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Reviewers' comments: 

 

Reviewer #1 (Remarks to the Author): 

 

The paper by Xu et al examines the consistency and reproducibility of functional hubs, as well as 

relates these to transcriptomics. Using a large data set of multiple cohorts, they identify consistent 

hubs and show these hubs have a distinct transcriptomic signature. The issue of hub locations 

differing across functional studies is a problem which has not received extensive examination, despite 

being an issue of importance. I believe the work is likely to be of interest but have a number of 

suggestions which should be taken into consideration to help improve the manuscript. 

Major issues: 

1. Hubs are often defined based on functional activity within a region of a parcellation. This 

parcellation is often defined a priori or as the result of something like ICA. Connectivity between these 

parcels is then assessed and then hubs are examined. The approach employed by the authors is not 

especially common and needs some justification as to why it was used over these other approaches. 

These different methods of defining a region will cause variation in hub spatial location. Thus far I do 

not see any acknowledgement in the manuscript of these different ways of defining regions beyond a 

quick mention of different “analysis strategies”. So for me, the issue is twofold: firstly there needs to 

be justification for why this method of network construction (which is outside the norm) was used, 

followed by a discussion of how differences in network construction can lead to differences. You may 

even want to suggest (or think about for future work) seeing what results are obtained when other 

network construction approaches are used? 

 

2. One issue that readers may more broadly take is that defining hubs by connection strength in 

functional networks is problematic. Due to the transitivity of the correlation coefficient (i.e., if a is 

correlated with b, and b is correlated with c, then a is correlated with c) it difficult for a high degree 

node to show correlated activity with a node in a different module (see Power et al., 2013 for a 

discussion of this issue). Due to this, many papers in the current literature use the participation 

coefficient issue. This point should be discussed. 

 

3. The authors argue that because they use different machine learning models and different 

enrichment techniques with two different transcriptomic datasets that the results found are unlikely to 

be false-positives. However none of these approaches appeared to have accounted for the spatial 

autocorrelation inherent to transcriptomic data (see Fulcher et al., 2021). While many different 

approaches may show the same result, if they all have the same fundamental flaw then it brings the 

result of all of those into question. Thus the spatial autocorrelation of transcriptomic must be 

accounted for in order for these results to be considered up to par with the current state of the 

literature, especially given the transcriptomic result receive an extensive discussion. The reference I 

cited above provides tools to do this. 

 

4. The transcriptomic trajectory results appear to have only been determined by visual inspection 

correct? These differences don’t appear to be especially pronounced as claimed, but are instead rather 

subtle. To establish the validity of any such findings, you could randomly assign regions to be hub or 

non-hub and compute the trajectories for these randomised regions to build up a null distribution. 

Alternatively (and probably a better idea as it will preserve spatial information) is to apply a spin 

permutation to the regions and measure the trajectories of these permutations. This would do better 

than a visual inspection. regardless, if the current results do hold, I would temper the language as the 

differences are not that large. 

 

Minor issues: 

5. This analysis appears to have been performed in voxel space. It would be good to mention that 

performing an analysis in surface space (like the Human Connectome Project does) may achieve 

different results. 

6. It would be useful to add a quick definition as to what a transcriptomic trajectory is. 



7. It is not clear what the parallel interdigitated subnetworks hypothesis is (page 9, line 295), would 

be good to give a primer. 

8. References 34, the authors name is incorrectly formatted 

9. It seems the fibre distances were in a surface projection, and not a voxel projection? How was the 

voxel data converted to use on the surface (or vice versa)? 

10. Page 6, line 169 “The contributions of the top 300 mostly contributed key genes were consistent 

between the first 500 repetitions” wording is a little clunky, unclear what “mostly contributed key 

genes” means 

11. Page 7, line 239. It is specified that hubs have more short, medium and long range fibres but no 

guidance is given here as to how these categories are defined and this is the first mention of them. I 

think you can cut “That is, hub regions have more short, medium, and long fibers, whereas non-hub 

regions have more very short (< 40 mm) fibers,” and just go straight to “suggesting a more….” 

12. Page 8, line 275 “cohorts” instead of “cohort” 

13. Page 11, line 404 It should read “in line with a previous neuroimaging meta-analysis study” (the 

“a” is missing originally) 

14. Page 12, line 429 “Then, We”. The “we” should not be capitalised 

15. Page 13, line 451 “samples to range from 0 to 1” should be “samples to the range 0 to 1” 
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Reviewer #2 (Remarks to the Author): 

 

The authors use a worldwide harmonized meta-connectomic analysis of 5,212 healthy young adults 

across 61 cohorts, providing consistent and reproducible functional connectome hubs in the resting 

human brain. Using transcriptomic data from the AHBA and BrainSpan Atlas, they found that these 

connectome hubs have a spatiotemporally distinctive transcriptomic pattern in contrast to non-hub 

regions. The methods are solid and well-conducted, and the findings are important which advanced 

our understanding of the underlying cellular and molecular mechanism of macroscopic functional 

connectome hubs. Here, I have several minor comments, which I hope are useful to improve the 

manuscript. 

 

1. Higher brain function requires the integration of distributed neuronal activity across large-scale 

brain networks. Recent network analyses that have demonstrated that the basal ganglia and thalamus 

belong to an ensemble of highly interconnected network hubs, which form part of a core circuit that 

supports large-scale integration of functionally diverse neural signals. However, the authors did not 

find any subcortical brain regions belonging to connectome hubs. Please explain. 

 

2. Most (27.5%) connectome hubs belong to the DMN network. Does this result only reflect the 

characteristics of the brain network in a resting state? 

 

3. Whether the connectome hubs are consistent by using dynamic functional connections, and is there 

a difference in temporal variability between hub regions and non-hub regions？ 

 

4. Could transcriptomic data distinguish three clusters of connectome hubs? 

 

5. Is there a difference in cell-type density between hub regions and non-hub regions? Cell-class 



density proxy maps can be generated from bulk-tissue AHBA expression data using information from 

single-cell gene expression studies. 

 

6. These brain hubs have a spatiotemporally distinctive transcriptomic pattern dominated by genes 

with the highest enrichment for the neuropeptide signalling pathway. These results will be more 

reliable if supported by PET imaging, like dopamine, norepinephrine, serotonin, acetylcholine, 

glutamate, GABA, histamine, cannabinoid, and opioid (JuSpace, 2020). 

 

7. “Information flow along the primary visual, visual association, and higher-level sensorimotor 

cortices is undertaken by the four occipital hubs (Cluster II) left VMV1, right V4, and bilateral V3A that 

are all densely connected with the VIS and portions of the SMN, DAN, and VAN.” This sentence needs 

the support of references. 

 

8. There needs to be a discussion of the relationship between FCS maps and ENIGMA-derived patterns 

of brain atrophy across neurological, psychiatric, and neurodevelopmental disorders and what will be 

useful in clinical practice and informing the design of future studies. 
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Manuscript COMMSBIO-22-1399-T 
Title: 
Mapping consistent, reproducible, and transcriptionally relevant functional connectome hubs of 
the human brain 
 
 
Legend: 

Comment from reviewer. 

Response to reviewer’s comment. 
Text appeared in the previous manuscript version. 
New text appears in the revised manuscript version. 
Text removed from the revised manuscript but included in the response for convenience. 

Page and line numbers refer to the revised manuscript. 
 
 

Reviewer #1: 
Remarks to the Author: 
The paper by Xu et al examines the consistency and reproducibility of functional hubs, as 
well as relates these to transcriptomics. Using a large data set of multiple cohorts, they 
identify consistent hubs and show these hubs have a distinct transcriptomic signature. The 
issue of hub locations differing across functional studies is a problem which has not 
received extensive examination, despite being an issue of importance. I believe the work is 
likely to be of interest but have a number of suggestions which should be taken into 
consideration to help improve the manuscript. 

Response: We thank the reviewer for the positive appraisal and the valuable comments to further 
improve the quality of our manuscript. We have carefully considered all points and followed the 
suggestions to revise the Main Manuscript and the Supplementary Information to improve clarity 
of our interpretation of the results as described in more detail below. 
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1.1. Hubs are often defined based on functional activity within a region of a parcellation. 
This parcellation is often defined a priori or as the result of something like ICA. 
Connectivity between these parcels is then assessed and then hubs are examined. The 
approach employed by the authors is not especially common and needs some justification 
as to why it was used over these other approaches. These different methods of defining a 
region will cause variation in hub spatial location. Thus far I do not see any 
acknowledgement in the manuscript of these different ways of defining regions beyond a 
quick mention of different “analysis strategies”. So for me, the issue is twofold: firstly there 
needs to be justification for why this method of network construction (which is outside the 
norm) was used, followed by a discussion of how differences in network construction can 
lead to differences. You may even want to suggest (or think about for future work) seeing 
what results are obtained when other network construction approaches are used? 

Response: We agree with the reviewer that the construction of brain network is often based on a 
priori parcellation. We adopted a voxel-based analysis framework based on the following three 
considerations. First, the choice of parcellation scheme has an effect on the distribution shape of 
functional connectivity strength (Figure 2 in ref1) and the location of highly connected brain 
regions (Figure 5 in ref2). A voxel-based analysis made it feasible to directly compare our results 
with the extant voxel-based reports3-10  and to further analyze potential causes for inconsistent 
and less reproducible hub localizations among these extant reports. Second, a voxel-based 
connectome analysis can increase the sensitivity of identifying spatially focal hubs11, such as 
candidate hubs with no more than 10 voxels reported in prior studies4, 8. However, almost all 
extant fMRI- and multimodal MRI-based parcellations divided about hundreds of thousands of 
voxels into 200 to 500 parcels12 where each consists of hundreds of voxels. These candidate 
voxel-sized hubs may be undetectable in a connectome analysis using extant fMRI- and 
multimodal MRI-based parcellations. Third, parcellations defined a priori “generally capture the 
main aspects of organization evident across individuals, whereas the size, shape and position of 
areas and networks can vary substantially between individuals”12. A connectome analysis using 
parcellations defined a priori may underestimate the inter-individual variance within each cohort, 
which will substantially bias the random-effects meta-analysis across cohorts.  
We also agree with the reviewer that the differences in brain network construction approaches 
may cause variation in hub localizations. This issue will be an important topic in our future work.  
We have revised the Main Manuscript to make these two issues clear. 
Main Manuscript, Discussion, page 11, lines 404-408: 

[...] Second, we conducted a voxel-based connectome analysis in order to directly 
compare our results with the extant voxel-based reports7, 8, 14-19 and increase the 
sensitivity of identifying spatially focal (e.g., voxel-sized) hubs70. The effects of 
parcellation-based70 and surface-based71 analysis on hub localizations should be 
resolved in future studies. Third, the AHBA dataset [...]  
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1.2. One issue that readers may more broadly take is that defining hubs by connection 
strength in functional networks is problematic. Due to the transitivity of the correlation 
coefficient (i.e., if a is correlated with b, and b is correlated with c, then a is correlated with 
c) it difficult for a high degree node to show correlated activity with a node in a different 
module (see Power et al., 2013 for a discussion of this issue). Due to this, many papers in the 
current literature use the participation coefficient issue. This point should be discussed. 

Response: We have noted the argument in Power et al., 2013 that identifying hub regions based 
on connection strength may highlight only members of large brain modules due to the difficulty 
of showing correlations with nodes outside of their modules13. But we observed all hub peaks 
possessing large amounts of inter-module connections (Figure 3 and Figure S7). Our validation 
analysis demonstrated no significant correlation between a voxel’s FCS and the size of the brain 
module to which it belongs (Spearman’s ρ ≤ 0.231, Bonferroni-corrected ps ≥ 0.285, Figure S4), 
suggesting that functional connectome hubs identified using FCS in the present study were not 
driven by the size of the brain module to which they belong. We speculated that the conclusion 
in Power et al., 2013 may be driven by unreasonable connection threshold (Pearson’s r: 0.20-
0.37)13 because we observed all hub peaks possessing significant connections with Pearson’s r 
less than 0.2 for both intra- and inter-module connections (Figure S7). These validation analyses 
have been mentioned in the Main Manuscript and Supplementary Information, which are listed 
below.  
We agree with the reviewer that the participation coefficient is a useful hub identification 
measurement. We employed the functional connectivity strength to define hub regions because 
of its wide usage in prior studies3-10, 14 and its high spatial similarity compared with other 
measures (Figure 2B in ref15).We have revised the Supplementary Information to make this issue 
clear. 
Main Manuscript, Results, page 5, lines 133-135: 

Validation analysis demonstrated that the above results [...] were not driven by the size 
of the brain network to which they belong31 (Figure S4) [...] 

Supplementary Information, Supplementary Text Ⅱ, page 7, lines 209-215: 
A prior study argued that identifying hub regions based on FCS highlights only members 
of large brain networks rather than brain regions playing crucial roles in global brain 
communication23. However, no significant correlation between a voxel’s FCS and the 
size of the brain network to which it belongs could be identified in the present study 
(Figure S4). The conclusion in the study23 may be driven by unreasonable connection 
threshold (Pearson’s r: 0.20-0.37) because we observed all hub peaks possessing 
significant connections with Pearson’s r less than 0.2 (Figure S7). 

Supplementary Information, Supplementary Text Ⅱ, page 7, lines 216-220: 
We employed the functional connectivity strength to identify hub regions because of its 
wide usage in prior studies15-20, 25, 26, 31 and its high spatial similarity compared with 
other measures32. There are other useful hub identification measures, like the 
participation coefficient that may report more candidate hubs in subcortical structures 
because of their involvements in diverse functional domains, such as the basal ganglia33 
and the thalamus34.  



Point-by-point response to reviewers                                                        COMMSBIO-22-1399-T 

4 

1.3. The authors argue that because they use different machine learning models and 
different enrichment techniques with two different transcriptomic datasets that the results 
found are unlikely to be false-positives. However none of these approaches appeared to 
have accounted for the spatial autocorrelation inherent to transcriptomic data (see Fulcher 
et al., 2021). While many different approaches may show the same result, if they all have 
the same fundamental flaw then it brings the result of all of those into question. Thus the 
spatial autocorrelation of transcriptomic must be accounted for in order for these results to 
be considered up to par with the current state of the literature, especially given the 
transcriptomic result receive an extensive discussion. The reference I cited above provides 
tools to do this. 

Response: We agree with the reviewer that the spatial autocorrelation inherent to the hub 
localization and the transcriptomic data may cause different analysis approaches showing the 
same result. We have constructed 1,000 surrogate hub identification maps with the spatial 
autocorrelations being corrected using the same generative model16 as in Fulcher et al., 202117 
and repeated training supervised machine learning classifiers based on XGBoost18 and support 
vector machine to distinguish surrogate hubs from surrogate non-hubs using transcriptomic data 
from the AHBA dataset. These classifiers trained using surrogate hub identification maps 
performed no better than the chance level (Figure S8), confirming that the performance of the 
XGBoost and SVM classifiers in our main analyses was not driven by the effects of spatial 
autocorrelation. We have revised the Main Manuscript and Supplementary Information 
according to these additional validation analyses. 
Main Manuscript, Results, page 6, lines 185-189: 

Validation analyses showed that the XGBoost and SVM classifiers trained using 
surrogate hub identification maps with the spatial autocorrelations being corrected 
performed no better than the chance level (Figure S8), confirming that the performance 
of the XGBoost and SVM classifiers was not driven by the effects of spatial 
autocorrelation inherent to the hub localization and the transcriptomic data. [...] 

Supplementary Information, Supplementary Text Ⅰ, page 5, lines 124-141: 
The effects of spatial autocorrelation. To exclude the potential effect of spatial 
autocorrelation inherent to the transcriptomic data and the hub localization, we repeated 
the above described XGBoost and SVM classifiers training and testing procedures using 
surrogate hub identifications with the spatial autocorrelations being corrected using a 
generative model11. As shown in Figure S8A, we firstly constructed a surrogate Z value 
map based on the unthreshold Z value map corresponding to the hub identification map 
in Fig 2B with the spatial autocorrelation being corrected using a generative model11. 
Then, for the 1,158 AHBA brain samples within our gray matter mask, we assigned the 
382 samples with the highest surrogate Z values as hub samples and the 776 samples 
with the lowest surrogate Z values as non-hub samples. For the XGBoost classifier, we 
built a supervised XGBoost classifier through a 30-fold cross-validation procedure to 
distinguish 300 randomly setected hub samples from 300 randomly setected non-hub 
samples using 10,027 genes’ transcriptomic data from the preprocessed AHBA dataset 
and tested the XGBoost classifier with the remaining 82 hub samples and 476 non-hub 
samples. For the SVM classifier, we built a supervised SVM classifier through a 382-fold 
cross-validation procedure to distinguish all 382 hub samples from 382 randomly 
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setected non-hub samples using the transcriptomic data of the top 150 genes listed in 
Table S1. Finally, we repeated the surrogate hub identification generating, XGBoost 
classifier training and teseting, and SVM classifier training procedures 1,000 times. We 
implemented the XGBoost and SVM as described above. 

Supplementary Information, Supplementary Figures, page 19, lines 411-416: 

Figure S8. Transcriptomic data cannot distinguish surrogate hubs from surrogate non-
hubs. A Schematic diagram of generating surrogate hub identification and using 
XGBoost and SVM classifiers to distinguish surrogate hub samples from surrogate non-
hub samples. B Performance of the XGBoost classifier. Each dot represents one 
repetition in A. The horizontal gray dashed line represents the chance level accuracy rate 
(50%). C Performance of the SVM classifier. Each dot represents one repetition in A. 
The horizontal gray dashed line represents the chance level accuracy rate (50%).   
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1.4. The transcriptomic trajectory results appear to have only been determined by visual 
inspection correct? These differences don’t appear to be especially pronounced as claimed, 
but are instead rather subtle. To establish the validity of any such findings, you could 
randomly assign regions to be hub or non-hub and compute the trajectories for these 
randomised regions to build up a null distribution. Alternatively (and probably a better 
idea as it will preserve spatial information) is to apply a spin permutation to the regions 
and measure the trajectories of these permutations. This would do better than a visual 
inspection. regardless, if the current results do hold, I would temper the language as the 
differences are not that large. 

Response: We agree with the reviewer’s concern about the validity of differences in transcription 
level between hub and non-hub regions during development. We have tried to find a suitable 
statistical model to examine the validity of differences in transcription level at the beginning of 
our study. But for most developmental periods, there are only no more than five hub brain 
samples and 10 non-hub brain samples at a specific age (Figure S11). Such small simple size 
makes it practically impossible to determine the statistical significance level of difference in 
transcription level between hub and non-hub regions at a specific age. Even for a non-parameter 
permutation test, such small simple size is inadequate to perform an effective randomization or 
spin test. Thus, we adopted a compromise approach by comparing the magnitude of differences 
in developmental trajectory between hub and non-hub regions to the median absolute deviation 
of transcription level across brain regions at a specific age (Figure 5C). The magnitude of 
differences in developmental trajectory exceeding the median absolute deviation indicates a 
trend of greater difference in transcription level between hub and non-hub regions than expected 
at a specific age. We have revised the Main Manuscript and Supplementary Information 
according to these additional analyses. 
Main Manuscript, Results, page 7, lines 221-235: 

[...] To explore their developmental evolutions, we inspected the developmental 
trajectory of transcription level in hub and non-hub regions respectively using the 
BrainSpan Atlas42. We observed diverging developmental trajectories of transcription 
level between hub and non-hub regions in these key neurodevelopmental processes and 
main neuronal metabolic pathways (Figure 5B and Figure S9A). The magnitude of 
differences in developmental trajectory between hub and non-hub regions continuously 
exceeds the median absolute deviation of transcription level across brain regions during 
some periods (Figure 5C and Figure S9B), suggesting a trend of greater difference than 
expected. Specifically, hub regions have higher transcription levels for neuron migration 
during the late-fetal period, higher transcription levels for dendrite and synapse 
development from the late-childhood to mid-adolescence period, and lower transcription 
levels for axon development and myelination from the mid-childhood to late-adolescence 
period than non-hub regions. we inspected regional transcriptomic trajectory differences 
between hub and non-hub regions in these key neurodevelopmental processes using the 
BrainSpan Atlas42. We observed pronounced diverging transcriptomic trajectories 
between hub and non-hub regions in these key neurodevelopmental processes and main 
neuronal metabolic pathways for genes associated with neuron migration, dendrite, 
synapse, axon development, and myelination but not for neuron differentiation (Fig 5B 
and Fig S8). For neuron migration, the transcription level in hub regions is higher than 
that in non-hub regions during from the latemid-fetal period and to early infancy. For 
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dendrite, synapse, axon development, and myelination, transcriptomic trajectories of hub 
regions apparently diverge from those of non-hubs since the beginning ofduring 
childhood and diminishes at the end of adolescence, during which hub regions have 
higher transcription levels for dendrite and synapse development but lower transcription 
levels for axon development and myelination. These results are in agreement with the 
observation of primary somatosensory, auditory, and visual (V1/V2) cortices with lower 
synapse density but higher myelination than the prefrontal area43, 44. Moreover, hub 
regions have higher transcription levels than non-hub regions for aerobic glycolysis 
since the early childhood period and for oxidative phosphorylation during childhood and 
adolescence. [...] 

Main Manuscript, Methods, page 14, lines 496-513: 

To explore developmental details, we inspected the developmental trajectory of 
transcription level of the above gene sets in hub and non-hub regions respectively using 
the BrainSpan Atlas42.we inspected transcriptomic trajectory differences between 
connectome hubs and non-hubs in the above gene sets using the BrainSpan Atlas42. In 
line with prior studies38, 41, we used the first principal component of each gene set’s 
transcription level to plot transcriptomic trajectories and visually inspected 
transcriptomic trajectory differences between connectome hubs and non-hubs (Fig 5B). 
Transcriptomic trajectories were plotted We plotted the developmental trajectory using 
locally weighted regression by smoothing the first principal component of each gene set’s 
transcription level against log2[post-conceptional days] as in a prior study38 (Figure 
5B). For most developmental periods, there are only no more than 5 hub brain samples 
and 10 non-hub brain samples at a specific age (Figure S10). Such small simple size 
makes it practically impossible to determine the statistical significance level of difference 
in transcription level between hub and non-hub regions at a specific age. We compared 
the magnitude of differences in developmental trajectory between hub and non-hub 
regions to the median absolute deviation of transcription level across brain regions at a 
specific age (Figure 5C). The magnitude of differences in developmental trajectory 
exceeding the median absolute deviation indicates a trend of greater difference in 
transcription level between hub and non-hub regions than expected at a specific age. Of 
note, considering apparent transcriptomic differences compared to the neocortex38, we 
excluded the striatum, mediodorsal nucleus of the thalamus, and cerebellar cortex in the 
developmental transcriptomic trajectory analysis but not the amygdala and hippocampus 
whose developmental trajectories of transcription level transcriptomic trajectories are 
more similar to those of the neocortex than to those of other subcortical structures38. 
Analysis using only neocortical regions revealed similar almost unchanged results 
(Figure S9). 

Main Manuscript, Figures, pages 30-31, lines 893-904:  
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Figure 5. Connectome hubs have a spatiotemporally distinctive transcriptomic pattern. 
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A Transcription level differences between hub samples (n=382) and non-hub samples 
(n=776) for genes associated with key neurodevelopmental processes38 and main 
neuronal metabolic pathways39. Boxplot edges, gray lines, and whiskers and dots depict 
the 25th and 75th percentiles, median, and extreme nonoutlier and outlier values, 
respectively. Significance of one-sided Wilcoxon rank-sum tests were determined by 
1,000 permutation tests and were labeled with Bonferroni-corrected p values. B 
Developmental trajectory of transcription level in Transcriptomic trajectory differences 
between hub and non-hub regions for genes involved in key neurodevelopmental 
processe38 and main neuronal metabolic pathways39. C Differences in the developmental 
trajectory of transcription level between hub regions and that in non-hub regions shown 
in B. MAD, the median absolute deviation of transcription level across brain regions. w, 
post-conceptional week; y, postnatal year; a.u., arbitrary unit. 
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 Supplementary Information, Supplementary Figures, page 20, lines 417-422: 

Figure S9. Analysis of developmental trajectory of transcription level Transcriptomic 
trajectory analysis using only neocortical regions. A Developmental trajectory of 
transcription level in hub and non-hub regions for genes involved in key 
neurodevelopmental processe38 and main neuronal metabolic pathways39. B Differences 
in the developmental trajectory of transcription level between hub regions and that in 
non-hub regions shown in A. MAD, the median absolute deviation of transcription level 
across brain regions. w, post-conceptional week; y, postnatal year; a.u., arbitrary unit. 
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Supplementary Information, Supplementary Figures, page 22, lines 439-440: 

Figure S11. Age distribution of brain samples from the BrainSpan Atlas dataset. w, 
post-conceptional week; y, postnatal year.   
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1.5. This analysis appears to have been performed in voxel space. It would be good to 
mention that performing an analysis in surface space (like the Human Connectome Project 
does) may achieve different results. 

Response: We agree with the reviewer that the voxel space-based analysis may achieve subtle 
differences compared with the surface-based analysis. We have revised the Main Manuscript to 
make this issue clear. 
Main Manuscript, Discussion, page 11, lines 404-408: 

[...] Second, we conducted a voxel-based connectome analysis in order to directly 
compare our results with the extant voxel-based reports7, 8, 14-19 and increase the 
sensitivity of identifying spatially focal (e.g., voxel-sized) hubs67. The effects of 
parcellation-based67 and surface-based68 analysis on hub localizations should be 
resolved in future studies. Third, the AHBA dataset [...] 

 

1.6. It would be useful to add a quick definition as to what a transcriptomic trajectory is. 

Response: We have replaced “transcriptomic trajectory” with a more straightforward phrase 
“developmental trajectory of transcription level”. 
Main Manuscript, Results, page 7, lines 221-222: 

[...] To explore their developmental evolutions, we inspected the developmental 
trajectory of transcription level in hub and non-hub regions respectively using the 
BrainSpan Atlas42. we inspected regional transcriptomic trajectory differences between 
hub and non-hub regions in these key neurodevelopmental processes using the BrainSpan 
Atlas42. [...] 

 

1.7. It is not clear what the parallel interdigitated subnetworks hypothesis is (page 9, line 
295), would be good to give a primer. 

Response: We have added a description to make it clear. 
Main Manuscript, Discussion, page 10, lines 330-333: 

[...] This can be supported by the recent finding of a control-default connector located in 
the posterior middle frontal gyrus32 and may also be a case of the hypothesis of parallel 
interdigitated subnetworks57 where the posterior middle frontal gyrus is connected with a 
subnetwork of the DMN and some regions of the FPN. [...] 
 

1.8. References 34, the authors name is incorrectly formatted 

Response: This error has been fixed in the revision. 
Main Manuscript, References, page 17, line 709: 

34. ArnatkeviciuteArnatkevic Iute A, Fulcher BD, Fornito A. [...] 
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1.9. It seems the fibre distances were in a surface projection, and not a voxel projection? 
How was the voxel data converted to use on the surface (or vice versa)? 

Response: We resampled the identified hub distribution mask in Figure 2B from the MNI 
volume space to the standard brain surface space provided by the cortical fiber length profiling 
dataset19. We have revised the Main Manuscript to make it clear. 
Main Manuscript, Methods, page 14, lines 525-530: 

The cortical fiber length profiling dataset47 provided fiber number data across different 
length bins in a standard brain surface space. We resampled the identified hub 
distribution mask in Figure 2B from the MNI volume space to the standard brain surface 
space provided by the dataset47 and tested difference in fiber number between hub and 
non-hub vertices for each length bin through one-sided Wilcoxon rank-sum test (Figure 
6B). For illustration purposes, we normalized the fiber number value respect to its mean 
and standard deviation across voxels. 

 

1.10. Page 6, line 169 “The contributions of the top 300 mostly contributed key genes were 
consistent between the first 500 repetitions” wording is a little clunky, unclear what 
“mostly contributed key genes” means 

Response: We have rephrased the sentence to make it clear. 
Main Manuscript, Results, page 6, lines 170-172: 

[...] The contributions of the top 300 mostly contributed key genes with the greatest 
contributions to the XGBoost classifier were consistent between the first 500 repetitions 
and the second 500 repetitions [...] 
 

1.11. Page 7, line 239. It is specified that hubs have more short, medium and long range 
fibres but no guidance is given here as to how these categories are defined and this is the 
first mention of them. I think you can cut “That is, hub regions have more short, medium, 
and long fibers, whereas non-hub regions have more very short (< 40 mm) fibers,” and just 
go straight to “suggesting a more….” 

Response: We have deleted redundant content in the revision. 
Main Manuscript, Results, page 8, lines 256-260: 

[...] Using a fiber length profiling dataset47, we observed that hub regions possess more 
fibers with a length exceeding 40 mm but less fibers with a length shoter than 40 mm 
(one-sided Wilcoxon rank-sum tests, Bonferroni-corrected ps ≤ 0.007, Figure 6B). That 
is, hub regions have more short, medium, and long fibers, whereas non-hub regions have 
more very short (< 40 mm) fibers, suggesting a more intricate fiber configuration in hub 
regions. 
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1.12. Page 8, line 275 “cohorts” instead of “cohort” 

Response: This error has been fixed in the revision. 
Main Manuscript, Discussion, page 9, lines 309-310: 

Finally, we used harmonized image processing and connectome analysis protocols 
across cohorts, [...] 

 

1.13. Page 11, line 404 It should read “in line with a previous neuroimaging meta-analysis 
study” (the “a” is missing originally) 

Response: This error has been fixed in the revision. 
Main Manuscript, Methods, page 12, line 448: 

In line with a previous neuroimaging meta-analysis study74, [...] 
 

1.14. Page 12, line 429 “Then, We”. The “we” should not be capitalized 

Response: This error has been fixed in the revision. 
Main Manuscript, Methods, page 13, line 473: 

[...] Then, Wwe compared the Fisher’s z value [...] 
 

1.15. Page 13, line 451 “samples to range from 0 to 1” should be “samples to the range 0 to 
1” 

Response: This error has been fixed in the revision. 
Main Manuscript, Methods, page 14, line 495: 

samples to the range 0 to 1. 
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Reviewer #2: 
Remarks to the Author: 
The authors use a worldwide harmonized meta-connectomic analysis of 5,212 healthy 
young adults across 61 cohorts, providing consistent and reproducible functional 
connectome hubs in the resting human brain. Using transcriptomic data from the AHBA 
and BrainSpan Atlas, they found that these connectome hubs have a spatiotemporally 
distinctive transcriptomic pattern in contrast to non-hub regions. The methods are solid 
and well-conducted, and the findings are important which advanced our understanding of 
the underlying cellular and molecular mechanism of macroscopic functional connectome 
hubs. Here, I have several minor comments, which I hope are useful to improve the 
manuscript. 

Response: We thank the reviewer for the appreciation and the encouraging feedback to further 
improve the quality of our manuscript. We have followed the recommends and carefully revised 
the Main Manuscript and the Supplementary Information according to each point as described in 
more detail below. 
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2.1. Higher brain function requires the integration of distributed neuronal activity across 
large-scale brain networks. Recent network analyses that have demonstrated that the basal 
ganglia and thalamus belong to an ensemble of highly interconnected network hubs, which 
form part of a core circuit that supports large-scale integration of functionally diverse 
neural signals. However, the authors did not find any subcortical brain regions belonging 
to connectome hubs. Please explain. 

Response: We agree with the reviewer that both the basal ganglia and thalamus have been 
reported possessing functional connections with distributed cortical regions20, 21. We speculated 
that more complex sampling error and intercohort heterogeneity in subcortical structures caused 
their absence as a candidate hub in the present study. First, a prior report22 demonstrated reliable 
estimation of subcortical-cortical functional connections requiring more data (~100 min per 
subject) than conventional quantities of rsfMRI data (5–20 min per subject) adopted by prior 
reports20, 21. In addition, individual features contribute to ~60% of the variance in subcortical-
cortical functional connections22, which is higher than ~35% in cortical-cortical23 and ~45% in 
cerebellar-cortical24 functional connections. These two factors elevate both sampling error and 
intercohort heterogeneity of functional connections in subcortical structures, which is in line with 
our observation of higher heterogeneity among cohorts in most subcortical structures than in the 
cortex (Figure S1). In the random-effects meta-analysis framework, higher sampling error and 
intercohort heterogeneity will substantially undermine the effect size in subcortical structures, 
which may be the main reason of their absence as a candidate hub in the present study. These 
have been mentioned in the Supplementary Information, which are listed below.  
Supplementary Information, Supplementary Text Ⅱ, page 6, lines 173-185: 

Most subcortical structures have also been argued as candidate hubs, including the 
thalamus16, 17, 25, basal ganglia16, 26, amygdala17, 26, and hippocampus26. Nevertheless, no 
subcortical structure was identified as a candidate hub in the present study. The 
inconsistency may be attributed to more complex sampling error and intercohort 
heterogeneity in subcortical structures. First, a prior report27 demonstrated reliable 
estimation of subcortical-cortical functional connections requiring more data (~100 min 
per subject) than conventional quantities of rsfMRI data (5–20 min per subject) adopted 
by prior reports16, 17, 25, 26. In addition, individual features contribute to ~60% of the 
variance in subcortical-cortical functional connections27, which is higher than ~35% in 
cortical-cortical28 and ~45% in cerebellar-cortical29 functional connections. It precludes 
reliable estimation of subcortical functional connections with only dozens of subjects. 
These two factors complicate both sampling error and intercohort heterogeneity in 
subcortical structures, which is in line with our observation of higher heterogeneity 
among cohorts in most subcortical structures than in the cortex (Figure S1). 
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2.2. Most (27.5%) connectome hubs belong to the DMN network. Does this result only 
reflect the characteristics of the brain network in a resting state? 

Response: We speculated that most connectome hubs belonging to the default-mode network is 
not driven by the characteristics of the brain network in a resting state but is a reflection of 
association cortices’ vital role in supporting the organization of functional connectome.  
First, we computed the voxel percentage of the eight brain networks for all 47,619 gray matter 
voxels (Figure R1A) and for the 15,461 hub voxels (Figure R1B). Then, we found no significant 
correlation between these two sets of voxel percentage (Spearman’s ρ = 0.595, p = 0.132, Figure 
R1C). It suggests that the voxel percentage of the eight brain networks for the 15,461 hub voxels 
is not driven by the characteristics of the brain network in a resting state.  
Finally, we conducted a fold enrichment analysis by dividing the voxel percentage of the eight 
brain networks for the 15,461 hub voxels by the voxel percentage of the eight brain networks for 
all 47,619 gray matter voxels and observed that the ventral attention, dorsal attention, default-
mode, and frontoparietal networks have fold enrichment scores greater than 1 while the 
somatomotor, visual, limbic, and subcortical networks have fold enrichment scores smaller than 
1 (Figure R1D). It suggests that connectome hubs consist of more regions of association cortices 
than the chance level but less regions of primary, limbic, and subcortical cortices than the chance 
level. Thus, we speculated that most connectome hubs belonging to the default-mode network 
and other association cortices is a reflection of association cortices’ vital role in supporting the 
organization of functional connectome. 

Figure R1. Connectome hubs consist of more regions of association cortices than the chance 
level. A and B Voxel percentage of the eight brain networks for all 47,619 gray matter voxels 
(A) and for the 15,461 hub voxels (B). C Scatter plot of the two sets of voxel percentage in A 
and B. Each dot represents one brain network. D Fold enrichment analysis of hub voxels. 
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2.3. Whether the connectome hubs are consistent by using dynamic functional connections, 
and is there a difference in temporal variability between hub regions and non-hub regions
？ 

Response: We agree with the reviewer that dynamic functional connections are essential for our 
understanding and interpretation of hub regions’ vital role in supporting the connectome 
organization. Considerable differences in temporal variability of functional connections and 
modular architectures have beern observed among primary, unimodal, and heteromodal 
regions25. We speculated that there is meaningful difference in temporal variability between hub 
and non-hub regions. But the issue of dynamic functional connections of connectome hubs is 
outside of the scope of the present study to directly compare our results with the extant static 
functional connection reports3-10, 14. This issue will be an important topic in our future work. 
 

2.4. Could transcriptomic data distinguish three clusters of connectome hubs? 

Response: We have tried to train machine learning classifier based on XGBoost18 to distinguish 
three clusters of connectome hubs using the AHBA dataset26 at the beginning of our study 
(Figure R2A). But these classifiers performed no better than the chance level (Figure R2B). It 
may be attributed to two sources. First, the difference in transcriptome among these three clusters 
of connectome hubs is too subtle in bulk tissue transcriptomic data from the AHBA dataset. 
Second, no more than 200 brain samples for each cluster of connectome hubs may be inadequate 
to train a machine learning classifier. 

Figure R2. Transcriptomic data cannot distinguish three clusters of connectome hubs. A 
Schematic diagram of using the XGBoost model to distinguish three clusters of connectome 
hubs. B Performance of the XGBoost classifier. Each dot represents one repetition in A.  
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2.5. Is there a difference in cell-type density between hub regions and non-hub regions? 
Cell-class density proxy maps can be generated from bulk-tissue AHBA expression data 
using information from single-cell gene expression studies. 

Response: We thank the reviewer for this valuable suggestion. We conducted sets of cell-type 
specificity analyses but failed to obtain any consistent or reproducible observations.  
Analysis 1: We estimated each gene’s transcription level in seven types of brain cell using a 
single-nucleus transcriptome dataset provided by the Allen Institute for Brain Science (49,495 
nuclei, https://portal.brain-map.org/atlases-and-data/rnaseq/human-multiple-cortical-areas-smart-
seq). We identified cell-type specific genes according to their highest transcription levels across 
the seven types of brain cell. Both for the top 150 key genes and for all 10,027 genes, most genes 
were identified as neuron specific genes (Figure R3A top). We calculated fold enrichment for 
each type of brain cell by dividing its percent in the top 150 key genes to its percent in all 10,027 
genes. Permutation tests showed no statistically significant fold enrichment (uncorrected 
ps >0.075) (Figure R3A bottom). It suggests that there is no cell-type specificity for the top 150 
key genes. 
Analysis 2: We conducted a gene co-expression network analysis of the top 150 key genes using 
WGCNA (https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/) 
and found 2 modules (Figure R3B top). GO enrichment analysis for both modules showed no 
reproducible GO term. It may be caused by inadequate target genes (50 genes in module Ⅰ, 45 
genes in module Ⅱ). For both modules, most genes were also identified as neuron specific genes 
(Figure R3B bottom). 
Analysis 3: For both modules identified in Analysis 2, we examined the difference in 
transcription level of neuron specific genes between hub and non-hub regions. Hub regions 
showed higher transcription level in module Ⅰ but lower transcription level in module Ⅱ (Figure 
R3C). Thus, there is no consistent evidence for higher transcription level for neuron specific 
genes in hub or non-hub regions. For genes out of module Ⅰ and module Ⅱ, the spatial similarity 
of their transcription levels is too low to obtain any consistent evidence for each type of brain 
cell. 
Together, sets of cell-type specificity analyses showed no consistent or reproducible evidence for 
difference in cell-type density between hub and non-hub regions. 
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Figure R3. Cell-type specificity analyses of the top 150 key genes. A Top: Cell-type specific 
genes were identified according to their highest transcription levels across the 7 types of brain 
cell in a single-nucleus transcriptome dataset provided by the Allen Institute for Brain Science 
(49,495 nuclei, https://portal.brain-map.org/atlases-and-data/rnaseq/human-multiple-cortical-
areas-smart-seq). Bottom: Cell-type enrichment analysis for the top 150 key genes. Uncorrected 
p values were estomated by 1,000 permutation tests. B Top: Gene co-expression network 
analysis of the top 150 key genes. Bottom: Cell-type genes were identified for genes in the two 
co-expression modules. C Differences in transcription level of neuron specific genes between 
hub and non-hub regions. 
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2.6. These brain hubs have a spatiotemporally distinctive transcriptomic pattern 
dominated by genes with the highest enrichment for the neuropeptide signalling pathway. 
These results will be more reliable if supported by PET imaging, like dopamine, 
norepinephrine, serotonin, acetylcholine, glutamate, GABA, histamine, cannabinoid, and 
opioid (JuSpace, 2020). 

Response: We thank the reviewer for this valuable suggestion. We have added a neurotransmitter 
system analysis using neurotransmitter receptor and transporter maps derived from positron 
emission tomography and single photon emission computed tomography provided by the 
JuSpace toolbox27. 
Main Manuscript, Introduction, page 3, lines 73-77: 

[...] To uncover the genetic signatures underlying these connectome hubs, we conducted 
machine learning approaches to distinguish connectome hubs from non-hubs using 
transcriptomic data from the Allen Human Brain Atlas (AHBA), explored their 
developmental evolutions using the BrainSpan Atlas, and assessed their neural relevance 
by contextualizing them relative to established neuroimaging patterns. 

Main Manuscript, Results, pages 7-8, lines 240-252: 

 Neural contextualization of connectome hubs’ transcriptomic pattern.  
To assess the neural relevance of the above identified transcriptomic pattern underlying 
functional connectome hubs, we contextualized it relative to prior established 
neuroimaging maps. The identified transcriptomic pattern is dominated by genes with the 
highest enrichment for the neuropeptide signaling pathway. Considering that 
neuropeptides are a main type of indirect neurotransmitter widely distributed in the 
human central nervous system and their vital role in modulating direct excitatory and 
inhibitory transmission45, it is rational to speculate that there are significant differences 
in neurotransmitter systems between hub and non-hub regions. Using neurotransmitter 
maps derived from positron emission tomography and single photon emission computed 
tomography46, we found that hub regions have higher density of GABAa, glutamate, mu 
opiod, cannabinoid, dopamine D2, and serotonin receptor and norepinephrine 
transporter but lower density of dopamine transporter and fluorodopa than non-hub 
regions (one-sided Wilcoxon rank-sum tests, Bonferroni-corrected ps ≤ 0.015, Figure 
6A). 

Main Manuscript, Discussion, page 10, lines 344-345: 
[...] This is also supported by our observation of differences in neurotransmitter receptor 
and transporter density between hub and non-hub regions. [...] 

Main Manuscript, Methods, page 14, lines 520-524: 
The JuSpace toolbox46 provided 15 neurotransmitter receptor and transporter density 
maps in the MNI volume space. For each of the 15 density maps, we tested difference in 
density between hub and non-hub voxels through one-sided Wilcoxon rank-sum test 
(Figure 6A). For illustration purposes, we normalized the density value respect to its 
median and median absolute deviation across voxels. 

Main Manuscript, Figures, pages 32-33, lines 906-918:  



Point-by-point response to reviewers                                                        COMMSBIO-22-1399-T 

22 

Figure 6. Neural contextualization of connectome hubs’ transcriptomic pattern. A-C 
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Differences between hub (red) and non-hub (blue) regions in density of neurotransmitter 
receptor and transporter (A, hub voxels n=15,461, non-hub voxels n=32,158), fiber 
number for different fiber length bins (B, hub vertices n=25,944, non-hub vertices 
n=33,195), and metabolic rate for oxygen, aerobic glycolysis, and blood supply (C, hub 
regions n=29, non-hub regions n=60). For each violin plot, dashed gray lines depict the 
25th and 75th percentiles, solid gray line depicts median value. Significance of one-sided 
Wilcoxon rank-sum tests was determined by 1,000 permutation tests and was labeled with 
Bonferroni-corrected p value. *p<0.05, **p<0.01, ***p<0.001. a.u., arbitrary unit. D 
Regression plot of the Cohen’s d value of connectome hub versus the Cohen’s d value of 
cortical thickness atrophy across 68 cortical areas for eight disorders. Positive Cohen’s 
d value indicates thinning of cortical thickness in patients. Each dot represents one 
cortical area. Significance of Pearson’s correlation coefficients was determined by 1,000 
permutation tests and was labeled with uncorrected p value.   
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2.7. “Information flow along the primary visual, visual association, and higher-level 
sensorimotor cortices is undertaken by the four occipital hubs (Cluster II) left VMV1, right 
V4, and bilateral V3A that are all densely connected with the VIS and portions of the SMN, 
DAN, and VAN.” This sentence needs the support of references. 

Response: We have added a reference to make it clear. 
Main Manuscript, Discussion, page 9, lines 321-327: 

[...] Information flow along the primary visual, visual association, and higher-level 
sensorimotor cortices is undertaken by the four occipital hubs (Cluster II) left VMV1, 
right V4, and bilateral V3A that are all densely connected with the VIS and portions of 
the SMN, DAN, and VAN. This is supported by the report of their dense connections with 
both the visual system and SMN region the frontal eye field, DAN region the superior 
parietal cortex, and VAN region the parietal operculum and anterior insula55 and also 
aligns with the role of their homologous regions in the non-human primate cerebral 
cortex54.  
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2.8. There needs to be a discussion of the relationship between FCS maps and ENIGMA-
derived patterns of brain atrophy across neurological, psychiatric, and 
neurodevelopmental disorders and what will be useful in clinical practice and informing 
the design of future studies. 

Response: We thank the reviewer for this valuable suggestion. We have added an association 
analysis between the Cohen’s d value of connectome hub and the Cohen’s d value of cortical 
thickness atrophy in eight neuropsychiatric disorders using summarized dataset provided by the 
ENIGMA Toolbox28. 
Main Manuscript, Introduction, page 3, lines 73-77: 

[...] To uncover the genetic signatures underlying these connectome hubs, we conducted 
machine learning approaches to distinguish connectome hubs from non-hubs using 
transcriptomic data from the Allen Human Brain Atlas (AHBA), explored their 
developmental evolutions using the BrainSpan Atlas, and assessed their neural relevance 
by contextualizing them relative to established neuroimaging patterns. 

Main Manuscript, Results, page 8, lines 270-284: 
In addition, we also noted that the above 150 key genes are enriched for several 
psychiatric disorders (FE = 3.5, uncorrected p = 5.5×10-4, Table S5). This finding is in 
accordance with prior observations of hub regions being preferentially targeted by 
neuropsychiatric disorders5-8. This implies that connectome hubs may have different 
susceptibility to neuropsychiatric disorders in contrast to non-hubs. We validated it by 
performing an association analysis between the effect size of connectome hub and the 
effect size of cortical thickness atrophy in neuropsychiatric disorders50. We observed that 
the Cohen’s d of connectome hub is negatively correlated with the Cohen’s d of  cortical 
thickness atrophy in 22q deletion syndrome (Pearson’s r = -0.292, uncorrected p = 
0.009) and autism spectrum disorder (Pearson’s r = -0.333, uncorrected p = 0.019) but 
positively correlated with the Cohen’s d of  cortical thickness atrophy in bipolar disorder 
(Pearson’s r = 0.418, uncorrected p = 0.003) and schizophrenia (Pearson’s r = 0.247, 
uncorrected p = 0.040) (Figure 6D). This suggests that connectome hubs have a trend of 
higher susceptibility to cortical thickness atrophy in bipolar disorder and schizophrenia 
but lower susceptibility to cortical thickness atrophy in 22q deletion syndrome and 
autism spectrum disorder than non-hubs. 

Main Manuscript, Discussion, page 11, lines 379-382: 

[...] This is in line with our observation ofthe result of several psychiatric disorders being 
the most significant disease associated with the top 150 key genes and our observation of 
differences in susceptibility to cortical thickness atrophy in neuropsychiatric disorders 
between hub and non-hub regions. [...] 

Main Manuscript, Methods, page 15, lines 541-550: 
The Cohen’s d value of cortical thickness atrophy in neuropsychiatric disorders was 
assigned to 68 cortical areas in a standard brain surface space50. We first resampled the 
unthresholded Cohen’s d map of connectome hub in Figure 2B from the MNI volume 
space to the standard brain surface space provided by the dataset50 and computed the 
Cohen’s d value for each of the 68 cortical areas by averaging Cohen’s d value across 
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vertices within each cortical area. Then, we computed Pearson’s correlation coefficient 
between the Cohen’s d value of connectome hub and the Cohen’s d value of cortical 
thickness atrophy across 68 cortical areas for each of the eight disorders (Figure 6D). To 
reduce the potential effects of development on our results, we used cortical thickness 
atrophy data from adults for the attention deficit hyperactivity disorder, bipolar disorder, 
major depressive disorder, and obsessive-compulsive disorder. 

Main Manuscript, Methods, page 15, lines 564-570: 
[...] To determine the statistical significance of Pearson’s correlation coefficients in 
Figure 6D, we constructed 1,000 surrogate maps of the unthresholded Cohen’s d map in 
Figure 2B with the spatial autocorrelations being corrected using a generative model75 
and repeated calculating Pearson’s correlation coefficients using these surrogate 
Cohen’s d maps to construct a null distribution. Then, p values of these Pearson’s 
correlation coefficients were determined by comparing the observed values with their 
corresponding null distributions. 

Main Manuscript, Figures, pages 32-33, lines 906-918:  
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Figure 6. Neural contextualization of connectome hubs’ transcriptomic pattern. A-C 
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Differences between hub (red) and non-hub (blue) regions in density of neurotransmitter 
receptor and transporter (A, hub voxels n=15,461, non-hub voxels n=32,158), fiber 
number for different fiber length bins (B, hub vertices n=25,944, non-hub vertices 
n=33,195), and metabolic rate for oxygen, aerobic glycolysis, and blood supply (C, hub 
regions n=29, non-hub regions n=60). For each violin plot, dashed gray lines depict the 
25th and 75th percentiles, solid gray line depicts median value. Significance of one-sided 
Wilcoxon rank-sum tests was determined by 1,000 permutation tests and was labeled with 
Bonferroni-corrected p value. *p<0.05, **p<0.01, ***p<0.001. a.u., arbitrary unit. D 
Regression plot of the Cohen’s d value of connectome hub versus the Cohen’s d value of 
cortical thickness atrophy across 68 cortical areas for eight disorders. Positive Cohen’s 
d value indicates thinning of cortical thickness in patients. Each dot represents one 
cortical area. Significance of Pearson’s correlation coefficients was determined by 1,000 
permutation tests and was labeled with uncorrected p value. 
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REVIEWERS' COMMENTS: 

 

Reviewer #1 (Remarks to the Author): 

 

The authors have addressed the issues I raised with care and consideration. I congratulate them on 

their efforts and look forward to seeing this formally published! 

 

 

Reviewer #2 (Remarks to the Author): 

 

The authors have addressed all my concerns. Congratulations! 


