

- Supplementary Figure 1. Schematic representation of radio-frequency assisted molten-alkali
 method. The rhodium (III) chloride (RhCl₃) and potassium hydroxide (KOH) were selected as the raw
- 4 materials and uniformly mixed in crucible. This figure was made with the Cinema 4D Software.

- 1
- 2 Supplementary Figure 2. Digital image, SEM, SAED, HRTEM and FFT images of P-Tri-RhO₂. (a)
- 3 The digital image of P-Tri-RhO₂ powder. (b) TEM image and (c) SAED pattern of P-Tri-RhO₂. (d)
 - 4 HRTEM image and (e) its partially enlarged view. (f) The fast Fourier transform (FFT) from (e).

2 Supplementary Figure 3. Comparison of XRD pattern and simulated XRD pattern for P-Tri-RhO₂.

- 3 Comparison of XRD patterns of P-Tri-RhO₂ (black curve) and simulated X-ray diffraction peak of 4 P-Tri-RhO₂ (red curve).
- 5

2 Supplementary Figure 4. EDX and elemental analysis of P-Tri-RhO₂. (a-d) EDX-mapping images of

- 3 P-Tri-RhO₂, where Rh and O are uniformly distributed in the nanosheet structure. (e) EDX analysis of
- 4 P-Tri-RhO₂. (f) The table of the mass and atomic ratios of Rh to O in P-Tri-RhO₂ by elemental analysis
 - 5 method (elementar EL III).

Supplementary Figure 5. BET surface area measurements for different catalysts. BET surface area
 measurements for (a) P-Tri-RhO₂, (b) Rutile-RhO₂, (c) C-Rh/C and (d) Pt/C.

2 Supplementary Figure 6. XRD patterns and SEM images obtained by annealing P-Tri-RhO₂ at

- 3 different temperatures. (a) Temperature-dependent XRD patterns of annealing P-Tri-RhO₂ at different
- 4 temperatures. The corresponding SEM images of (b) P-Tri-RhO₂ and the products by annealing
- 5 P-Tri-RhO₂ at (c) 400 °C and (d) 650 °C.

- Binding energy / eV 2 Supplementary Figure 7. XPS measurements for different samples. XPS spectra of Rh 3*d* peaks for
- 3 P-Tri-RhO₂, Rutile-RhO₂ and Rh₂O₃.

1 2

Supplementary Figure 8. EXAFS fitting curves and wavelet transforms for P-Tri-RhO₂,

Rh-NA/RhO₂ and Rh foil. (a), (d), (g) EXAFS fitting curves of P-Tri-RhO₂, Rh-NA/RhO₂ and Rh foil at *R* space. (b), (e), (h) EXAFS fitting curves of P-Tri-RhO₂, Rh-NA/RhO₂ and Rh foil at *q* space. (c), (f), (i)

5 Wavelet transforms of Rh K-edge EXAFS for P-Tri-RhO₂, Rh-NA/RhO₂ and Rh foil.

2 Supplementary Figure 9. XRD patterns and SEM images obtained by changing the synthetic

- 3 parameters. (a) XRD pattern and (b) SEM image of the product obtained by directly mixing RhCl₃ and
- 4 KOH. (c) XRD pattern and (d) SEM image of the product obtained by directly radio-frequency heating
- 5 RhCl₃ without adding KOH.

Supplementary Figure 10. The chemical stability for P-Tri-RhO₂. (a-d) The XRD pattern, SEM, TEM images and SAED pattern of P-Tri-RhO₂ after placing it in air for six months. (e-h) The XRD pattern, SEM, TEM images and SAED pattern of P-Tri-RhO₂ after soaking it in water for two weeks. (i-l) The XRD pattern, SEM, TEM images and SAED pattern of P-Tri-RhO₂ after soaking it in ethanol for two weeks. (m-p) The XRD pattern, SEM, TEM images and SAED pattern of P-Tri-RhO₂ after soaking it in 1 M hydrochloric acid solution for two weeks.

2 Supplementary Figure 11. XRD pattern of Rh-NA/RhO₂. The peaks of (111), (200), (220) and (311)

3 planes of face-centered cubic Rh was detected and marked in red.

2 Supplementary Figure 12. XPS measurements for Rh-NA/RhO₂ and Rh/C. XPS spectra of Rh 3d

³ peaks for Rh-NA/RhO $_2$ and Rh/C.

2 Supplementary Figure 13. Cyclic voltammetry (CV) tests for P-Tri-RhO₂ and Rh-NA/RhO₂. CV

3 curves of P-Tri-RhO₂ and Rh-NA/RhO₂ in H₂-saturated 0.5 M H₂SO₄.

- 1 2 Supplementary Figure 14. XRD pattern, TEM and HRTEM images of the product obtained by
- 3 in-situ electroreduction of Rutile-RhO₂. (a) XRD pattern of the product obtained by in-situ
- electroreduction of Rutile-RhO₂. (b-d) TEM and HRTEM images of the product obtained by in-situ 4 5 electroreduction of Rutile-RhO₂.

- 2 Supplementary Figure 15. Schematic views of crystal matching of Rh-NA/RhO₂ system. (a) The
- crystal structure information of P-Tri-RhO₂. (b) The crystal structure information of face-centered cubic
 Rh.

- Supplementary Figure 16. Schematic views of Moire pattern obtained by twisting bilayer **P-Tri-RhO₂ region with the rotation angle of 3°**. (a) Simulated Moire pattern was obtained by twisting
 bilayer P-Tri-RhO₂ region with the rotation angle of 3°. The Rh atoms on different layers are marked with
 red and blue colors, respectively. (b, c) The enlarged areas from (a).

- 2 Supplementary Figure 17. Schematic views of Moire pattern obtained by twisting one single-layer
- 3 P-Tri-RhO₂ and one single-layer metallic Rh with the rotation angle of 3°. Simulated Moire pattern
- 4 was obtained by twisting one single-layer P-Tri-RhO₂ and one single-layer metallic Rh with the rotation
- 5 angle of 3°. (**b**, **c**) The enlarged areas from (**a**).
- 6

- 1 2
- 2 Supplementary Figure 18. Comparison of XRD patterns for Rh-NA/RhO₂ and different layers Rh.
- 3 The XRD pattern of Rh-NA/RhO₂ and the simulated XRD patterns of different layers Rh.

2 Supplementary Figure 19. Calibration of the saturated calomel electrode (SCE). Calibration of the

SCE electrode with respect to reversible hydrogen electrode (RHE) in 0.5 M H_2SO_4 electrolyte bubbled with pure hydrogen gas at room temperature. Scan rate: 5 mV s⁻¹. Two Pt electrodes were used as the working and counter electrodes to calibrate the SCE.

Rh-NA/RhO2 Rutile-RhO2 C-Rh/C Pt/C

- **Supplementary Figure 20. Comparison of overpotentials for different catalysts.** The overpotentials at the current density of -10 mA cm⁻² for Rh-NA/RhO₂, Rutile-RhO₂, C-Rh/C and Pt/C.

- 1
- 2 Supplementary Figure 21. The comparison of specific currents for different catalysts. The specific
- 3 currents of Rh-NA/RhO₂, Rutile-RhO₂, C-Rh/C and Pt/C in 0.5 M H_2SO_4 .

- Supplementary Figure 22. The calculations of ECSA for different catalysts. CV curves of (a)
 Rh-NA/RhO₂, (b) Rutile-RhO₂, (c) C-Rh/C and (d) Pt/C in H₂-saturated 0.5 M H₂SO₄ with a scan rate of
- 4 50 mV s⁻¹.
- 5

- 1
- 2 Supplementary Figure 23. The calculations of TOFs for different catalysts. (a) The comparison of
- 3 TOFs for Rh-NA/RhO₂, Rutile-RhO₂, C-Rh/C and Pt/C at different potentials (vs. RHE). (b) The TOFs of
- 4 Rh-NA/RhO₂, Rutile-RhO₂, C-Rh/C and Pt/C at the overpotential of 0.1 V.

- 2 Supplementary Figure 24. XRD pattern, SEM and STEM images of Rh-NA/RhO₂ after stability test.
- (a) The XRD pattern of Rh-NA/RhO₂ after long-term HER stability test, where the (111), (200), (220) and
 (311) planes of face-centered cubic Rh was detected and marked in red. (b, c) SEM and STEM images of
- 4 (511) planes of face-centered cubic Kir was detected and marked in red. (**b**, **c**) SEW and STEW image
- 5 Rh-NA/RhO₂ after long-term HER stability test.

2 Supplementary Figure 25. XPS and FTIR measurements of Rh-NA/RhO₂ after long-term HER

- 3 stability test. XPS spectra of (a) C 1s, (b) F 1s and (c) O 1s for Rh-NA/RhO₂ after long-term HER
- 4 stability test. (d) FTIR spectrum of Rh-NA/RhO₂ after long-term HER stability test.

1

2 Supplementary Figure 26. The measurements of hydrogen spillover for Rh-NA/RhO₂. (a) The photographic image of WO₃ before and after H₂ treatment at room temperature. clearly showing no color 3 change after H₂ treatment. (b) The photographic image of physical mixture for Rh-NA/RhO₂ and WO₃ 4 before and after H₂ treatment at room temperature, clearly showing the color change of WO₃ from yellow 5 to dark blue after H₂ treatment. (c) The photographic image of physical mixture P-Tri-RhO₂ and WO₃ 6 7 before and after H₂ treatment at room temperature, clearly showing no color change after H₂ treatment. (d) The photographic image of physical mixture Rh and WO₃ before and after H₂ treatment at room 8 temperature, clearly showing the color change of WO₃ from yellow to dark blue after H₂ treatment. 9

- 2 3 **Supplementary Figure 27.** Poison experiment for Rh-NA/RhO₂. Polarization curves for (a) Rh-NA/RhO₂ and (b) Rh before and after the addition of SCN⁻ or TMA⁺ ions in 0.5 M H_2SO_4 .

1 2 3 Supplementary Figure 28. Charge density difference of Rh-NA/RhO₂. Charge density difference of

Rh-NA/RhO₂ along z direction.

Supplementary Tables

Material	Crystal system	Bravais lattice	Unit-cell dimensions	Space group
P-Tri-RhO ₂	Trigonal	Primitive	$a = b = 3.091 \pm 0.004$ Å, $c =$ 4.407 ± 0.004 Å;	P-3m1 (164)
			$\alpha = \beta = 90^{\circ}, \gamma = 120^{\circ}$ a = b = 4.489 Å,	
Rutile-RhO ₂	Tetragonal	Primitive	c = 3.090 Å; $\alpha = \beta = \gamma = 90^{\circ}$	P4 ₂ /mnm (136)

2	Sunnlamontary	Tabla 1	Crystallagra	nhia information	for P Tri PhO. or	nd Dutila DhA
2	Supplementally	I able 1.	CI ystanogi a	ринс ингог шанон	$101 1 - 111 - KHO_2 a$	iu Kume-Kno

Catalyst	Hydrogen under potential deposition-based area / m ² g ⁻¹	BET area / m ² g ⁻¹
P-Tri-RhO ₂	8.8 ± 0.12	30.3 ± 0.82
Rh-NA/RhO ₂	55.5 ± 1.13	/
Rutile-RhO ₂	8.3 ± 0.2	9.5± 0.25
C-Rh/C	15.3 ± 0.31	147.1 ± 3.01
Pt/C	47.3 ± 1.01	137.9 ± 2.82

Supplementary Table 2. The hydrogen underpotential deposition-based area and BET values of
 P-Tri-RhO₂, Rh-NA/RhO₂, Rutile-RhO₂, C-Rh/C and Pt/C.

Supplementary Table 3. The SD	s of Rh atoms for different Moire j	patterns and Rh-NA/RhO ₂ .
Structure	The theoretical range of SD for different Moire patterns / nm ⁻²	The SDs for Rh-NA/RhO ₂ / nm ⁻²
Rh-NA/RhO ₂	/	47.904 (theoretical) / 47.3±1.2 (actual)
Moire pattern with two layer of P-Tri-RhO ₂	12.086~24.172	/
Moire pattern with two layer of metallic Rh	15.969~31.938	/
Moire pattern with one layer of P-Tri-RhO ₂ and one layer of metallic Rh	12.086~28.055	/

Supplementary Table 4. The HER activities of Rh-NA/RhO₂, Rutile-RhO₂, C-Rh/C and Pt/C in 0.5
 M H₂SO₄*.

Catalyst	Overpotential @ 10 mA cm ⁻² / mV	Geometric activity / mA cm ⁻²	Mass activity / mA mg _{Rh or Pt} ⁻¹	Tafel slope / mV dec ⁻¹
Rh-NA/RhO ₂	9.8 ± 0.61	200 ± 4.0	4634 ± 30.0	24.0
Rutile-RhO ₂	148 ± 2.4	3 ± 0.1	67 ± 0.9	99.1
C-Rh/C	83 ± 1.6	17 ± 0.2	601 ± 5.2	43.7
Pt/C	29 ± 0.9	85 ± 1.8	1502 ± 12.8	30.0

³ *The geometric activity and mass activity were obtained at -0.1 V vs. RHE.

Supplementary Table 5. The exchange current density (j₀) of Rh-NA/RhO₂, Rutile-RhO₂, C-Rh/C
 and Pt/C in 0.5 M H₂SO₄.

Catalysts	Exchange current density / mA cm ⁻²
Rh-NA/RhO ₂	-3.356 ± 0.1258
Rutile-RhO ₂	-0.561 ± 0.0015
C-Rh/C	-0.142 ± 0.0003
Pt/C	-1.220 ± 0.0430

1 Supplementary Table 6. The comparison of HER activity performances of Rh-NA/RhO₂ with 2 previous reported electrocatalysts.

Catalyst Substrate Electrolyte		Overpotential (a) 10 mA cm ⁻² / mV	Tafel slope / mV dec ⁻¹	Supplementary References	
Rh-NA/RhO ₂	GCE	0.5 M H ₂ SO ₄	9.8	24.0	This work
PdCoO ₂	GCE	1 M H ₂ SO ₄	15	38	1
Pt ₁ /OLC	GCE	0.5 M H ₂ SO ₄	38	36	2
Pt-GT-1	GCE	0.1 M HClO ₄	18	24	3
Pd ₃ P ₂ S ₈	GCE	0.5 M H ₂ SO ₄	91	29	4
Ru@C ₂ N	GCE	0.5 M H ₂ SO ₄	13.5	30	5
Pt-SAs/TMDs	GCE	0.5 M H ₂ SO ₄	32	28	6
RuIr-NC	RDE	0.5 M H ₂ SO ₄	46	32	7
1%Pd-MoS ₂ /CP	GCE	0.5 M H ₂ SO ₄	78	32	8
Rh ₂ P	GCE	0.5 M H ₂ SO ₄	14	31.7	9
Rh NS/C	GCE	0.1 M HClO ₄	15.8	61.5	10
Au-Rh	RDE	0.5 M H ₂ SO ₄	20	29	11
Rh-MoS ₂	RDE	0.5 M H ₂ SO ₄	67	54	12
Rh ₂ S ₃ – ThickHNP/C	GCE	0.5 M H ₂ SO ₄	88	44	13
a-RuTe ₂ PNRs	GCE	0.5 M H ₂ SO ₄	33	35	14
RuCu NPs	GCE	0.5 M H ₂ SO ₄	19	26	15
Pt-PVP/TNR@GC	RDE	0.5 M H ₂ SO ₄	21	27	16
PdCu/Ir	GCE	0.1 M HClO ₄	20	59.6	17

RuIrO _x	RDE	0.5 M H ₂ SO ₄	12	23	18
Pt ₅ /HMCS	RDE	0.5 M H ₂ SO ₄	20.7	28.3	19
AL-Pt/Pd ₃ Pb	GCE	0.5 M H ₂ SO ₄	13.8	18	20
Pt-AC/DG	GCE	0.1 M HClO ₄	21	27.5	21

1 Supplementary Table 7. The comparison of minimum cluster size and minimum interparticle 2 distance with previous reported materials.

	Minimu	Minimum	Minimum		
Materials	m cluster size	inter-particl e distance	inter-surfac e distance	Preparation method	Supplementary References
Rh-NA/RhO ₂	3.2 nm	3.709 nm	0.5 nm	In situ formed Rh nanoarrays on metastable trigonal phase RhO ₂ nanosheets	This work
As ₂ Se ₃ -PVDF core-shell	~200 nm	~800 nm	~1 µm	Melting commercially bought glasses	22
Fe ₃ O ₄ NCA	~8 nm	~10.7 nm	~3 nm	Controlled thermal decomposition	23
SHNO arrays	50 nm	100 nm	~115 nm	Ultra-high vacuum magnetron sputtering machine	24
3D gold nanostructure s	5.8 nm	7.1 nm	~3 nm	Pressure-directed assembly (PDA)	25
Platinum nanoparticle array	40 nm	150 nm	~100 nm	Electron beam lithography (EBL)	26
Au@Ag core-shell	17 nm	45 nm	~30 nm	Block copolymer (BCP) lithography	27
Nanopattern apertures	12 nm	100 nm	33 nm	Focused-ion-beam-guid ed prepatterning technique	28
AgNC array	100 nm	2000 nm	1.8 µm	Directed assembly of silver nanocubes (AgNCs) onto TiO ₂ coated Si substrates.	29
Ag nanoparticle arrays	200 nm	540 nm	~296 nm	Thermal evaporation and focused-ion beam	30
Pt nanoparticle (NP) arrays	/	57 nm	~25 nm	Electrochemical anodization process	31
Au _{0.5} Pt _{0.5} alloy	6 nm	20 nm	~26 nm	Block copolymer micellar nanoLithography (BCML)	32
Si ₃ N ₄	15 nm	100 nm	~73.5 nm	EUV interference lithography	33
Platinum	28 nm	100 nm	~100 nm	Electron beam	34

nanoparticle array				lithography (EBL)	
Cu NPs arrays	110 nm	350 nm	~206 nm	Interfacial self-assembly	35
Fe ₂ O ₃ nanoparticle array	9.01 nm	19.23 nm	~16.3 nm	Block copolymer lithography	36
Au nanoparticle arrays	2.4 nm	26.8 nm	~24.4 nm	Ar plasma treatment	37
Pt nanoparticle arrays	2.2 nm	10.8 nm	~23.4 nm	PS-b-P2VP diblock-copolymers	38
Si _{0.5} CeO _{0.5}	5 nm	10 nm	~7 nm	Co-self-assembling route	39
Au nanoparticles	5.8 nm	10.5 nm	~2.1 nm	Asymmetric heating of a novel precursor	40
Pt Nanoparticle Arrays	20 nm	150 nm	~135 nm	Electron beam lithography (EBL)	41
Pt nanoparticle arrays	28 nm	100 nm	~162 nm	Electron beam lithography (EBL)	42
Platinum cluster arrays	50 nm	200 nm	~73.7 nm	Electron beam lithography (EBL)	43

- 1 Supplementary Notes
- 2 Supplementary Note 1. The calculation of surface densities (SDs) of Rh atoms for different Moire
- 3 patterns and Rh-NA/RhO₂.
- 4 1. For Moire patterns consisting of two single-layer P-Tri-RhO₂
- 5 For a single-layer P-Tri-RhO2, the surface density of Rh atom is:

$$SD = 1 \div \left(\frac{\sqrt{3}}{2} \times 0.3091^2 \ nm^2\right) = 12.086 \ nm^{-2}$$

- 6 If Moire patterns were obtained by twisting two single-layer P-Tri-RhO₂ with different rotation angles, the
- 7 maximum surface density was determined to be $\leq 2 \times 12.086 = 24.172 \ nm^{-2}$. So the range of surface
- density for Moire patterns obtained by twisting bilayer P-Tri-RhO₂ was determined to be $12.086 nm^{-2} \le SD \le 24.172 nm^{-2}$.
- 10 2. For Moire patterns consisting of two single-layer metallic Rh
- 11 For a single-layer metallic Rh, the surface density of Rh atom is:

$$SD = 1 \div \left(\frac{\sqrt{3}}{2} \times 0.2689^2 \ nm^2\right) = 15.969 \ nm^{-2}$$

- 12 If Moire patterns were obtained by twisting two single-layer metallic Rh with different rotation angles, the
- maximum surface density was determined to be $2 \times 15.969 = 31.938 nm^{-2}$. So the range of surface

density for Moire patterns obtained by twisting bilayer face-centered cubic Rh was determined to be 15 $15.969 nm^{-2} \le SD \le 31.938 nm^{-2}$.

16 **3.** For Moire patterns consisting of one single-layer P-Tri-RhO₂ and one single-layer metallic Rh

17 If Moire patterns were obtained by twisting one single layer P-Tri-RhO₂ and one single layer metallic Rh 18 with different rotation angles, the maximum surface density was determined to be 15.969 + 12.086 =19 $28.055 nm^{-2}$. So the range of surface density for Moire patterns obtained by twisting P-Tri-RhO₂ and 20 metallic Rh was determined to be $12.086 nm^{-2} \le SD \le 28.055 nm^{-2}$.

21 4. For face-centered cubic Rh nanocrystal arrays

The theoretical surface density of rhodium atoms for face-centered cubic Rh along the [111] growth direction.

$$SD = 3 \div \left(\frac{\sqrt{3}}{2} \times 0.2689^2 \ nm^2\right) = 47.904 \ nm^{-2}$$

5. The actual SD of Rh atoms in Rh-NA/RhO₂ counted from the (scanning transmission electron microscopy) STEM image (Fig. 2f)

- As shown in **Fig. 2f**, the actual SD of Rh atoms in Rh-NA/RhO₂ is counted to be 47.3 ± 1.2 nm⁻².
- 27

1 Supplementary Note 2. Proposed H spillover assisted HER mechanism for Rh-NA/RhO₂.

- 2 Based on the simulation, a possible path is proposed to explain the electrocatalysis of Rh-NA/RhO₂. HER
- 3 may take place on any Rh nanoparticles by themselves and with the help of H spillover from Rh
- 4 nanoparticle to contact interface between Rh nanoparticle and P-Tri-RhO₂ substrate.

5

6 Assuming that H spillover is from Rh nanoparticle $(Rh_m)_{particle}$ to contact interface $(Rh_n)_{interface}$,

7 the first step is the adsorption of H atom on the surface of Rh nanoparticle $(Rh_m)_{particle}$,

8
$$(Rh_m)_{particle} - (Rh_n)_{interface} + H^+ + e^- \Leftrightarrow H - (Rh_m)_{particle} - (Rh_n)_{interface}$$
 (S1)

9 Secondly, the spillover of H atom from $(Rh_m)_{particle}$ to $(Rh_n)_{interface}$,

10
$$H - (Rh_m)_{particle} - (Rh_n)_{interface} \Leftrightarrow (Rh_m)_{particle} - (Rh_n)_{interface} - H$$
 (S2)

11 Thirdly, the Heyrovsky process on the interface of Rh nanoparticle and P-Tri-RhO₂ $(Rh_n)_{interface}$,

12
$$(Rh_m)_{particle} - (Rh_n)_{interface} - H + H^+ + e^- \rightarrow H_2 + (Rh_m)_{particle} - (Rh_n)_{interface}$$
 (S3)

13 The kinetics may be complicated. The reaction velocity of hydrogen evolution may be written as 14 $r = k_3 \theta_{(Rh_n)_{interface}-H}C_{H^+}$, where *r* is the reaction rate; *k* the rate constant; θ the fractional 15 occupancy of the H-adsorption sites; and C_{H^+} the concentration of hydrogen ion.

In the steady state, for
$$\theta_{(Rh_n)interface} - H$$
,

$$\frac{d\theta_{(Rh_n)interface} - H}{dt} =$$

$$k_2 \theta_{(Rh_m)particle} - H (1 - \theta_{(Rh_n)interface} - H) - k_{-2} \theta_{(Rh_n)interface} - H (1 - \theta_{(Rh_m)particle} - H)$$

$$k_3 \theta_{(Rh_n)interface} - H C_H + ;$$

20 and for $\theta_{(Rh_m)_{particle}-H}$

$$1 \qquad \frac{d\theta_{(Rh_m)particle}-H}{dt} = k_1 (1 - \theta_{(Rh_m)particle}-H)C_{H^+} - k_{-1}\theta_{(Rh_m)particle}-H - k_2\theta_{(Rh_m)particle}-H (1 - \theta_{(Rh_m)particle}-H) + k_{-2}\theta_{(Rh_n)interface}-H (1 - \theta_{(Rh_m)particle}-H).$$

3 At low overpotential,

$$\theta_{(Rh_{n})_{interface}-H} \approx \frac{k_{2}\theta_{(Rh_{m})_{particle}-H}}{k_{2}\theta_{(Rh_{m})_{particle}-H} + k_{-2} - k_{-2}\theta_{(Rh_{m})_{particle}-H} + k_{3}C_{H^{+}}}$$

$$\approx \frac{k_{20}}{k_{-20}}\theta_{(Rh_{m})_{particle}-H}e^{-\frac{F\Delta\phi}{RT}}$$

$$\theta_{(Rh_{m})_{particle}-H} \approx \frac{k_{1}C_{H^{+}} + k_{-2}\theta_{(Rh_{n})_{interface}-H}}{k_{1}C_{H^{+}} + k_{-2}\theta_{(Rh_{n})_{interface}-H} - k_{2}\theta_{(Rh_{n})_{interface}-H}} \approx \frac{k_{10}}{k_{-10}}C_{H^{+}}e^{-\frac{F\Delta\phi}{RT}}$$
hen, $r = k_{3}\theta_{(Rh_{n})_{interface}-H}C_{H^{+}} = \frac{k_{10}k_{20}k_{30}}{k_{-10}}C_{H^{+}}e^{-\frac{(2+\alpha)F\Delta\phi}{RT}}$
(S4)

4 Then,
$$r = k_3 \theta_{(Rh_n)interface-H} C_{H^+} = \frac{k_{10}k_{20}k_{30}}{k_{-10}k_{-20}} C_{H^+}^2 e^{-\frac{(2+\alpha)F\Delta\phi}{RT}}$$
 (S4)

5 And
$$-j = Fr = \frac{\kappa_{10}\kappa_{20}\kappa_{30}}{k_{-10}k_{-20}}FC_{H^+}^2 e^{-\frac{r}{RT}}$$

6 $lg(-j) = Const + 2 lg C_{H^+} - \frac{(2+\alpha)F}{2.303RT}\Delta\phi$ (S5)

7 Therefore, the Tafel slope is:
$$\frac{2.303RT}{(2+\alpha)F} = 0.024 \text{ V dec}^{-1}$$
 (assuming $\alpha = 0.5$).

- 1 Supplementary References
- Podjaski, F. et al. Rational strain engineering in delafossite oxides for highly efficient hydrogen
 evolution catalysis in acidic media. *Nat. Catal.* 3, 55-63 (2020).
- Li, D. B. et al. Atomically dispersed platinum supported on curved carbon supports for efficient
 electrocatalytic hydrogen evolution. *Nat. Energy* 4, 512-518 (2019).
- 6 3. Tiwari, J. N. et al. Multicomponent electrocatalyst with ultralow Pt loading and high hydrogen
 7 evolution activity. *Nat. Energy* 3, 773-782 (2018).
- Zhang, X. et al. Lithiation-induced amorphization of Pd₃P₂S₈ for highly efficient hydrogen evolution.
 Nat. Catal. 1, 460-468 (2018).
- 5. Mahmood, J. et al. An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution
 reaction. *Nat. Nanotechnol.* 12, 441-446 (2017).
- 6. Shi, Y. et al. Electronic metal-support interaction modulates single-atom platinum catalysis for
 hydrogen evolution reaction. *Nat. Commun.* 12, 3021 (2021).
- 7. Wu, D. S. et al. Efficient overall water splitting in acid with anisotropic metal nanosheets. *Nat. Commun.* 12, 1145 (2021).
- 16 8. Luo, Z. Y. et al. Chemically activating MoS₂ via spontaneous atomic palladium interfacial doping
 17 towards efficient hydrogen evolution. *Nat. Commun.* 9, 2120 (2018).
- Yang, F. L. et al. A monodisperse Rh₂P-based electrocatalyst for highly efficient and pH-universal
 hydrogen evolution reaction. *Adv. Energy Mater.* 8, 1703489 (2018).
- 10. Wang, K. et al. Wrinkled Rh₂P nanosheets as superior pH-Universal electrocatalysts for hydrogen
 evolution catalysis. *Adv. Energy Mater.* 8, 1801891 (2018).
- 11. Du, R. et al. Engineering multimetallic aerogels for pH-universal HER and ORR electrocatalysis. *Adv.*
- 23 Energy Mater. 10, 1903857 (2020).

- Meng, X. Y. et al. Distance synergy of MoS₂-confined rhodium atoms for highly efficient hydrogen
 evolution. *Angew. Chem. Int. Ed.* 59, 10502-10507 (2020).
- 3 13. Yoon, D. et al. Facet-controlled hollow Rh₂S₃ hexagonal nanoprisms as highly active and structurally
 4 robust catalysts toward hydrogen evolution reaction. *Energy Environ. Sci.* 9, 850-856 (2016).
- 5 14. Wang, J. et al. Amorphization activated ruthenium-tellurium nanorods for efficient water splitting. *Nat.*
- 6 *Commun.* **10**, 5692 (2019).
- Yao, Q. et al. Channel-rich RuCu nanosheets for pH-universal overall water splitting electrocatalysis.
 Angew. Chem. Int. Ed. 58, 13983-13988 (2019).
- 9 16. Li, C. et al. Polyvinylpyrrolidone-coordinated single-site platinum catalyst exhibits high activity for
- 10 hydrogen evolution reaction. Angew. Chem. Int. Ed. 59, 15902-15907 (2020).
- 17. Li, M. G. et al. Exclusive strain effect boosts overall water splitting in PdCu/Ir core/shell nanocrystals.
 Angew. Chem. Int. Ed. 60, 8243-8250 (2021).
- 18. Zhuang, Z. W. et al. Three-dimensional open nano-netcage electrocatalysts for efficient pH-universal
 overall water splitting. *Nat. Commun.* 10, 4875 (2019).
- 15 19. Wan, X. K., Wu, H. B., Guan, B. Y., Luan, D. Y. & Lou, X. W. Confining sub-nanometer Pt clusters
- in hollow mesoporous carbon spheres for boosting hydrogen evolution activity. *Adv. Mater.* 32,
 17 1901349 (2019).
- 18 20. Yao, Y. C. et al. Engineering the electronic structure of submonolayer Pt on intermetallic Pd₃Pb via
- 19 charge transfer boosts the hydrogen evolution reaction. J. Am. Chem. Soc. 141, 19964-19968 (2019).
- 20 21. Chen, Q. Q. et al. Carbon-defect-driven electroless deposition of Pt atomic clusters for highly efficient
 21 hydrogen evolution. *J. Am. Chem. Soc.* 142, 5594-5601 (2020).
- 22 22. Yaman, M. et al. Arrays of indefinitely long uniform nanowires and nanotubes. *Nat. Mater.* 10,
 23 494-501 (2011).

1	23. Ong, W. L., Rupich. S. M. Talapin, D. V. McGaughey, A. J. H. & Malen, J. A. Surface chemistry
2	mediates thermal transport in three-dimensional nanocrystal arrays. Nat. Mater. 12, 410-415 (2013).
3	24. Zahedinejad, M. et al. Two-dimensional mutually synchronized spin Hall nano-oscillator arrays for
4	neuromorphic computing. Nat. Nanotechnol. 15, 47-52 (2019).
5	25. Wu, H. et al. Nanostructured gold architectures formed through high pressure-driven sintering of
6	spherical nanoparticle arrays. J. Am. Chem. Soc. 132, 12826-12828 (2010).
7	26. Baldelli, S., Eppler, A. S., Anderson, E., Shen, Y. R. & Somorjai, G. A. Surface enhanced sum
8	frequency generation of carbon monoxide adsorbed on platinum nanoparticle arrays. J. Chem. Phys.
9	113 , 5432-5438 (2000).
10	27. Cha, S. K. et al. Au-Ag core-shell nanoparticle array by block copolymer lithography for synergistic
11	broadband plasmonic properties. ACS Nano 9, 5536-5543 (2015).
12	28. Lin, M. N. et al. Fabrication of an ordered nanoparticle array with a nanoaperture membrane used as a
13	contact-mask. Nanotechnology 17, 315-319 (2006).
14	29. Speckbacher, M. et al. Directed assembly of nanoparticle threshold-selector arrays. Adv. Electron.
15	Mater: 5, 1900098 (2019).
16	30. Huang, X. D., Lou, C. G. & Zhang, H. Experimentally demonstrating plasmonic lattice mode in
17	periodic Ag nanoparticle arrays on quartz trapezoidal pillars. J. Phys. D Appl. Phys. 51, 465101
18	(2018).
19	31. Owusu-Ansah, E., Horwood, C. A., El-Sayed, H. A., Birss, V. I. & Shi, Y. J. J. A method for the
20	formation of Pt metal nanoparticle arrays using nanosecond pulsed laser dewetting. Appl. Phys. Lett.
21	106 , 203103 (2015).
22	32. Jahn, S., Lechner, S. J., Freichels, H., Moller, M. & Spatz, J. P. Precise Au _x Pt _{1-x} alloy nanoparticle
23	array of tunable composition for catalytic applications. Sci. Rep. 6, 20536 (2016).

- 33. Karim, W. et al. High-resolution and large-area nanoparticle arrays using EUV interference lithography.
 Nanoscale 7, 7386-7393 (2015).
- 3 34. Zhu, J. & Somorjai, G. A. Formation of platinum silicide on a platinum nanoparticle array model
 catalyst deposited on silica during chemical reaction. *Nano Lett.* 1, 8-13 (2001).
- 5 35. Hang, L. F. et al. Copper nanoparticle@graphene composite arrays and their enhanced catalytic
 6 performance. *Acta Mater.* 105, 59-67 (2016).
- 36. Shi, D. O. et al. Sub-nanometer level size tuning of a monodisperse nanoparticle array via block
 copolymer lithography. *Adv. Funct. Mater.* 21, 250-254 (2011).
- 9 37. Kumar, S. & Zou, S. Z. Electrooxidation of CO on uniform arrays of Au nanoparticles: effects of
- 10 particle size and interparticle spacing. *Langmuir* **25**, 574-581 (2009).
- 38. Yang, H. Z., Kumar, S. & Zou, S. Z. Electroreduction of O₂ on uniform arrays of Pt nanoparticles. *J. Electroanal. Chem.* 688, 180-188 (2013).
- 39. Chane-Ching, J. Y. et al. Surface characterization and properties of ordered arrays of CeO₂
 nanoparticles embedded in thin layers of SiO₂. *Langmuir* 21, 1568-1574 (2005).
- 40. Egusa, S. Redmond, P. L. & Scherer, N. F. Thermally-driven nanoparticle array growth from atomic
 Au precursor solutions. *J. Phys. Chem. C* 111, 17993-17996 (2007).
- 17 41. Eppler, A. S., Rupprechter, G., Anderson, E. A. & Somorjai, G. A. Thermal and chemical stability and
- adhesion strength of Pt nanoparticle arrays supported on silica studied by transmission electron
- 19 microscopy and atomic force microscopy. J. Phys. Chem. B 104, 7286-7292 (2000).
- 20 42. Eppler, A. S., Zhu, J., Anderson, E. A. & Somorjai, G. A. Model catalysts fabricated by electron beam
- 21 lithography: AFM and TPD surface studies and hydrogenation/dehydrogenation of cyclohexene plus
- H₂ on a Pt nanoparticle array supported by silica. *Top. Catal.* **13**, 33-41 (2000).
- 43. Jacobs, P. W., Ribeiro, F. H., Somorjai, G. A. & Wind, S. J. New model catalysts: Uniform platinum

cluster arrays produced by electron beam lithography. Catal. Lett. 37, 131-136 (1996).