementary Table 4. Statistics of strain datasets 

 

  



Supplementary Table 5. Comparison with the conventional methods 

  

Method 

Strain Gauge sEMG 

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Avg Val set 

PCA + LDA 6.4 8.85 16 10.15 11.7 10.62 2.2 

PCA + SVM 11.5 15.65 46.85 31.15 22.25 25.48 2.55 

SVM 58.8 71.3 76.25 72.7 67.1 69.23 4.9 

CONV + SVM 79.95 84.8 90.2 90.55 85.85 86.27 40.85 

Transformer 71.85 74.85 66.8 69.4 74.8 71.54 28.25 

VGG 67.3 67.1 76.3 74.9 70.2 71.16 22.25 

Ours 80.1 87.85 91.55 90.5 87.65 87.53 42.60 

 



Supplementary Table 6. Recognition accuracy of all words (1–50) for 3 different classifier 

models. 

 

  



Supplementary Table 7. Recognition accuracy of all words (51–100) for 3 different 

classifier models. 

 

  



Supplementary Table 8. Recognition accuracy change as training of unseen data increases 

1. 

 

In this experiment, A6 datasets are fixed as test datasets, with two datasets chosen at random 

to be excluded for the transfer learning. Therefore, all of the training datasets are in a domain 

different from that of the test datasets (unseen data). When only A1 datasets are trained, the 

system classifies A6 datasets with very low accuracy due to the shortage of training datasets 

and the slight mismatch of sensor locations between the A1 and A6 datasets. However, this 

accuracy tends to gradually increase, even though the additional training datasets are all unseen 

data. Training B datasets from even different subjects increases the accuracy. It demonstrates 

that the low recognition rate of unseen data due to sensor or subject replacement can be 

gradually improved as the number of users of this system increases. Furthermore, the simple 

transfer learning of pre-excluded A6 datasets sharply increases the accuracy. Only two cycles 

of transfer learning increase the accuracy up to 88%, which enables the manageable 

customization for the initial use of the system. 

  

 Training Test Accuracy(%) 

From Scratch 

A1 A6 6 

A1, A2 A6 7 

A1, A2, A3 A6 22 

A1, A2, A3, A4 A6 34 

A1, A2, A3, A4, A5 A6 35 

B + A1, A2, A3, A4, A5 ······ (**) A6 56 

Transfer learning 
(**) + 1 set among A6  A6 83 

(**) + 2 set among A6 A6 88 

 



Supplementary Table 9. Recognition accuracy change as training of unseen data increases 

2. 

 

In this experiment, A6 datasets are fixed as test datasets, with two datasets chosen at random 

to be excluded for the transfer learning. Therefore, all of the training datasets are in a domain 

different from that of the test datasets (unseen data). When only B datasets are trained, the 

system classifies A6 datasets with very low accuracy due to the shortage of training datasets 

and the user dependency such as facial shapes or accents between the A and B datasets. 

However, this accuracy tends to gradually increase, even though the additional training datasets 

are all unseen data. It demonstrates that the low recognition rate of unseen data due to sensor 

or subject replacement can be gradually improved as the number of users of this system 

increases. Furthermore, the simple transfer learning of pre-excluded A6 datasets sharply 

increases the accuracy. Only two cycles of transfer learning increase the accuracy up to 88%, 

which enables the manageable customization for the initial use of the system. 

 

 Training Test Accuracy(%) 

From Scratch 

B ················································· (*) A6 16 

B + A1, A2 A6 25 

B + A1, A2 A6 38 

B + A1, A2, A3 A6 47 

B + A1, A2, A3, A4 A6 50 

B + A1, A2, A3, A4, A5 ······ (**) A6 56 

Transfer learning 

(*) + 1 set among A6  A6 38 

(*) + 2 set among A6 A6 68 

(**) + 1 set among A6 A6 83 

(**) + 2 set among A6 A6 88 

 



 

Supplementary Figure 5. Expanded view of t-SNE (strain). It shows the 100 words given 

in Fig. 4a in different colored points. 

  



 

Supplementary Figure 6. Block diagram of sEMG data acquisition flow. The facial sEMG 

during silent speech is captured by epidermal EMG electrodes. This raw sEMG signal is pre-

processed by a commercial EMG module (notch filter at 50 Hz, high-pass filter at 10 Hz, low-

pass filter at 200 Hz, and amplifier at 500V/V), and collected by the voltage input module of 

the DAQ system. The resistance change induces the voltage change by the voltage divider (Vs 

= 3V and RL = 20kΩ) and is monitored by the voltage input module of the DAQ system. The 

collected data is reprocessed using the Butterworth filter and converted to a 3D array format 

before being feature-extracted with a 3D CNN. 

 

 

Supplementary Figure 7. Surface electrode attachment locations for monitoring EMG 

signals of facial muscles. Attachment locations 1–4 are buccinators, levator anguli oris, 

depressor anguli oris, and anteriol belly of digastric, respectively. Two electrodes are attached 

at a 2-cm interval in each location, and a common reference electrode is attached near the 

posterior mastoid. 

  



 

Supplementary Figure 8. Expanded view of t-SNE (sEMG). It shows the 100 words given 

in Fig. 5h in different colored points. 

  



 

Supplementary Figure 9. Schematic diagram showing the fabrication procedures of the 

SiNM-based biaxial strain sensor. a, Spin coating PMMA and PI double-layer; b, Defining 

biaxial strain gauges by the transfer of SiNM using elastomer stamp and cell isolation; c, 

Metallization of Au/Cr interconnects by thermal evaporation; d, Device encapsulation with 

another PI double-layer; e, Device cutting using Cu mask and dry etching; f, Device release 

and transfer onto water-soluble tape. 

 

Supplementary Note 2. Details of the fabrication steps to achieve a SiNM-based strain 

sensor. 

SiNM doping 

1. Surface cleaning of SOI chips (Device layer of 300 nm, BOX layer of 1µm, handling 

wafer of 730 µm) using piranha solution (3:1) at 100°C for 15 min; 

2. BOE (6:1) to remove native/chemical oxide for 5 s; 

3. Dope the entire area with boron by ion implantation (power of 30 keV, dose of 5 × 1014 

cm−2); 

4. Rapid thermal annealing at 1050°C for 90 s. 

Microhole 

5. Piranha and BOE cleaning; 

6. UV-lithography to define microhole array (diameter of 3 µm, pitch of 50 µm) using 

positive PR (MICROPOSIT S1805) and developer (AZ 300 mif); 

7. Dry etch of Si by RIE (Torr of 150 m, SF6 of 40 sccm, power of 150 W for 50 s). 

Substrate preparation 

8. Piranha cleaning of thermal oxide wafer (SiO2 of 500 µm); 



9. Spin coat PMMA A8 (500 rpm for 10 s, 1000 rpm for 35 s); Soft bake at 110°C for 1 

min; Cure at 180°C for 3 min; 

10. Spin coat PI (500 rpm for 10 s, 3000 rpm for 30 s); Soft bake at 110°C for 3 min and 

then at 150°C for 3 min; Cure at 210°C for 120 min. 

Transfer printing 

11. Cure PDMS stamp (4:1) at 40°C for 24 h; 

12. Spin coat the second PI on the above substrate (500 rpm for 10 s, 3000 rpm for 30 s); 

Soft bake at 110°C for 40 s;  

13. HF wet etch BOX layer of SOI chips for 25 min; 

14. Water rinsing of SOI chips; 

15. Transfer of the device layer of SOI chips onto the PDMS stamp; Press the stamp onto 

the substrate; 

16. Bake at 110°C for 40 s; 

17. Lift off PDMS stamp; 

18. Bake at 150°C for 3 min; 

19. PR removal using acetone, IPA, and DI water; 

20. Cure at 210°C for 120 min. 

Strain gauge isolation 

21. UV-lithography to define biaxial strain gauges using positive PR (MICROPOSIT 

S1805) and developer (AZ 300 mif); 

22. Dry etch of Si by RIE (Torr of 150 m, SF6 of 40 sccm, power of 150 W for 50 s); 

23. PR removal using acetone, IPA, and DI water. 

Metallization 

24. BOE (6:1) cleaning for 5 s to remove native oxide; 

25. Deposit Au/Cr, 250 nm/5 nm by thermal evaporation; 

26. UV-lithography to define metal interconnects using positive PR (AZ 5214E) and 

developer (AZ 300 mif); 

27. Wet etch using Au etchant for 15 s; Cr etchant for 10 s; 

28. PR removal using acetone, IPA, and DI water. 

Encapsulation 

29. Spin coat the third PI (500 rpm for 10 s, 3000 rpm for 30 s); Soft bake at 110°C for 3 

min and then at 150°C for 3 min; 

30. Spin coat the fourth PI (500 rpm for 10 s, 3000 rpm for 30 s); Soft bake at 110°C for 

3 min and then at 150°C for 3 min; 



31. Cure at 210°C for 120 min. 

Patterning into serpentine design 

32. Deposit Cu, 150 nm by thermal evaporation; 

33. UV-lithography to define metal masks using positive PR (AZ 5214E) and developer 

(AZ 300 mif); 

34. PR removal using acetone, IPA, and DI water; 

35. Dry etch of PI by RIE (Torr of 390 m, SF6 of 100 sccm, power of 200 W for 30 min); 

36. Wet etch of metal masks using Cu etchant. 

Transfer to water-soluble tape 

37. Dissolve the PMMA layer by immersing in acetone at 100°C for 10 min; 

38. Solder with ACF cable; 

39. Attach water-soluble tape, and lift off the release device. 

  



 

Supplementary Figure 10. Schematic diagram showing the fabrication procedures of the 

sEMG electrode. a, Spin coating PMMA and PI layer; b, Defining metal electrode and 

interconnects; c, Device encapsulation with another PI layer; d, Device cutting and through-

opening using Cu mask and dry etching; e, Device release and transfer onto water-soluble tape. 

 

Supplementary Note 3. Details of the fabrication steps to achieve a stretchable sEMG 

sensor. 

Substrate preparation 

1. Piranha cleaning of thermal oxide wafer (SiO2 of 500 µm); 

2. Spin coat PMMA A8 (500 rpm for 10 s, 1000 rpm for 35 s); Soft bake at 110°C for 1 

min; Cure at 180°C for 3 min; 

3. Spin coat PI (500 rpm for 10 s, 3000 rpm for 30 s); Soft bake at 110°C for 3 min and 

then at 150°C for 3 min; Cure at 210°C for 120 min. 

Metal electrode and interconnect define 

4. Deposit Au/Cr, 160 nm/5 nm by thermal evaporation; 

5. UV-lithography to define metal electrodes and interconnects using positive PR (AZ 

5214E) and developer (AZ 300 mif); 

6. Wet etch using Au etchant for 15 s; Cr etchant for 10 s; 

7. PR removal using acetone, IPA, and DI water. 

Encapsulation 

8. Spin coat the second PI (500 rpm for 10 s, 3000 rpm for 30 s); Soft bake at 110°C for 

3 min and then at 150°C for 3 min; Cure at 210°C for 120 min. 



Electrode via opening and patterning into serpentine design 

9. Deposit Cu, 150 nm by thermal evaporation; 

10. UV-lithography to define metal masks using positive PR (AZ 5214E) and developer 

(AZ 300 mif); 

11. PR removal using acetone, IPA, and DI water; 

12. Dry etch of PI by RIE (Torr of 390 m, SF6 of 100 sccm, power of 200 W for 15 min); 

13. Wet etch of metal masks using Cu etchant. 

Transfer to water-soluble tape 

14. Dissolve the PMMA layer by immersing in acetone at 100°C for 10 min; 

15. Solder with ACF cable; 

16. Attach water-soluble tape, and lift off the release device. 

  



Supplementary Table 10. Model details for SiNM-based Strain Gauge 

 

Layer name Operator Kernel size Padding Stride 
Channel 

size 
Ouput Size 

Conv 1  

𝐶𝑜𝑛𝑣3𝑑
𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑁𝑜𝑟𝑚3𝑑

𝑅𝑒𝐿𝑈
𝐷𝑟𝑜𝑝𝑜𝑢𝑡3𝑑 (0.3)

  3 x 3 x 3 (1, 1, 1) (1, 1, 2) 32 2 x 4 x 300 

Conv 2 

 

𝐶𝑜𝑛𝑣3𝑑
𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑁𝑜𝑟𝑚3𝑑

𝑅𝑒𝐿𝑈
𝐷𝑟𝑜𝑝𝑜𝑢𝑡3𝑑 (0.3)

  3 x 3 x 3 (1, 1, 1) (1, 1, 2) 

32 2 x 4 x 150 

 

𝐶𝑜𝑛𝑣3𝑑
𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑁𝑜𝑟𝑚3𝑑

𝑅𝑒𝐿𝑈
𝐷𝑟𝑜𝑝𝑜𝑢𝑡3𝑑 (0.3)

  3 x 3 x 3 (1, 1, 1) (1, 1, 1) 

Conv 3  
𝐶𝑜𝑛𝑣3𝑑

𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑁𝑜𝑟𝑚3𝑑
  1 x 3 x 3 (0, 1, 1) (1, 2, 2) 64 2 x 2 x 75 

Conv 4 

 

𝐶𝑜𝑛𝑣3𝑑
𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑁𝑜𝑟𝑚3𝑑

𝑅𝑒𝐿𝑈
𝐷𝑟𝑜𝑝𝑜𝑢𝑡3𝑑 (0.3)

  3 x 3 x 3 (1, 1, 1) (1, 1, 2) 

64 2 x 2 x 38 

 

𝐶𝑜𝑛𝑣3𝑑
𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑁𝑜𝑟𝑚3𝑑

𝑅𝑒𝐿𝑈
𝐷𝑟𝑜𝑝𝑜𝑢𝑡3𝑑 (0.3)

  3 x 3 x 3 (1, 1, 1) (1, 1, 1) 

Conv 5  
𝐶𝑜𝑛𝑣3𝑑

𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑁𝑜𝑟𝑚3𝑑
  3 x 3 x 3 (1, 1, 1) (1, 2, 2) 128 2 x 1 x 19 

Conv 6 

 

𝐶𝑜𝑛𝑣3𝑑
𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑁𝑜𝑟𝑚3𝑑

𝑅𝑒𝐿𝑈
𝐷𝑟𝑜𝑝𝑜𝑢𝑡3𝑑 (0.3)

  3 x 3 x 3 (1, 1, 1) (1, 1, 2) 

128 2 x 1 x 10 

 

𝐶𝑜𝑛𝑣3𝑑
𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑁𝑜𝑟𝑚3𝑑

𝑅𝑒𝐿𝑈
𝐷𝑟𝑜𝑝𝑜𝑢𝑡3𝑑 (0.3)

  3 x 3 x 3 (1, 1, 1) (1, 1, 1) 

Conv 7  
𝐶𝑜𝑛𝑣3𝑑

𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑁𝑜𝑟𝑚3𝑑
  3 x 3 x 3 (1, 1, 1) (1, 2, 2) 256 2 x 1 x 5 

Conv 8 

 

𝐶𝑜𝑛𝑣3𝑑
𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑁𝑜𝑟𝑚3𝑑

𝑅𝑒𝐿𝑈
𝐷𝑟𝑜𝑝𝑜𝑢𝑡3𝑑 (0.3)

  3 x 3 x 3 (1, 1, 1) (1, 1, 2) 

256 2 x 1 x 3 

 

𝐶𝑜𝑛𝑣3𝑑
𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑁𝑜𝑟𝑚3𝑑

𝑅𝑒𝐿𝑈
𝐷𝑟𝑜𝑝𝑜𝑢𝑡3𝑑 (0.3)

  3 x 3 x 3 (1, 1, 1) (1, 1, 1) 

FC 1 Linear - 512 



Supplementary Table 11. Model details for sEMG 

 

Layer name Operator Kernel size Padding Stride 
Channel 

size 
Output Size 

Conv 1  

𝐶𝑜𝑛𝑣3𝑑
𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑁𝑜𝑟𝑚3𝑑

𝑅𝑒𝐿𝑈
𝐷𝑟𝑜𝑝𝑜𝑢𝑡3𝑑 (0.3)

  3 x 3 x 3 (1, 1, 1) (1, 1, 2) 32 1 x 4 x 1000 

Conv 2 

 

𝐶𝑜𝑛𝑣3𝑑
𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑁𝑜𝑟𝑚3𝑑

𝑅𝑒𝐿𝑈
𝐷𝑟𝑜𝑝𝑜𝑢𝑡3𝑑 (0.3)

  3 x 3 x 3 (1, 1, 1) (1, 1, 2) 

32 1 x 4 x 500 

 

𝐶𝑜𝑛𝑣3𝑑
𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑁𝑜𝑟𝑚3𝑑

𝑅𝑒𝐿𝑈
𝐷𝑟𝑜𝑝𝑜𝑢𝑡3𝑑 (0.3)

  3 x 3 x 3 (1, 1, 1) (1, 1, 1) 

Conv 3  
𝐶𝑜𝑛𝑣3𝑑

𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑁𝑜𝑟𝑚3𝑑
  1 x 3 x 3 (0, 1, 1) (1, 2, 2) 64 1 x 2 x 250 

Conv 4 

 

𝐶𝑜𝑛𝑣3𝑑
𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑁𝑜𝑟𝑚3𝑑

𝑅𝑒𝐿𝑈
𝐷𝑟𝑜𝑝𝑜𝑢𝑡3𝑑 (0.3)

  3 x 3 x 3 (1, 1, 1) (1, 1, 2) 

64 1 x 2 x 125 

 

𝐶𝑜𝑛𝑣3𝑑
𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑁𝑜𝑟𝑚3𝑑

𝑅𝑒𝐿𝑈
𝐷𝑟𝑜𝑝𝑜𝑢𝑡3𝑑 (0.3)

  3 x 3 x 3 (1, 1, 1) (1, 1, 1) 

Conv 5  
𝐶𝑜𝑛𝑣3𝑑

𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑁𝑜𝑟𝑚3𝑑
  3 x 3 x 3 (1, 1, 1) (1, 2, 2) 128 1 x 1 x 63 

Conv 6 

 

𝐶𝑜𝑛𝑣3𝑑
𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑁𝑜𝑟𝑚3𝑑

𝑅𝑒𝐿𝑈
𝐷𝑟𝑜𝑝𝑜𝑢𝑡3𝑑 (0.3)

  3 x 3 x 3 (1, 1, 1) (1, 1, 2) 

128 1 x 1 x 32 

 

𝐶𝑜𝑛𝑣3𝑑
𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑁𝑜𝑟𝑚3𝑑

𝑅𝑒𝐿𝑈
𝐷𝑟𝑜𝑝𝑜𝑢𝑡3𝑑 (0.3)

  3 x 3 x 3 (1, 1, 1) (1, 1, 1) 

Conv 7  
𝐶𝑜𝑛𝑣3𝑑

𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑁𝑜𝑟𝑚3𝑑
  3 x 3 x 3 (1, 1, 1) (1, 2, 2) 256 1 x 1 x 16 

Conv 8 

 

𝐶𝑜𝑛𝑣3𝑑
𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑁𝑜𝑟𝑚3𝑑

𝑅𝑒𝐿𝑈
𝐷𝑟𝑜𝑝𝑜𝑢𝑡3𝑑 (0.3)

  3 x 3 x 3 (1, 1, 1) (1, 1, 2) 

256 1 x 1 x 8 

 

𝐶𝑜𝑛𝑣3𝑑
𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑁𝑜𝑟𝑚3𝑑

𝑅𝑒𝐿𝑈
𝐷𝑟𝑜𝑝𝑜𝑢𝑡3𝑑 (0.3)

  3 x 3 x 3 (1, 1, 1) (1, 1, 1) 

FC 1 Linear - 512 



Supplementary Table 12. Detailed structure of Transformer 

 

  

Layer name Operator Kernel Size Padding Stride Channel 
Size Output Size 

Conv 1  
𝐶𝑜𝑛𝑣1𝑑
𝑅𝑒𝐿𝑈

𝐵𝑎𝑡𝑐ℎ𝑛𝑜𝑟𝑚
  5 2 2 32 300 

Conv 2  
𝐶𝑜𝑛𝑣1𝑑
𝑅𝑒𝐿𝑈

𝐷𝑟𝑜𝑝𝑜𝑢𝑡 (0.2)
  5 2 2 64 150 

Conv 3  
𝐶𝑜𝑛𝑣1𝑑
𝑅𝑒𝐿𝑈

𝐵𝑎𝑡𝑐ℎ𝑛𝑜𝑟𝑚
  5 2 2 128 75 

Conv 4  
𝐶𝑜𝑛𝑣1𝑑
𝑅𝑒𝐿𝑈

𝐷𝑟𝑜𝑝𝑜𝑢𝑡 (0.2)
  5 2 2 256 38 

Transformer 

encoder 1 
- 256 38 

Transformer 

encoder 2 
- 256 38 

Self-attention 

pooling  256 

FC 1  
𝐿𝑖𝑛𝑒𝑎𝑟
𝑅𝑒𝐿𝑈

  - 400 

FC 2  
𝐿𝑖𝑛𝑒𝑎𝑟
𝑅𝑒𝐿𝑈

  - 400 

FC 3  
𝐿𝑖𝑛𝑒𝑎𝑟
𝑅𝑒𝐿𝑈

  - 400 

FC 4 Linear - 100 

 



Supplementary Table 13. Detailed structure of VGGNet 
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