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REVIEWER COMMENTS 

 

Reviewer #1 (Remarks to the Author): 

 

The manuscript is of good quality overall and shows interesting results, with a few shortcomings. It 

can be published following a revision to clarify the following aspects and add the missing 

information. 

 

The comparison between semiconductor and with metal-based strain gauges (lines 238-240) is not 

sufficiently informative of the state-of-the-art in relation to strain gauges-based systems. It would be 

useful to compare with other wearable state-of-the-art strain gauges which have already being used 

for similar purposes, such as graphene-based strain gauges for silent communication systems along 

with machine learning methods (see e.g. https://doi.org/10.3390/s22010299). 

 

The claim that “our system captured each word characteristic rather than the individual user’s 

characteristics” (lines 273-275) is not properly justified. For instance, this could be easily 

demonstrated by training only on subject A’s data and then testing only on subject B’s data or vice-

versa. 

 

The comparison of 3D CNN with SVM is unclear. The reference manuscript [52] used for comparative 

analysis (lines 383-386) focuses only on changing the final classification layer from a softmax to an 

SVM. As such, the authors aren’t comparing a conventional SVM to their network as claimed but just 

comparing different classification layers. Conversely, if they are applying an SVM directly to the raw 

data then one should definitely expect better results than those reported as the dimension of the 

data is too high to produce accurate results with an SVM – SVMs are much suited to taking smaller 

input sizes. In this respect, normally, feature extraction would be done on the data first, rather than 

applying the model to raw data. 

 

The argument reported in relation to the comparison of the achieved 35% accuracy with state-of-

the-art sEMG performance is not accurate. Namely, the claim “Although the state-of-the-art 

performance with high accuracy (~92%) was demonstrated, the system electrode size was two 

orders of magnitude larger than that of this work” (lines 464-466) should be referred to in relation to 

the points of contact. As the authors tailored their testing framework to perform well on their strain 

gauge setup which takes resistance recordings, it doesn’t seem a fair comparison if a different form 

of signal data is inputted instead. 

 

  



The neural network architecture described in the Section “Three-dimensional CNN for SiNM strain 

gauge signal analysis” doesn’t seem to tally with the dimensions shown in the corresponding figure 

(Fig 3). The relation between the size of the data at each stage and the kernels being applied should 

be further clarified. 

 

Finally, the authors should comment on the limitation of the proposed device approach, which is not 

very user friendly to wear, and justify further the proposed use-case. 

 

 

 

Reviewer #2 (Remarks to the Author): 

 

This manuscript presents an approach of identifying verbal communication without vocalization by 

combing the sensor technology in data measurement and machine learning algorithms in data 

processing. Strain sensor that was based on SiNM was fabricated and placed on the mouth 

surroundings to record the strain information via change of electrical resistance when people speak. 

The measured strain and time correlation were converted to 2D image as machine learning input 

data. CNN model was used in machine learning model and three different classifier models were 

used to determine training accuracy. In addition, sEMG sensor was also used to show the merits of 

SiNM strain sensor measurement. The following issues need to be addressed before I recommend 

the acceptance for publication. 

 

1. Compared with the direct taking image of mouth during speaking, what’s the key advantage of 

using strain resistance and time recording (as 2D image input) for machine learning model input? 

why the image of mouth during speaking was not considered in machine learning model? 

2. In comparison of strain sensor that only senses two directions in the current design, sEMG sensor 

could capture much richer information about speaking process as it is capable of sensing muscle 

activities from all direction. As signals from sEMG and strain sensor measurement were different, it 

is questionable that the same machine learning model and training process was use to process them, 

and it is highly possible that if the accuracy from sEMG with appropriate machine learning model is 

better than that of strain sensor. justification is needed. 

3. In method section, there lacked of detailed data processing steps with machine learning. For 

example, what’s the criteria for the selection of convolution layers? what the ratio of raw data 

compared with training and testing data? 

4. It seems FEA was done without substrate- which is different with the application environment 

that was mounted on human skin. It should be improved. 

  



5. A skin-safe pressure-sensitive adhesive was applied to the skin. did the strain sensor was mounted 

on this adhesive layer or directly on human skin? if it is former, how did this adhesive affect the 

strain recording activities? 

  



Reviewer #1 

General Comment #1: The manuscript is of good quality overall and shows interesting results, 
with a few shortcomings. It can be published following a revision to clarify the following 
aspects and add the missing information. 

Our response: We thank the reviewer for this positive comment, and the recommendation to 
publish in Nature Communications. We made our revision with pleasure based on the 
reviewer’s opinion, and all the details of our modifications are indicated in our responses and 
corresponding modifications. All changes are highlighted in the revised version of the 
manuscript as well. 
 
Comment #1: The comparison between semiconductor and with metal-based strain gauges 
(lines 238-240) is not sufficiently informative of the state-of-the-art in relation to strain gauges-
based systems. It would be useful to compare with other wearable state-of-the-art strain gauges 
which have already being used for similar purposes, such as graphene-based strain gauges for 
silent communication systems along with machine learning methods (see e.g. 
https://doi.org/10.3390/s22010299). 

Our response: We thank the reviewer for this comment. We compared our ultra-thin 
crystalline Si based strain gauges with metal-based strain gauges because metal foil is 
commonly used material for the strain measurement in industry, and we totally agree that the 
silicon based strain gauges should be compared with other state-of-the-art strain gauges 
systematically. Hence, we have found papers regarding various silent communication systems 
utilizing strain gauges including graphene-based system that the reviewer referred above. The 
detailed comparison with some key parameters such as gauge factor, the number of channels, 
the number of classes, and recognition accuracy was added in the additional supplementary 
table. Although these systems recognize various verbal or nonverbal languages, recognition 
classes are only few simple words/gestures to a dozen of words/gestures. Here, our system 
demonstrates relatively much higher recognition accuracy (87%) with the incomparably large 
number of classes (100 verbal words). We strongly believe that this result attributes to the 
inherent stability and reproducibility of the devices that were fabricated based on inorganic 
materials with a top-down approach. 

Our modification to the manuscript: To support the reviewer’s comment, we added 
Supplementary Table 1 summarizing previously reported silent communication systems using 
strain gauges, as well as corresponding references. We also added the following sentence to 
manuscript (line 250-252) “Some of latest silent communication systems based on various 
strain gauges are compared and summarized in Supplementary Table 1”. 

  

  



Supplementary Table 1. A performance comparison of silent communication systems 
based on strain gauges 

Sensing 
Technique Material Gauge 

factor  Channel Attachment 
position 

Language 
(type) Class Accuracy Reference 

Strain Single crystalline 
silicon 155 8  Face English 

(verbal)  100 words 87.53% This work 

Strain Graphene - 1  Throat 
(Vocal cord) 

English + 
motion 

(verbal + 
nonverbal) 

15 words 
+ 4 

motions 

55% (words) 
85% (motion) 

[1] 

Strain Au nanomesh 7.26 ~ 
46.3 18  Face English vowels 

(verbal) 3 vowels -  [2] 

Strain Graphene-coated 
silk-spandex 

19.6 ~ 
34.3  10  Fingers Gesture 

(nonverbal) 4 gestures 96.07  [3] 

Strain + 
vision 

Single-walled 
carbon nanotube /  

polydimethylsiloxane 
- 5  Hand 

(Fingers) 
Gesture 

(nonverbal) 
10 

gestures 
100% (normal) 
96.7% (noisy)  

[4] 

Strain Carbon grease 8  5  Fingers Sign language 
(nonverbal) 

10 
gestures 98% [5] 

 

Added references  

1. Ravenscroft, D. et al. Machine learning methods for automatic silent speech 
recognition using a wearable graphene strain gauge sensor. Sensors 22, 299 (2021). 

2. Wang, Y. et al. A durable nanomesh on-skin strain gauge for natural skin motion 
monitoring with minimum mechanical constraints. Science Advances 6, eabb7043 
(2020). 

3. Song, X. et al. A graphene-coated silk-spandex fabric strain sensor for human 
movement monitoring and recognition. Nanotechnology 32, 215501 (2021). 

4. Wang, M. et al. Gesture recognition using a bioinspired learning architecture that 
integrates visual data with somatosensory data from stretchable sensors. Nature 
Electronics 3, 563-570 (2020). 

5. Li, L., Jiang, S., Shull, P.B. & Gu, G. SkinGest: artificial skin for gesture recognition 
via filmy stretchable strain sensors. Advanced Robotics 32, 1112-1121 (2018). 

 

Comment #2: The claim that “our system captured each word characteristic rather than the 
individual user’s characteristics” (lines 273-275) is not properly justified. For instance, this 
could be easily demonstrated by training only on subject A’s data and then testing only on 
subject B’s data or vice-versa. 

Our response: Thank you for your insightful advice. We apologize for the confusion in 
understanding the sentence. The intention of the sentence was to state that it is not that there is 
no user dependency, but there is a correlation between unseen data, so word characteristics can 
be captured as well by the system. We have modified the sentence into “Our system captured 
the signal of each user’s word characteristics despite the sensor location dependency and user 

  



dependency” (line 279-281) in the revised manuscript. In addition, as the reviewer suggested, 
we have trained only on subject B’s data and tested only on A6 datasets, and the accuracy of 
the unseen user A6 data was 16% (Supplementary Table 9). Interestingly, it was higher than 
that of training only on A1 datasets which is 6% (Supplementary Table 8). Both results showed 
low accuracy relatively because they learned only a small amount of unseen data, but it can be 
interpreted that subject A and subject B have some correlation with each other. 

As can be seen in Supplementary Table 8, the accuracy of A6 test is gradually increased as 
A1~A5 datasets measured on different days were trained. A1~A5 datasets can be regarded as 
unseen data from the standpoint of A6 datasets since a slight mismatch may occur in the 
attachment location while reattaching the sensors. Furthermore, Training B which is datasets 
from unseen users also significantly improves the accuracy of the A6 test. Since each person 
has a different speaking habit, different accent, and different face shape, the initial accuracy of 
new users is bound to be low. Nevertheless, these results imply that there are correlations 
between the unseen data, despite the sensor location dependency and user dependency. 

We also conducted additional transfer learning on the model pretrained only with B’s data. It 
is re-trained with one or two sets among A6. The accuracy increases from 16% to 38%, and 
then to 68%. This shows that, compared to transfer learning using only training data from 
subject B and the parts of subject A’s data from unseen sensors, individual customization can 
be performed effectively as a user continuously accumulates data. 

Supplementary Table 8. Result of the unseen data experiment 1 

 Training Test Accuracy(%) 

From Scratch 

A1 A6 6 

A1, A2 A6 7 

A1, A2, A3 A6 22 

A1, A2, A3, A4 A6 34 

A1, A2, A3, A4, A5 A6 35 

B + A1, A2, A3, A4, A5 ······ (**) A6 56 

Transfer learning 
(**) + 1 set among A6  A6 83 

(**) + 2 set among A6 A6 88 

 

Supplementary Table 9. Result of the unseen data experiment 2 

  



 Training Test Accuracy(%) 

From Scratch 

B ················································· (*) A6 16 

B + A1, A2 A6 25 

B + A1, A2 A6 38 

B + A1, A2, A3 A6 47 

B + A1, A2, A3, A4 A6 50 

B + A1, A2, A3, A4, A5 ······ (**) A6 56 

Transfer learning 

(*) + 1 set among A6  A6 38 

(*) + 2 set among A6 A6 68 

(**) + 1 set among A6 A6 83 

(**) + 2 set among A6 A6 88 

Our modification to the manuscript: We modified the following sentence in the manuscript  
“Our system captured each word characteristic rather than the individual user’s characteristics” 
into “Our system captured the signal of each user’s word characteristics despite the sensor 
location dependency and user dependency” (line 279-281). We added a Supplementary Table 
9 which demonstrates the result of the unseen user experiment where training is done on subject 
B. 

 

Comment #3: The comparison of 3D CNN with SVM is unclear. The reference manuscript 
[52] used for comparative analysis (lines 383-386) focuses only on changing the final 
classification layer from a softmax to an SVM. As such, the authors aren’t comparing a 
conventional SVM to their network as claimed but just comparing different classification layers. 
Conversely, if they are applying an SVM directly to the raw data then one should definitely 
expect better results than those reported as the dimension of the data is too high to produce 
accurate results with an SVM – SVMs are much suited to taking smaller input sizes. In this 
respect, normally, feature extraction would be done on the data first, rather than applying the 
model to raw data. 

Our response: Thank you for your considerate comment. We referred to the reference #[52] 
due to the similarities in our works related to a conventional SVM, which is utilized for 
classification. We added an additional reference to help the readers better understand. We 
compared our method with SVM in order to demonstrate how we used a deep learning network 
(e.g., 3D CNN) for the first time to analyze strain gauges. The reference #[12] is cited to 

  



recognize SSRS based on sEMG. It utilizes a machine learning-based network to predict silent 
speech user intentions. We conducted comparative experiments with existing machine 
learning-based models based on reference # [12]. As the reviewer mentioned, one can be 
thought that the raw data dimensions based on conventional SVM are too high to show good 
performance.  We additionally experiment with a deep learning-based SVM network [52] that 
analyzes the feature map before a fully connected layer. We trained the network with 5-fold 
cross-validation in the same way as the main experiment, achieving an average accuracy of 
86.27%. This result proves that our method, a deep learning-based model, is able to learn 
representations well because it ultimately optimizes the CNN network. We also trained models 
using only classical machine learning techniques (LDA, SVM) with input feature size reduction 
using PCA. The accuracy results of both strain gauge and sEMG with PCA were lower than 
those without PCA for feature reduction. 

Our modification to the manuscript: We added a Supplementary Table 5 which shows 
comparisons with the conventional methods 

Supplementary Table 5. Comparison with the conventional methods 

Method 
Strain Gauge sEMG 

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Avg Val set 

PCA + LDA 6.4 8.85 16 10.15 11.7 10.62 2.2 

PCA + SVM 11.5 15.65 46.85 31.15 22.25 25.48 2.55 

SVM 58.8 71.3 76.25 72.7 67.1 69.23 4.9 

CONV + SVM 79.95 84.8 90.2 90.55 85.85 86.27 40.85 

Transformer 71.85 74.85 66.8 69.4 74.8 71.54 28.25 

VGG 67.3 67.1 76.3 74.9 70.2 71.16 22.25 

Ours 80.1 87.85 91.55 90.5 87.65 87.53 42.60 

 

Added references 

- M. A. Hearst, S. T. Dumais, E. Osuna, J. Platt and B. Scholkopf, "Support vector 
machines," in IEEE Intelligent Systems and their Applications, vol. 13, no. 4, pp. 18-28, July-
Aug. 1998, doi: 10.1109/5254.708428. 
 
- Blei, David M., Andrew Y. Ng, and Michael I. Jordan. "Latent dirichlet allocation." Journal 
of machine Learning research 3.Jan (2003): 993-1022. 
 

  



Comment #4: The argument reported in relation to the comparison of the achieved 35% 
accuracy with state-of-the-art sEMG performance is not accurate. Namely, the claim “Although 
the state-of-the-art performance with high accuracy (~92%) was demonstrated, the system 
electrode size was two orders of magnitude larger than that of this work” (lines 464-466) should 
be referred to in relation to the points of contact. As the authors tailored their testing framework 
to perform well on their strain gauge setup which takes resistance recordings, it doesn’t seem 
a fair comparison if a different form of signal data is inputted instead. 

Our response: We thank the reviewer for the constructive comment. The sentence may give 
some confusion in understanding. We modified the sentence “Although the state-of-the-art 
performance with high accuracy (~92%) was demonstrated, the system electrode size was two 
orders of magnitude larger than that of this work” into “The state-of-the-art performance used 
the system electrode whose size is two orders of magnitude larger than that of this work. To 
make a fair comparison, we downscaled the sEMG electrodes to be identical to the size of our 
strain gauges” (line 470-472).  

To analyze the performance of two different types of signals, we additionally performed several 
experiments. We made comparison with PCA, networks in the references #[12, 52], 
Transformer[*][**], VGGNet[***], and our proposed 3D-CNN model. Unlike using the same 
architecture for both signals before, we carefully fine-tuned each signal’s network parameters 
and structures. As a result, we got the best accuracies for both types of signals with our 
proposed model. It can be interpreted that our method is not just robust to the strain gauge, but 
also robust to the sEMG. Especially, sEMG performance improved from (from 35% to 42.6%) 
which is better than the others shown in Supplementary Table 5.  However, the result is still 
far inferior to our strain gauge sensor. The contact area of the device of the skin becomes 
smaller due to downsizing the physical dimension of sEMG electrode, leading to a low signal-
to-noise-ratio of the sEMG signal.  

We also evaluated the performance of the two types of signals on the Transformer and VGG 
networks. The former is commonly used to handle sequential data such as speech/audio, text, 
and video, and the latter is famous for the classification task. The detailed structures of our 3D-
CNN, Transformer, and VGG models are given below. The performances with strain inputs 
are 87.53%, 71,54% and 71,16% for 3D-CNN, Transformer and VGG, respectively. These 
results verify the superiority of our strain gauge sensors, and that our original testing framework 
was not specifically tailored to perform well on our strain gauge sensors. 

Our modification to the manuscript: We modified the sentence: “Although the state-of-the-
art performance with high accuracy (~92%) was demonstrated, the system electrode size was 
two orders of magnitude larger than that of this work” into “The state-of-the-art performance  
used the system electrode whose size is two orders of magnitude larger than that of this work. 
To make a fair comparison, we downscaled the sEMG electrodes to be identical size of our 
strain gauges” (Line 470-472). We added the following sentence to the manuscript “The 
comparison of performance with other models which are commonly used to handle sequential 
data such as speech/audio, text, and video is provided in Supplementary Table 5” (line 393-
395). We also changed the result of sEMG from 35% to 42.6% in the manuscript. We added a 
Supplementary Table 5 including the results described above, which clarifies the validity of 
our 3D CNN model. We also added Supplementary Table 10, 11, 12, 13 to provide the detailed 

  



structures, and mentioned it in the Method section with the following sentence “The detailed 
structure of each model is provided in Supplementary Table 10, 11, 12, 13” (Line 604). Finally, 
we modified Figure 5g, h according to the changes of performance due to the fine tuning. 

Supplementary Table 10. Model details for SiNM-based Strain Gauge 

Layer name Operator Kernel size Padding Stride Channel 
size Ouput Size 

Conv 1 ൦ (0.3) 3݀ݐݑ݋݌݋ݎܦܷܮ3ܴ݀݁݉ݎ݋ܰ݁ܿ݊ܽݐݏ݊ܫ3݀ݒ݊݋ܥ ൪ 3 x 3 x 3 (1, 1, 1) (1, 1, 2) 32 2 x 4 x 300 

Conv 2 

൦ (0.3) 3݀ݐݑ݋݌݋ݎܦܷܮ3ܴ݀݁݉ݎ݋ܰ݁ܿ݊ܽݐݏ݊ܫ3݀ݒ݊݋ܥ ൪ 3 x 3 x 3 (1, 1, 1) (1, 1, 2) 

32 2 x 4 x 150 

൦ (0.3) 3݀ݐݑ݋݌݋ݎܦܷܮ3ܴ݀݁݉ݎ݋ܰ݁ܿ݊ܽݐݏ݊ܫ3݀ݒ݊݋ܥ ൪ 3 x 3 x 3 (1, 1, 1) (1, 1, 1) 

Conv 3 ቂ  3݀ቃ 1 x 3 x 3 (0, 1, 1) (1, 2, 2) 64 2 x 2 x 75݉ݎ݋ܰ݁ܿ݊ܽݐݏ݊ܫ3݀ݒ݊݋ܥ

Conv 4 

൦ (0.3) 3݀ݐݑ݋݌݋ݎܦܷܮ3ܴ݀݁݉ݎ݋ܰ݁ܿ݊ܽݐݏ݊ܫ3݀ݒ݊݋ܥ ൪ 3 x 3 x 3 (1, 1, 1) (1, 1, 2) 

64 2 x 2 x 38 

൦ (0.3) 3݀ݐݑ݋݌݋ݎܦܷܮ3ܴ݀݁݉ݎ݋ܰ݁ܿ݊ܽݐݏ݊ܫ3݀ݒ݊݋ܥ ൪ 3 x 3 x 3 (1, 1, 1) (1, 1, 1) 

Conv 5 ቂ  3݀ቃ 3 x 3 x 3 (1, 1, 1) (1, 2, 2) 128 2 x 1 x 19݉ݎ݋ܰ݁ܿ݊ܽݐݏ݊ܫ3݀ݒ݊݋ܥ

Conv 6 

൦ (0.3) 3݀ݐݑ݋݌݋ݎܦܷܮ3ܴ݀݁݉ݎ݋ܰ݁ܿ݊ܽݐݏ݊ܫ3݀ݒ݊݋ܥ ൪ 3 x 3 x 3 (1, 1, 1) (1, 1, 2) 

128 2 x 1 x 10 

൦ (0.3) 3݀ݐݑ݋݌݋ݎܦܷܮ3ܴ݀݁݉ݎ݋ܰ݁ܿ݊ܽݐݏ݊ܫ3݀ݒ݊݋ܥ ൪ 3 x 3 x 3 (1, 1, 1) (1, 1, 1) 

Conv 7 ቂ  3݀ቃ 3 x 3 x 3 (1, 1, 1) (1, 2, 2) 256 2 x 1 x 5݉ݎ݋ܰ݁ܿ݊ܽݐݏ݊ܫ3݀ݒ݊݋ܥ

Conv 8 ൦ (0.3) 3݀ݐݑ݋݌݋ݎܦܷܮ3ܴ݀݁݉ݎ݋ܰ݁ܿ݊ܽݐݏ݊ܫ3݀ݒ݊݋ܥ ൪ 3 x 3 x 3 (1, 1, 1) (1, 1, 2) 256 2 x 1 x 3 

  



൦ (0.3) 3݀ݐݑ݋݌݋ݎܦܷܮ3ܴ݀݁݉ݎ݋ܰ݁ܿ݊ܽݐݏ݊ܫ3݀ݒ݊݋ܥ ൪ 3 x 3 x 3 (1, 1, 1) (1, 1, 1) 

FC 1 Linear - 512 

FC 2 Linear - 100 

FC 3 Linear - 100 

 

Supplementary Table 11. Model details for sEMG 

Layer name Operator Kernel size Padding Stride Channel 
size Output Size 

Conv 1 ൦ (0.3) 3݀ݐݑ݋݌݋ݎܦܷܮ3ܴ݀݁݉ݎ݋ܰ݁ܿ݊ܽݐݏ݊ܫ3݀ݒ݊݋ܥ ൪ 3 x 3 x 3 (1, 1, 1) (1, 1, 2) 32 1 x 4 x 1000 

Conv 2 

൦ (0.3) 3݀ݐݑ݋݌݋ݎܦܷܮ3ܴ݀݁݉ݎ݋ܰ݁ܿ݊ܽݐݏ݊ܫ3݀ݒ݊݋ܥ ൪ 3 x 3 x 3 (1, 1, 1) (1, 1, 2) 

32 1 x 4 x 500 

൦ (0.3) 3݀ݐݑ݋݌݋ݎܦܷܮ3ܴ݀݁݉ݎ݋ܰ݁ܿ݊ܽݐݏ݊ܫ3݀ݒ݊݋ܥ ൪ 3 x 3 x 3 (1, 1, 1) (1, 1, 1) 

Conv 3 ቂ  3݀ቃ 1 x 3 x 3 (0, 1, 1) (1, 2, 2) 64 1 x 2 x 250݉ݎ݋ܰ݁ܿ݊ܽݐݏ݊ܫ3݀ݒ݊݋ܥ

Conv 4 

൦ (0.3) 3݀ݐݑ݋݌݋ݎܦܷܮ3ܴ݀݁݉ݎ݋ܰ݁ܿ݊ܽݐݏ݊ܫ3݀ݒ݊݋ܥ ൪ 3 x 3 x 3 (1, 1, 1) (1, 1, 2) 

64 1 x 2 x 125 

൦ (0.3) 3݀ݐݑ݋݌݋ݎܦܷܮ3ܴ݀݁݉ݎ݋ܰ݁ܿ݊ܽݐݏ݊ܫ3݀ݒ݊݋ܥ ൪ 3 x 3 x 3 (1, 1, 1) (1, 1, 1) 

Conv 5 ቂ  3݀ቃ 3 x 3 x 3 (1, 1, 1) (1, 2, 2) 128 1 x 1 x 63݉ݎ݋ܰ݁ܿ݊ܽݐݏ݊ܫ3݀ݒ݊݋ܥ

Conv 6 ൦ (0.3) 3݀ݐݑ݋݌݋ݎܦܷܮ3ܴ݀݁݉ݎ݋ܰ݁ܿ݊ܽݐݏ݊ܫ3݀ݒ݊݋ܥ ൪ 3 x 3 x 3 (1, 1, 1) (1, 1, 2) 128 1 x 1 x 32 

  



൦ (0.3) 3݀ݐݑ݋݌݋ݎܦܷܮ3ܴ݀݁݉ݎ݋ܰ݁ܿ݊ܽݐݏ݊ܫ3݀ݒ݊݋ܥ ൪ 3 x 3 x 3 (1, 1, 1) (1, 1, 1) 

Conv 7 ቂ  3݀ቃ 3 x 3 x 3 (1, 1, 1) (1, 2, 2) 256 1 x 1 x 16݉ݎ݋ܰ݁ܿ݊ܽݐݏ݊ܫ3݀ݒ݊݋ܥ

Conv 8 

൦ (0.3) 3݀ݐݑ݋݌݋ݎܦܷܮ3ܴ݀݁݉ݎ݋ܰ݁ܿ݊ܽݐݏ݊ܫ3݀ݒ݊݋ܥ ൪ 3 x 3 x 3 (1, 1, 1) (1, 1, 2) 

256 1 x 1 x 8 

൦ (0.3) 3݀ݐݑ݋݌݋ݎܦܷܮ3ܴ݀݁݉ݎ݋ܰ݁ܿ݊ܽݐݏ݊ܫ3݀ݒ݊݋ܥ ൪ 3 x 3 x 3 (1, 1, 1) (1, 1, 1) 

FC 1 Linear - 512 

FC 2 Linear - 100 

FC 3 Linear - 100 

 

Supplementary Table 12. Detailed structure of Transformer 

Layer name Operator Kernel Size Padding Stride Channel 
Size Output Size 

Conv 1 ൥  ൩ 5 2 2 32 300݉ݎ݋ℎ݊ܿݐܽܤܷܮ1ܴ݀݁ݒ݊݋ܥ

Conv 2 ൥  ൩ 5 2 2 64 150(0.2) ݐݑ݋݌݋ݎܦܷܮ1ܴ݀݁ݒ݊݋ܥ

Conv 3 ൥  ൩ 5 2 2 128 75݉ݎ݋ℎ݊ܿݐܽܤܷܮ1ܴ݀݁ݒ݊݋ܥ

Conv 4 ൥  ൩ 5 2 2 256 38(0.2) ݐݑ݋݌݋ݎܦܷܮ1ܴ݀݁ݒ݊݋ܥ

Transformer 
encoder 1 - 256 38 

Transformer 
encoder 2 - 256 38 

Self-attention 
pooling  256 

FC 1 ቂܷܮܴ݁ݎܽ݁݊݅ܮ ቃ - 400 

FC 2 ቂܷܮܴ݁ݎܽ݁݊݅ܮ ቃ - 400 

  



FC 3 ቂܷܮܴ݁ݎܽ݁݊݅ܮ ቃ - 400 

FC 4 Linear - 100 

 

Supplementary Table 13. Detailed structure of VGG 

Layer name Operator Kernel Size Padding Stride Channel 
Size Output Size 

Conv 1 Conv2d (3, 7) (1, 3) (1, 2) 64 8 x 300 

Conv 2 ൦ ݈݋݋݌ݔܽܯܷܮܴ݁݉ݎ݋ℎ݊ܿݐܽܤ2݀ݒ݊݋ܥ ൪ (3, 3) (1, 1) (1, 1) 64 4 x 150 

Conv 3 ൦ ݈݋݋݌ݔܽܯܷܮܴ݁݉ݎ݋ℎ݊ܿݐܽܤ2݀ݒ݊݋ܥ ൪ (3, 3) (1, 1) (1, 1) 128 2 x 75 

Conv 4 
൥ ܷܮܴ݁݉ݎ݋ℎ݊ܿݐܽܤ2݀ݒ݊݋ܥ ൩ (3, 3) (1, 1) (1, 1) 256 

1 x 37 ൦ ݈݋݋݌ݔܽܯܷܮܴ݁݉ݎ݋ℎ݊ܿݐܽܤ2݀ݒ݊݋ܥ ൪ (3, 3) (1, 1) (1, 1) 256 

Conv 5 

൥ ܷܮܴ݁݉ݎ݋ℎ݊ܿݐܽܤ2݀ݒ݊݋ܥ ൩ (1, 3) (0, 1) (1, 1) 512 

1 x 18 ൦ ݈݋݋݌ݔܽܯܷܮܴ݁݉ݎ݋ℎ݊ܿݐܽܤ2݀ݒ݊݋ܥ ൪ (1, 3) (0, 1) (1, 1) 512 

Conv 6 

൥ ܷܮܴ݁݉ݎ݋ℎ݊ܿݐܽܤ2݀ݒ݊݋ܥ ൩ (1, 3) (0, 1) (1, 1) 512 

1 x 9 ൦ ݈݋݋݌ݔܽܯܷܮܴ݁݉ݎ݋ℎ݊ܿݐܽܤ2݀ݒ݊݋ܥ ൪ (1, 3) (0, 1) (1, 1) 512 

Statistic 
pooling  1024 

FC 1 ൥  ൩ - 4096(0.65)ݐݑ݋݌݋ݎܦܷܮܴ݁ݎܽ݁݊݅ܮ

FC 2 ൥  ൩ - 4096(0.65)ݐݑ݋݌݋ݎܦܷܮܴ݁ݎܽ݁݊݅ܮ

FC 3 Linear - 100 

 

Modified Figure 5g, h 

  



 
Added references 

- [*] Safari, Pooyan, Miquel India, and Javier Hernando. "Self-attention encoding and pooling 
for speaker recognition." arXiv preprint arXiv:2008.01077 (2020). 

- [**] Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information 
processing systems 30 (2017). 

- [***] Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for 
large-scale image recognition." arXiv preprint arXiv:1409.1556 (2014). 

 

Comment #5: The neural network architecture described in the Section “Three-dimensional 
CNN for SiNM strain gauge signal analysis” doesn’t seem to tally with the dimensions shown 
in the corresponding figure (Fig 3). The relation between the size of the data at each stage and 
the kernels being applied should be further clarified. 

Our response: We thank the reviewer for this comment. We agree with your comment that 
our figure might be unclear. We believe the readers may have confused the information about 
the size of the input data and the channel information of the feature map. The size of the input 
tensor to our model is 2x4x600 with one channel, and 3D feature maps with several channels 
are generated through 3D convolution layers. The details of the architecture are shown in the 
modified Fig. 3a and Supplementary Table 10, 11. 

Our modification to the manuscript: We modified our main Figure 3a to describe our deep 
learning architecture more precisely. We also added Supplementary Table 10, 11 demonstrating 
the details of the architecture such as kernel size, number of channels, input/output size, etc. 

Modified Figure 3a 

  



 

 

Comment #6: Finally, the authors should comment on the limitation of the proposed device 
approach, which is not very user friendly to wear, and justify further the proposed use-case. 

Our response: We thank the reviewer for this comment. We agree that the device wearing 
approach is not somewhat user friendly, and we have not showed the detailed device wearing 
procedure. However, the main purpose of this work focuses mainly on implementing a novel 
silent speech interface that is capable of classifying a large number of classes (100 words) 
utilizing scaled-down strain gauges for the first time. Therefore, we have not really focused on 
the device wearability. However, as the reviewer mentioned, it is worth to show how our device 
can be mounted on the skin. From the perspective of its wearability, we explained the whole 
sensor attachment process in Method (line 567-572) with some additional sentences. 
Furthermore, we added a supplementary video, visualizing the sensor attachment process to 
make the readers better understand the device wearability. Based on our experiment for the 
device wearability, our device can extremely conformally contact to the facial skin. By 
observing this, we can realize that the device is capable of precisely detecting the facial 
movement dynamics. 

Our modification to the manuscript: We modified the sentences in Methods section “A skin-
safe pressure-sensitive adhesive (Derma-tac from Smooth-On) was applied to the designated 
position, which was selected through the preliminary study presented in Supplementary Figs. 
1 and 2. Water-soluble tapes with our strain sensor transferred on were attached to the position 
with moderate pressure, and DI water was then gently sprayed using a dispenser for 1 min to 
dissolve the PVA film.” into the following sentences “A skin-safe pressure-sensitive adhesive 
(Derma-tac from Smooth-On) was applied to the backside of the sensors mounted on water-
soluble tapes. And then, the strains were attached to the position which was selected through 
the preliminary study presented in Supplementary Figs. 1 and 2 with moderate pressure, and 
DI water was then gently sprayed using a dispenser for 1 min to dissolve the PVA film” (Line 
568-572). We also added a Supplementary Video 3 ‘SensorAttachment’ featuring the device 
attachment process. 

Supplementary Video 3: please check the attached video file ‘SensorAttachment’ including 
whole process of wearing our device to the facial skin. 

  

  



Reviewer #2 

General comment #1: This manuscript presents an approach of identifying verbal 
communication without vocalization by combing the sensor technology in data measurement 
and machine learning algorithms in data processing. Strain sensor that was based on SiNM was 
fabricated and placed on the mouth surroundings to record the strain information via change of 
electrical resistance when people speak. The measured strain and time correlation were 
converted to 2D image as machine learning input data. CNN model was used in machine 
learning model and three different classifier models were used to determine training accuracy. 
In addition, sEMG sensor was also used to show the merits of SiNM strain sensor measurement. 
The following issues need to be addressed before I recommend the acceptance for publication. 

Our response: We thank reviewer for summing up our manuscript and presenting some issues 
to be addressed. We agree with the reviewer's request for change and reflected the criticisms as 
much as possible for the better readership of readers. The corresponding revisions to each 
comment are indicated in response. All the details of our modifications are indicated in our 
responses and corresponding modifications. All changes are highlighted in the revised version 
of the manuscript as well. 

 

Comment #1: Compared with the direct taking image of mouth during speaking, what’s the 
key advantage of using strain resistance and time recording (as 2D image input) for machine 
learning model input? why the image of mouth during speaking was not considered in machine 
learning model? 

Our response:  We thank the reviewer for this opinion first. We think that vision input and 
strain input both have their pros and cons. As the reviewer mentioned, the vision input (image) 
has incomparably high spatial resolution than the other inputs from wearable sensors such as 
sEMG or strain gauge. However, we already highlighted the utility as a key advantage of using 
wearable platforms in the Introduction section. For use in static situations, vision recognition 
with a camera may provide high word recognition accuracy only if the subject is directly 
looking straight at the camera under the limited condition where light is sufficiently provided. 
For this reason, however, it is not always usable in daily life when dynamic motions of the 
subjects are required, and the subjects do not possess the cameras. On the other hand, in the 
case of wearable platforms, the spatial resolution is lower than the vision registration, but it 
can be used in more diverse situations because the subjects are not required to possess the 
camera or staring at the camera with a relatively bright environment. From this point of view, 
we thought that strain input has novelty in that it has potential to significantly improve spatial 
resolution over sEMG input. We realized that our explanation of these arguments was 
insufficient, and we modified some sentences for better readership of the readers.  

Our modification to the manuscript: We replaced the sentence “Nevertheless, the continuous 
shooting of the face in a static environment is indispensable to avoid an accuracy drop by body 
motion or light-induced artifacts, which leads to user inconvenience for daily communication 
routines.” with the following sentences “However, there are many situations in which the daily 
use of vision recognition is limited since the continuous shooting of the face in a static 
environment is indispensable. Changes in the shooting direction due to body motion and 

  



changes in the light intensity according to the surrounding environment can lead to a significant 
drop in recognition accuracy. Furthermore, unnecessary information such as background may 
occupy more pixels than speech-related information, which can be an obstruction in analyzing 
speech information” (Line 206-213). 

 

Comment #2: In comparison of strain sensor that only senses two directions in the current 
design, sEMG sensor could capture much richer information about speaking process as it is 
capable of sensing muscle activities from all direction. As signals from sEMG and strain sensor 
measurement were different, it is questionable that the same machine learning model and 
training process was used to process them, and it is highly possible that if the accuracy from 
sEMG with appropriate machine learning model is better than that of strain sensor. justification 
is needed. 

Our response: Thank you for the reviewer’s considerate comment. Our main intention in 
comparing sEMG and strain input was to feature the potential of the strain gauges toward high-
resolution systems. Unlike using the same architecture for both signals before, we carefully 
fine-tuned the network parameters and structures for each signal, which increases the accuracy 
from 35% to 42.6%. We used the same deep learning model with different details, and the 
details were added in Supplementary Table 10, 11. 

For looking forward to finding a more appropriate machine learning model, we additionally 
performed several experiments. We made comparison with PCA, networks in the reference 
#[12, 52], Transformer, VGGNet and our proposed 3D-CNN model. As a result, we got the 
best accuracies for both types of signals with our proposed model, as shown in Supplementary 
Table 5. It shows that our model not only performed effectively on strain gauge but also 
performed well on sEMG. However, sEMG result is still inferior to our strain gauge system 
mainly due to the downscaling of sEMG electrode as much as our strain gauge, leading to a 
low signal-to-noise ratio of the EMG signal. 

Our modification to the manuscript: We added Supplementary Table 5 for an extra 
experiment to compare with the other networks. Furthermore, We added Supplementary Table 
10, 11 to clarify the model details we used for our system and sEMG system.  We also added 
Supplementary Table 12, 13 for the detailed information of Transformer and VGGNet, which 
are used for comparison. We added the following sentence about these tables to the Method 
section “The detailed structure of each model is provided in Supplementary Table 10, 11, 12, 
13” (Line 604). Finally, we modified Figure 5g, h according to the performance changes due 
to the fine tuning. 

Supplementary Table 5. Comparison with the conventional methods 

Method 
Strain Gauge sEMG 

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Avg Val set 

PCA + LDA 6.4 8.85 16 10.15 11.7 10.62 2.2 

  



PCA + SVM 11.5 15.65 46.85 31.15 22.25 25.48 2.55 

SVM 58.8 71.3 76.25 72.7 67.1 69.23 4.9 

CONV + SVM 79.95 84.8 90.2 90.55 85.85 86.27 40.85 

Transformer 71.85 74.85 66.8 69.4 74.8 71.54 28.25 

VGG 67.3 67.1 76.3 74.9 70.2 71.16 22.25 

Ours 80.1 87.85 91.55 90.5 87.65 87.53 42.60 

 

Supplementary Table 10. Model details for SiNM-based Strain Gauge 

Layer name Operator Kernel size Padding Stride Channel 
size Ouput Size 

Conv 1 ൦ (0.3) 3݀ݐݑ݋݌݋ݎܦܷܮ3ܴ݀݁݉ݎ݋ܰ݁ܿ݊ܽݐݏ݊ܫ3݀ݒ݊݋ܥ ൪ 3 x 3 x 3 (1, 1, 1) (1, 1, 2) 32 2 x 4 x 300 

Conv 2 

൦ (0.3) 3݀ݐݑ݋݌݋ݎܦܷܮ3ܴ݀݁݉ݎ݋ܰ݁ܿ݊ܽݐݏ݊ܫ3݀ݒ݊݋ܥ ൪ 3 x 3 x 3 (1, 1, 1) (1, 1, 2) 

32 2 x 4 x 150 

൦ (0.3) 3݀ݐݑ݋݌݋ݎܦܷܮ3ܴ݀݁݉ݎ݋ܰ݁ܿ݊ܽݐݏ݊ܫ3݀ݒ݊݋ܥ ൪ 3 x 3 x 3 (1, 1, 1) (1, 1, 1) 

Conv 3 ቂ  3݀ቃ 1 x 3 x 3 (0, 1, 1) (1, 2, 2) 64 2 x 2 x 75݉ݎ݋ܰ݁ܿ݊ܽݐݏ݊ܫ3݀ݒ݊݋ܥ

Conv 4 

൦ (0.3) 3݀ݐݑ݋݌݋ݎܦܷܮ3ܴ݀݁݉ݎ݋ܰ݁ܿ݊ܽݐݏ݊ܫ3݀ݒ݊݋ܥ ൪ 3 x 3 x 3 (1, 1, 1) (1, 1, 2) 

64 2 x 2 x 38 

൦ (0.3) 3݀ݐݑ݋݌݋ݎܦܷܮ3ܴ݀݁݉ݎ݋ܰ݁ܿ݊ܽݐݏ݊ܫ3݀ݒ݊݋ܥ ൪ 3 x 3 x 3 (1, 1, 1) (1, 1, 1) 

Conv 5 ቂ  3݀ቃ 3 x 3 x 3 (1, 1, 1) (1, 2, 2) 128 2 x 1 x 19݉ݎ݋ܰ݁ܿ݊ܽݐݏ݊ܫ3݀ݒ݊݋ܥ

Conv 6 ൦ (0.3) 3݀ݐݑ݋݌݋ݎܦܷܮ3ܴ݀݁݉ݎ݋ܰ݁ܿ݊ܽݐݏ݊ܫ3݀ݒ݊݋ܥ ൪ 3 x 3 x 3 (1, 1, 1) (1, 1, 2) 128 2 x 1 x 10 

  



൦ (0.3) 3݀ݐݑ݋݌݋ݎܦܷܮ3ܴ݀݁݉ݎ݋ܰ݁ܿ݊ܽݐݏ݊ܫ3݀ݒ݊݋ܥ ൪ 3 x 3 x 3 (1, 1, 1) (1, 1, 1) 

Conv 7 ቂ  3݀ቃ 3 x 3 x 3 (1, 1, 1) (1, 2, 2) 256 2 x 1 x 5݉ݎ݋ܰ݁ܿ݊ܽݐݏ݊ܫ3݀ݒ݊݋ܥ

Conv 8 

൦ (0.3) 3݀ݐݑ݋݌݋ݎܦܷܮ3ܴ݀݁݉ݎ݋ܰ݁ܿ݊ܽݐݏ݊ܫ3݀ݒ݊݋ܥ ൪ 3 x 3 x 3 (1, 1, 1) (1, 1, 2) 

256 2 x 1 x 3 

൦ (0.3) 3݀ݐݑ݋݌݋ݎܦܷܮ3ܴ݀݁݉ݎ݋ܰ݁ܿ݊ܽݐݏ݊ܫ3݀ݒ݊݋ܥ ൪ 3 x 3 x 3 (1, 1, 1) (1, 1, 1) 

FC 1 Linear - 512 

FC 2 Linear - 100 

FC 3 Linear - 100 

 

Supplementary Table 11. Model details for sEMG 

Layer name Operator Kernel size Padding Stride Channel 
size Output Size 

Conv 1 ൦ (0.3) 3݀ݐݑ݋݌݋ݎܦܷܮ3ܴ݀݁݉ݎ݋ܰ݁ܿ݊ܽݐݏ݊ܫ3݀ݒ݊݋ܥ ൪ 3 x 3 x 3 (1, 1, 1) (1, 1, 2) 32 1 x 4 x 1000 

Conv 2 

൦ (0.3) 3݀ݐݑ݋݌݋ݎܦܷܮ3ܴ݀݁݉ݎ݋ܰ݁ܿ݊ܽݐݏ݊ܫ3݀ݒ݊݋ܥ ൪ 3 x 3 x 3 (1, 1, 1) (1, 1, 2) 

32 1 x 4 x 500 

൦ (0.3) 3݀ݐݑ݋݌݋ݎܦܷܮ3ܴ݀݁݉ݎ݋ܰ݁ܿ݊ܽݐݏ݊ܫ3݀ݒ݊݋ܥ ൪ 3 x 3 x 3 (1, 1, 1) (1, 1, 1) 

Conv 3 ቂ  3݀ቃ 1 x 3 x 3 (0, 1, 1) (1, 2, 2) 64 1 x 2 x 250݉ݎ݋ܰ݁ܿ݊ܽݐݏ݊ܫ3݀ݒ݊݋ܥ

Conv 4 ൦ (0.3) 3݀ݐݑ݋݌݋ݎܦܷܮ3ܴ݀݁݉ݎ݋ܰ݁ܿ݊ܽݐݏ݊ܫ3݀ݒ݊݋ܥ ൪ 3 x 3 x 3 (1, 1, 1) (1, 1, 2) 64 1 x 2 x 125 

  



൦ (0.3) 3݀ݐݑ݋݌݋ݎܦܷܮ3ܴ݀݁݉ݎ݋ܰ݁ܿ݊ܽݐݏ݊ܫ3݀ݒ݊݋ܥ ൪ 3 x 3 x 3 (1, 1, 1) (1, 1, 1) 

Conv 5 ቂ  3݀ቃ 3 x 3 x 3 (1, 1, 1) (1, 2, 2) 128 1 x 1 x 63݉ݎ݋ܰ݁ܿ݊ܽݐݏ݊ܫ3݀ݒ݊݋ܥ

Conv 6 

൦ (0.3) 3݀ݐݑ݋݌݋ݎܦܷܮ3ܴ݀݁݉ݎ݋ܰ݁ܿ݊ܽݐݏ݊ܫ3݀ݒ݊݋ܥ ൪ 3 x 3 x 3 (1, 1, 1) (1, 1, 2) 

128 1 x 1 x 32 

൦ (0.3) 3݀ݐݑ݋݌݋ݎܦܷܮ3ܴ݀݁݉ݎ݋ܰ݁ܿ݊ܽݐݏ݊ܫ3݀ݒ݊݋ܥ ൪ 3 x 3 x 3 (1, 1, 1) (1, 1, 1) 

Conv 7 ቂ  3݀ቃ 3 x 3 x 3 (1, 1, 1) (1, 2, 2) 256 1 x 1 x 16݉ݎ݋ܰ݁ܿ݊ܽݐݏ݊ܫ3݀ݒ݊݋ܥ

Conv 8 

൦ (0.3) 3݀ݐݑ݋݌݋ݎܦܷܮ3ܴ݀݁݉ݎ݋ܰ݁ܿ݊ܽݐݏ݊ܫ3݀ݒ݊݋ܥ ൪ 3 x 3 x 3 (1, 1, 1) (1, 1, 2) 

256 1 x 1 x 8 

൦ (0.3) 3݀ݐݑ݋݌݋ݎܦܷܮ3ܴ݀݁݉ݎ݋ܰ݁ܿ݊ܽݐݏ݊ܫ3݀ݒ݊݋ܥ ൪ 3 x 3 x 3 (1, 1, 1) (1, 1, 1) 

FC 1 Linear - 512 

FC 2 Linear - 100 

FC 3 Linear - 100 

 

Supplementary Table 12. Detailed structure of Transformer 

Layer name Operator Kernel Size Padding Stride Channel 
Size Output Size 

Conv 1 ൥  ൩ 5 2 2 32 300݉ݎ݋ℎ݊ܿݐܽܤܷܮ1ܴ݀݁ݒ݊݋ܥ

Conv 2 ൥  ൩ 5 2 2 64 150(0.2) ݐݑ݋݌݋ݎܦܷܮ1ܴ݀݁ݒ݊݋ܥ

Conv 3 ൥  ൩ 5 2 2 128 75݉ݎ݋ℎ݊ܿݐܽܤܷܮ1ܴ݀݁ݒ݊݋ܥ

Conv 4 ൥  ൩ 5 2 2 256 38(0.2) ݐݑ݋݌݋ݎܦܷܮ1ܴ݀݁ݒ݊݋ܥ

  



Transformer 
encoder 1 - 256 38 

Transformer 
encoder 2 - 256 38 

Self-attention 
pooling  256 

FC 1 ቂܷܮܴ݁ݎܽ݁݊݅ܮ ቃ - 400 

FC 2 ቂܷܮܴ݁ݎܽ݁݊݅ܮ ቃ - 400 

FC 3 ቂܷܮܴ݁ݎܽ݁݊݅ܮ ቃ - 400 

FC 4 Linear - 100 

 

Supplementary Table 13. Detailed structure of VGG 

Layer name Operator Kernel Size Padding Stride Channel 
Size Output Size 

Conv 1 Conv2d (3, 7) (1, 3) (1, 2) 64 8 x 300 

Conv 2 ൦ ݈݋݋݌ݔܽܯܷܮܴ݁݉ݎ݋ℎ݊ܿݐܽܤ2݀ݒ݊݋ܥ ൪ (3, 3) (1, 1) (1, 1) 64 4 x 150 

Conv 3 ൦ ݈݋݋݌ݔܽܯܷܮܴ݁݉ݎ݋ℎ݊ܿݐܽܤ2݀ݒ݊݋ܥ ൪ (3, 3) (1, 1) (1, 1) 128 2 x 75 

Conv 4 
൥ ܷܮܴ݁݉ݎ݋ℎ݊ܿݐܽܤ2݀ݒ݊݋ܥ ൩ (3, 3) (1, 1) (1, 1) 256 

1 x 37 ൦ ݈݋݋݌ݔܽܯܷܮܴ݁݉ݎ݋ℎ݊ܿݐܽܤ2݀ݒ݊݋ܥ ൪ (3, 3) (1, 1) (1, 1) 256 

Conv 5 

൥ ܷܮܴ݁݉ݎ݋ℎ݊ܿݐܽܤ2݀ݒ݊݋ܥ ൩ (1, 3) (0, 1) (1, 1) 512 

1 x 18 ൦ ݈݋݋݌ݔܽܯܷܮܴ݁݉ݎ݋ℎ݊ܿݐܽܤ2݀ݒ݊݋ܥ ൪ (1, 3) (0, 1) (1, 1) 512 

Conv 6 

൥ ܷܮܴ݁݉ݎ݋ℎ݊ܿݐܽܤ2݀ݒ݊݋ܥ ൩ (1, 3) (0, 1) (1, 1) 512 

1 x 9 ൦ ݈݋݋݌ݔܽܯܷܮܴ݁݉ݎ݋ℎ݊ܿݐܽܤ2݀ݒ݊݋ܥ ൪ (1, 3) (0, 1) (1, 1) 512 

  



Statistic 
pooling  1024 

FC 1 ൥  ൩ - 4096(0.65)ݐݑ݋݌݋ݎܦܷܮܴ݁ݎܽ݁݊݅ܮ

FC 2 ൥  ൩ - 4096(0.65)ݐݑ݋݌݋ݎܦܷܮܴ݁ݎܽ݁݊݅ܮ

FC 3 Linear - 100 

 

Modified Figure 5g, h 

 
 

Comment #3: In method section, there lacked of detailed data processing steps with machine 
learning. For example, what’s the criteria for the selection of convolution layers? what the ratio 
of raw data compared with training and testing data? 

Our response: We agree with the reviewer that the details of the data processing steps were 
not sufficiently described in our manuscript. First, in response to the reviewer’s question about 
“What’s the criteria for the selection of convolution layers?”, we designed our model similarly 
to VGGNet [*]; a traditional CNN structure. We adopted 3D convolution to learn spatial 
relationships between adjacent sensors, and excluded the max-pooling layer because of its 
small input size. The details of the architecture are described in the modified Fig. 3a and 
Supplementary Table 10, 11. Second, to address the reviewer’s question about “What is the 
ratio of raw data compared with training and testing data”, we used a train-test split of 80-20, 
as shown in Fig. 3b. 

Our modification to the manuscript: We modified our main Fig. 3a. which describes our 
deep learning architecture more precisely. We also added Supplementary Tables 10, 11 
demonstrating the details of the architecture. 

Added references 

  



- [*] Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-
scale image recognition." arXiv preprint arXiv:1409.1556 (2014). 

 

Comment #4: It seems FEA was done without substrate- which is different with the application 
environment that was mounted on human skin. It should be improved. 

Our response: We agree with the reviewer’s comment that FEA simulation should be 
conducted in the same state as the actual application environment. According to the previous 
studies, human skin has comparably low young’s modulus of few hundreds kPa[x], [y]. 
Therefore, we had used PDMS layer, which mimics the human skin with young’s modulus of 
~100 kPa according to the FEA simulation. We had included the information about PDMS in 
Supplementary Table 2, but we had mistakenly excluded mentioning it in Supplementary Note 
1. We highly appreciate your comment, and we clarified the sentence on that point. We listed 
the specific parameters of substrate used in FEA simulation to mimic the skin in Supplementary 
Note 1 and Supplementary Table 2. For better readership, we specified the layers of FEA model 
used in this work. 

Our modification to the manuscript: We modified the sentence in Supplementary Note 1. 
Details in FEA simulation for better readership “Without loss of generality, the multilayered 
structures on the PDMS substrate (i.e., PI/Au/Cr/PI/PDMS and PI/Si/PI/PDMS) were modeled 
using a composite 2D shell with an effective Young’s modulus of ࢋ࢜࢏࢚ࢉࢋࢌࢌࢋࡱ = ࢏ࢎ࢏ࡱ∑ ⁄࢏ࢎ∑ , 
where ܧ_݅ and ℎ_݅ are the Young’s modulus and thickness of each layer, respectively 
(Supplementary Table 2).”. 

 

Comment #5: A skin-safe pressure-sensitive adhesive was applied to the skin. did the strain 
sensor was mounted on this adhesive layer or directly on human skin? if it is former, how did 
this adhesive affect the strain recording activities? 

Our response: We highly appreciate your point. We found that the sentence we wrote 
previously in Method Section is somehow misleading. During the device mounting process 
onto the skin, we applied the adhesive (Derma-tac from Smooth-On) to the backside of our 
device with a makeup brush before the device was attached to the skin. We used Derma-tac 
adhesive to form a better adhesion between the device and the skin and long-term usage. 
However, it doesn’t affect the strain recording since thin adhesive layer does not disturb 
recording conformal facial movements. On the other hand, however, in the sEMG case, the 
adhesive layer, which is basically an insulator, closes the conducting path that leads to the 
distortion of obtained signal. Our strain gauges were double-sided encapsulated without any 
need for opening the sensing pad like sEMG to make direct contact to the skin. Besides, the 
sensing pads in sEMG degrades over time due to sebum and sweat. Therefore, the long-term 
wearability of sEMG is quite limited. Furthermore, the viscosity of Derma-tac adhesive is very 
low, resulting in a negligible thickness after it is totally dried. We added a supplementary video 
showing the whole process of attaching our device to skin for readers’ better understanding. 
Additionally, we added a figure which demonstrates a thickness of Derma-tac, and a short 
video which shows comparison between the sensors attached on PDMS substrate w/ and w/o 
Derma-tac during stretching for the reviewer’s information. 

  



Our modification to the manuscript: We replaced the sentences in the manuscript “A skin-
safe pressure-sensitive adhesive (Derma-tac from Smooth-On) was applied to the designated 
position, which was selected through the preliminary study presented in Supplementary Figs. 
1 and 2. Water-soluble tapes with our strain sensor transferred on were attached to the position 
with moderate pressure, and DI water was then gently sprayed using a dispenser for 1 min to 
dissolve the PVA film.” with the following sentences “A skin-safe pressure-sensitive adhesive 
(Derma-tac from Smooth-On) was applied to the backside of the sensors on water-soluble tapes. 
And then, the sensors were attached to the position which was selected through the preliminary 
study presented in Supplementary Figs. 1 and 2 with moderate pressure, and DI water was then 
gently sprayed using a dispenser for 1 min to dissolve the PVA film” (Line 568-572). We also 
added a Supplementary Video 3 which shows whole process to wear our strain gauges, and 
correspondingly, we added the following sentence to the manuscript “The whole device 
attachment process is demonstrated in Supplementary Video 3” (Line 573-574). 

Supplementary Video 3: please check the attached video file ‘SensorAttachment’ including 
whole process of wearing our device to the facial skin. 

The thickness of Derma-tac (alpha-step) 

 

Adhesion comparison between sensors attached w/ (right) and w/o (left) Derma-tac: 
Please check the attached video file ‘Effect of Derma-tac’. As shown in this video, the sensor 
without Derma-tac was detached from the substrate especially at the bottom non-mesh area 
where the contact pads are located.  

 

  



REVIEWER COMMENTS 

 

Reviewer #2 (Remarks to the Author): 

 

The authors addressed most my questions except # 5. Firstly, It is still very confusing whether 

adhesive was used between sEMG and skin, and please clearly state that. Secondly, Assume that 

sEMG or strain sensors will be used for a long-time wear (several hours at least) in silent 

communication systems, and how the degradation of adhesive will affect their performance needs 

to be evaluated. Thirdly, it is unclear what the plot in "Adhesion comparison between sensors 

attached w/ (right) and w/o (left) Derma-tac" present with both x and y- arises in length unit. further 

explanations in details are needed.  

  



Comment #1: Firstly, it is still very confusing whether adhesive was used between sEMG and 
skin, and please clearly state that. 

Our response: We thank the reviewer for this comment andapologize for any confusion this 
may have caused. To point out the reviewer’s comment, we didn’t used additional adhesive 
layer between sEMG and skin when attaching the sEMG to the face because it blocks 
conducting path of sEMG signal. Instead, the sEMG sensor was attached to the skin using  a 
transparent dressing film (3M Tegaderm) that serves as an adhesive layer and applies on the 
back side of the sEMG sensor.. To make the  electrode side open and in direct contact with the 
skin, a 2-step transfer method using water-soluble tape as a temporary carrier was used. The 
detailed attachment process and figures of attached sensors are exhibited in Method section 
(Experimental process of sEMG DAQ) and Supplementary Fig.7, respectively. This method of 
attaching sEMG to the face using Tegaderm is referenced by the  sEMG article which featured 
other speech recognition system1. 

Our modification to the manuscript: For better readership, we added the following sentence 
to clearly state that there are no other materials on the exposed sEMG electrode after transferred 
to Tegaderm (line 586-588) “By using Tegaderm, a transparent dressing adhesive film directly 
attached onto the back of the sEMG sensor, the sEMG electrode areas located on the front side 
are fully opened to make direct contact to the skin while elsewhere is firmly attached to the 
skin.  

 

Comment #2: Secondly, assume that sEMG or strain sensors will be used for a long-time wear 
(several hours at least) in silent communication systems, and how the degradation of adhesive 
will affect their performance needs to be evaluated. 

Our response: We appreciate this valuable comment. First, in the data acquisition process, we 
continuously measured the data about 1000-1500 words with one attachment, which took about 
3 hours. It had no effect on the adhesion of Derma-tac and the device performance. To further 
support this result, we conducted an additional cyclic stretching test using an automatic bending 
machine with the sensor attached to an elastomer substrate (PDMS) using Derma-tac. The 
results of about 10,000 cyclic bending tests for 10 hours are shown in the graph below.  

 

  



As shown in this graph, even after 10 hours, the sensor showed a negligible change in initial 
resistance within 0.1% except for some temporary fluctuations caused by temperature changes 
in the experimental environment. This ensures that the device shows reasonable consistency 
and longevity while performing the stretching test and the silent speech test. 

 

Comment #3: Thirdly, it is unclear what the plot in "Adhesion comparison between sensors 
attached w/ (right) and w/o (left) Derma-tac" present with both x and y- arises in length unit. 

Our response: We thank the reviewer about this comment. We believe that the graph below, 
which we attached in the previous revision letter, may have been misleading.  

The thickness of Derma-tac (Alpha-Step) 

 

We apologize for missing a clear description of this plot, but this is not for "Adhesion 
comparison between sensors attached w/ (right) and w/o (left) Derma-tac" paragraph. This 
graph shows the thickness measurements of Derma-tac using a surface profiler, Alpha-Step. 
We measured the thickness of Derma-tac by moving the probe from the non-Derma-tac area to 
the Derma-tac area on the wafer substrate. Our intention was to demonstrate that Derma-tac is 
very thin, ~ 2µm, to minimize issues caused by the thickness of the adhesive. We apologize  
again for any confusion as we did not specify it exactly. 

 

1. Wang, Y. et al. npj Flexible Electronics 5, 1-9 (2021). 

 

  



REVIEWERS' COMMENTS 

 

Reviewer #2 (Remarks to the Author): 

 

The authors have addressed my questions and improved the manuscript. I recommend the 

acceptance in the current form. 

  



Comment: The authors have addressed my questions and improved the manuscript. I 
recommend the acceptance in the current form. 

Our response: We thank the reviewer for this comment. We are very pleased that our previous 
revisions have addressed all the reviewer’s questions in an appropriate way. We would gladly 
share all the data and code generated in this study for a readers’ broader understanding. In this 
revision, we have slightly modified the format of all files according to the author guidance and 
added some missing statements including Author Contribution, Human Participants Ethics, and 
Data Availability to make this study suitable for publication. We thank the reviewer again for 
time and consideration. 
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