Supplemental Online Content

Watanabe A, Yasuhara J, Iwagami M, et al. Peripartum outcomes associated with COVID-19 vaccination during pregnancy: a systematic review and meta-analysis. *JAMA Pediatr*. Published online October 3, 2022. doi:10.1001/jamapediatrics.2022.3456

eTable 1. GRADE evidence profile for the included studies

eTable 2. Outcomes of all studies

eTable 3. The results of Egger's linear regression tests of the primary outcomes

eTable 4. Definitions of postpartum hemorrhage in each study

eFigure 1. Risk of bias summary

eFigure 2. Funnel plots of the primary outcomes

eFigure 3. Forest plot showing the odds ratio of low Apgar score (<7 at 5 min of birth)

eFigure 4. Forest plots showing the odds ratio of preterm birth

eFigure 5. Forest plots showing the odds ratio of small size for gestational age

eFigure 6. Forest plots showing the odds ratio of small size for gestational age (a: women who received COVID-19 vaccination during the first trimester vs. women who did not receive COVID-19 vaccination during pregnancy, b: women who received COVID-19 vaccination during the second or third trimester vs. women who did not receive COVID-19 vaccination during pregnancy)

This supplemental material has been provided by the authors to give readers additional information about their work.

© 2022 American Medical Association. All rights reserved.

First author	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Publication bias	Effect size	Dose- response	All plausible confounding and bias	Quality grading
Mayo RP ²⁴	Observational study	Study subject was not a close representative of general population.	No serious inconsistency.	Research question was to investigate immune- response.	No serious imprecision.	NA	Not large	NA	Older age in the vaccinated group.	Very low
Theiler RN ²⁵	Observational study	Study subject was not a close representative of general population.	No serious inconsistency.	No serious indirectness.	No serious imprecision.	NA	Not large	NA	Older age and higher infertility treatment rate in the vaccinated group.	Low
Rottenstreich M ²⁶	Observational study	Low risk of bias	Inconsistency between NICU admission and the other	No serious indirectness.	No serious imprecision.	NA	Not large	NA	Older age and higher rate of previous miscarriage,	Low

eTable 1. GRADE evidence profile for the included studies

© 2022 American Medical Association. All rights reserved.

Lipkind HS ¹⁷	Observational study	Low risk of bias	neonatal outcomes. No serious inconsistency.	No serious indirectness.	No serious imprecision.	NA	Not large	NA	cesarean delivery, and infertility treatment. Older age.	Moderate
Blakeway H ²⁷	Observational study	Study subject was not a close representative of general population.	No serious inconsistency.	No serious indirectness.	No serious imprecision.	NA	Not large	NA	Older age and higher proportion of comorbidities.	Low
Goldshtein I ¹⁵	Observational study	Low risk of bias	No serious inconsistency.	No serious indirectness.	No serious imprecision.	NA	Not large	NA	Older age and higher proportion of comorbidities.	Moderate
Dick A ²⁸	Observational study	Study subject was not a close representative of general population.	No serious inconsistency.	No serious indirectness.	No serious imprecision.	NA	Not large	NA	No obvious confounding factors.	Low

Fell DB ¹⁸	Observational	Low risk of	No serious	No serious	No serious	NA	Not large	NA	No obvious	Moderate
	study	bias	inconsistency.	indirectness.	imprecision.				confounding	
									factors.	
Magnus MC ¹⁹	Observational	Low risk of	No serious	No serious	No serious	NA	Not large	NA	Older age	Moderate
	study	bias	inconsistency.	indirectness.	imprecision.				and higher	
									proportion of	
									comorbidities.	

NA, not applicable

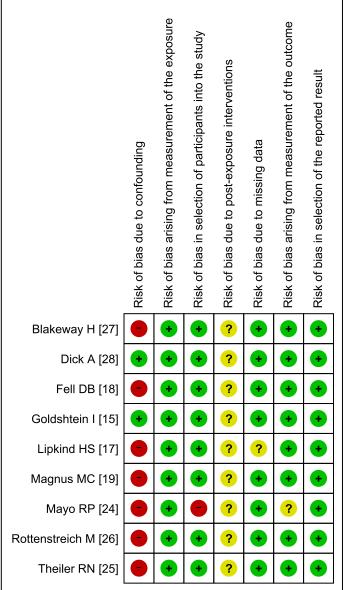
eTable 2. Outcomes of all studies

First author	Preterm birth	SGA	Low Apgar	NICU	IFD	SARS-CoV-2	Cesarean	Postpartum	Chorioamnionitis
			score (<7 at	admission		infection	delivery	hemorrhage	
			5min)						
Mayo RP ²⁴	OR 0.92 (0.44-	NA	NA	OR 0.68	NA	NA	NA	NA	NA
	1.92)			(0.23-2.01)					
Theiler RN ²⁵	OR 1.10 (0.61-	NA	OR 1.05 (0.32-	OR 1.21	OR 1.02	OR 0.11	OR 1.08	OR 2.67	NA
	1.98)		3.45)	(0.16-9.15)	(0.06-17.34)	(0.03-0.40)	(0.75-1.56)	(0.31-23.00)	
Rottenstreich	OR 1.01 (0.61-	OR 1.26 (0.93-	OR 1.17 (0.65-	OR 0.90	OR 1.50	NA	OR 1.52	OR 0.71	OR 0.80 (0.41-
M ²⁶	1.67)	1.71)	2.11)	(0.56-1.45)	(0.43-5.23)		(1.15-2.01)	(0.50-1.01)	1.56)
Lipkind HS ¹⁷	OR 0.68 (0.61-	OR 1.00 (0.92-	NA	NA	NA	OR 0.79	NA	NA	NA
	0.76)	1.09)				(0.69-0.90)			
Blakeway H ²⁷	NA	aOR 1.00	NA	aOR 1.05	aOR 1.00	OR 1.06	aOR 0.86	aOR 1.09	aOR 0.60 (0.03-
		(0.55-1.82)		(0.43-2.56)	(0.04-25.00)	(0.24-4.67)	(0.56-1.32)	(0.56-2.12)	12.00)
Goldshtein I ¹⁵	aOR 1.06	aOR 1.01	NA	NA	NA	aOR 0.16	NA	NA	NA
	(0.92-1.22)	(0.90-1.13)				(0.15-0.17)			
Dick A ²⁸	OR 0.89 (0.71-	OR 0.87 (0.70-	OR 0.96 (0.65-	NA	OR 0.87	NA	OR 0.97	OR 1.10	NA
	1.12)	1.08)	1.42)		(0.50-1.51)		(0.84-1.12)	(0.81-1.49)	
Fell DB ¹⁸	NA	NA	OR 0.90 (0.80-	OR 0.83	NA	OR 0.86	OR 1.01	OR 0.95	OR 1.10 (0.88-
			1.01)	(0.79-0.87)		(0.79-0.94)	(0.97-1.05)	(0.87-1.04)	1.38)

ſ	Magnus MC ¹⁹	OR 0.90 (0.84-	aOR 0.97	aOR 0.97	aOR 0.97	OR 0.67	OR 0.60	NA	NA	NA
		0.96)	(0.90-1.05)	(0.87-1.08)	(0.87-1.08)	(0.50-0.90)	(0.57-0.63)			
										1

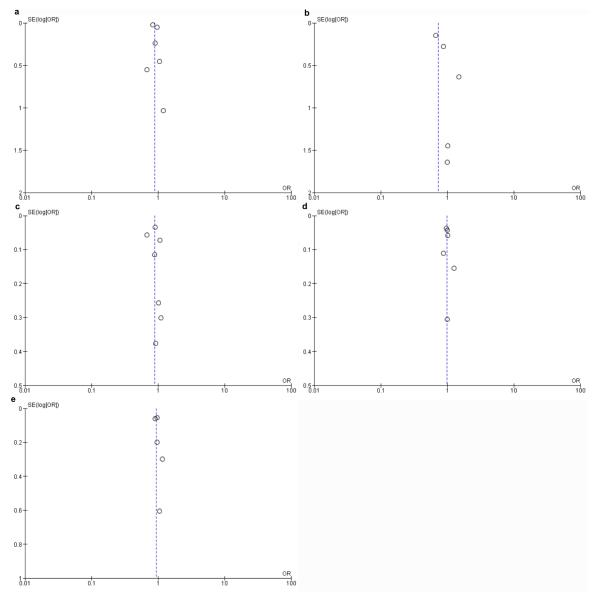
aOR, adjusted odds ratio; COVID-19, coronavirus disease 2019; IFD, intrauterine fetal death; NA, not available; NICU, neonatal intensive care unit; OR, odds ratio; SGA, small for gestational age;

Value is shown as OR or aOR (95% confidence interval).


eTable 3. The results of egger's linear regression tests of the primary outcomes

Outcome	Intercept	t	p
NICU admission	0.99	1.11	0.303
IFD	-0.39	-0.75	0.479
Preterm birth	0.40	0.28	0.787
SGA	0.82	1.79	0.116
Low Apgar score (<7 at 5min)	1.85	1.89	0.101

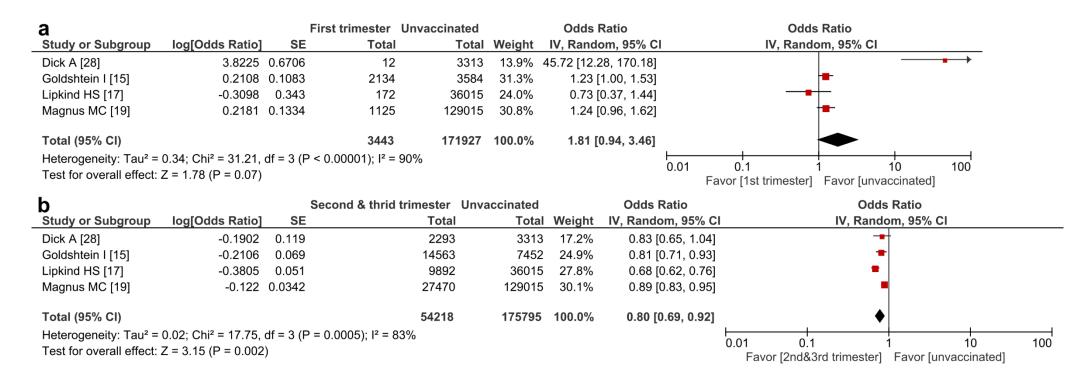
IFD, intrauterine fetal death; NICU, neonatal intensive care units; SGA, small-for-gestational-age


eTable 4. Definitions of postpartum hemorrhage in each study

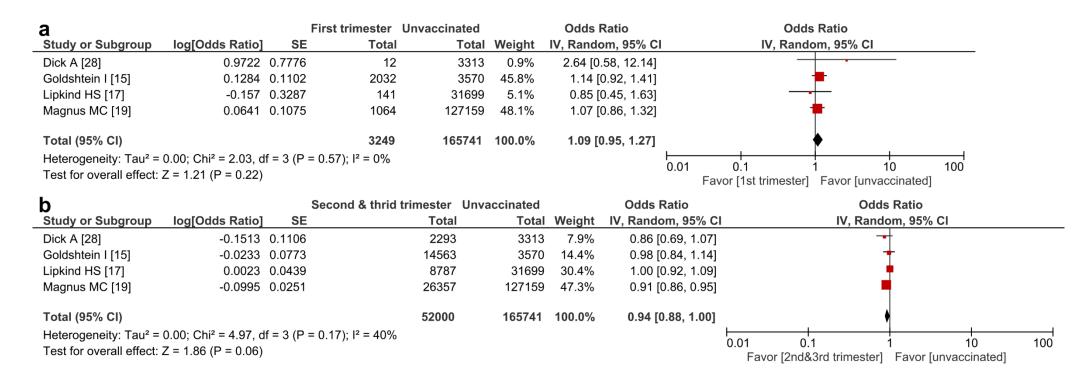
First author	Definition of postpartum hemorrhage
Theiler RN ²⁵	Hemorrhage that required blood transfusion.
Rottenstreich M ²⁶	More than 1,000 mL of estimated blood loss and/or more than 3 g/dL of hemoglobin drop from the baseline.
Blakeway H ²⁷	More than 1,000 mL of estimated blood loss.
Dick A ²⁸	More than 500 mL of estimated blood loss.
Fell DB ¹⁸	Not available

eFigure 1 Risk of bias summary

eFigure 2. Funnel plots of the primary outcomes (a. neonatal intensive care units admission, b. intrauterine fetal death, c. preterm birth, d. small-for-gestational-age, e. low Apgar score)



^{© 2022} American Medical Association. All rights reserved.


eFigure 3. Forest plot showing the odds ratio of low Apgar score (<7 at 5 min of birth)

Low Apgar scor	e		Vaccinated	Unvaccinated		Odds Ratio		Odds Ratio	
Study or Subgroup	log[Odds Ratio]	SE	Total	Total	Weight	IV, Random, 95% CI		IV, Random, 95% CI	
Dick A [28]	-0.0408	0.199	2305	3313	3.9%	0.96 [0.65, 1.42]		_ _ _	
Fell DB [18]	-0.1054	0.0601	22334	73932	43.2%	0.90 [0.80, 1.01]		•	
Magnus MC [19]	-0.0305	0.0555	28506	129015	50.7%	0.97 [0.87, 1.08]		•	
Rottenstreich M [26]	0.157	0.2999	712	1063	1.7%	1.17 [0.65, 2.11]			
Theiler RN [25]	0.0488	0.6062	140	1862	0.4%	1.05 [0.32, 3.45]			
Total (95% CI)			53997	209185	100.0%	0.94 [0.87, 1.02]		•	
Heterogeneity: Tau ² = 0.00; Chi ² = 1.42, df = 4 (P = 0.84); l ² = 0%								100	
Test for overall effect:	Test for overall effect: Z = 1.51 (P = 0.13)						0.01	0.1 1 10 Favor [vaccinated] Favor [unvaccinated]	100

eFigure 4. Forest plots showing the odds ratio of preterm birth (a: women who received COVID-19 vaccination during the first trimester vs. women who did not receive COVID-19 vaccination during pregnancy, b: women who received COVID-19 vaccination during the second or third trimester vs. women who did not receive COVID-19 vaccination during pregnancy)

eFigure 5. Forest plots showing the odds ratio of small size for gestational age (a: women who received COVID-19 vaccination during the first trimester vs. women who did not receive COVID-19 vaccination during pregnancy, b: women who received COVID-19 vaccination during the second or third trimester vs. women who did not receive COVID-19 vaccination during pregnancy)

