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Figure S1. Datasets. (A) Distribution of meta-parameters corresponding to initial position (x0,y0) and initial velocity 

(dx0, dy0) for the task RNN training set. The diagonal panels correspond to histograms of each meta-parameter. 
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The off-diagonal panels correspond to 2D histograms showing the joint distribution for each pair of meta-

parameters. 
(B) Each panel shows the joint distribution of each meta-parameter with the target output (final ball position, yf, see 

top panels) and the time to interception (tf, see bottom panels).  

(C) (left) Distribution of the same meta-parameters for the test set of 200 unique conditions used to characterize 

human, monkey, and RNN behavior, with formatting similar to (A). The meta-parameter distributions are separated 

by color by further randomly split into two sets with regards to monkey behavior: a small set of 50 conditions used 

to first train monkeys (here termed S0), and a held-out generalization set of 150 conditions for testing first-trial 

generalization (here termed S1).  (right) To examine how “overlapping” the two sets S0 and S1 are, we measured 

the minimum pairwise distance between conditions within and across these two sets, and compared the magnitude 
of these distances. This is akin to asking: how similar is a new sample to the closest training sample? If the 

generalization set required a “strong extrapolation,” this would result in minimum pairwise distances across tests 

that are much larger than the pairwise distances within sets. In contrast, if the generalization set only required trivial 

“memorization” strategies, this would result in minimum pairwise distances across tests that are much smaller than 

the pairwise distances within sets. Importantly, it is not clear how to estimate such distances, i.e. with respect to 

what representations (e.g. the time-course of pixel inputs, the time-course of latent variables, the initial.state, etc.). 

Here, we picked one such representation, the 4D vector of ball meta-parameters (x0,y0,dx0, dy0) for each condition, 
and standardized each meta-parameter to ensure that all four contributed equally; Euclidean distances on this 

standardized representation correspond to Mahalanobis distances over the raw 4D representation. With respect to 

this choice, the histograms show that the pairwise distances within the training set are not statistically different to 

the pairwise distances across training and test sets (blue vs red, p=0.54, two-tailed two-sample t-test). This result 

suggests that, at least with respect to this characterization, the held-out conditions were approximately as different 

to the previously trained conditions, as those training conditions were to each other. 
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Figure S2. Behavioral performance. (A) Bias (absolute error, after averaging across trials of the same condition) 
and variance (variability across trials of the same condition) for individual humans (top) and monkeys (bottom), 

shown separately for visible (circle) and occluded (square) trials. The dotted circles correspond to lines of equal 

root-mean-squared error (RMSE). As expected, errors are lower on visible trials.  
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(B) The two left columns show the distribution of movement onset times relative to the beginning of the trial (left) 

and to the beginning of the occluded epoch (right) for humans (top) and monkeys (bottom). The two right panels 
show the distribution of unit displacement during the visible (left) and occluded (right) epochs. Unit displacement 

was estimated from the instantaneous paddle position by first averaging across trials of the same conditions, and 

then measuring the mean absolute change in position.  

(C) Dependence of error patterns for trials with no bounce, trials with a visible bounce, and trials with occluded 

bounce for humans (top) and monkeys (bottom). Given the relatively small number of conditions with visible and 

occluded bounces (25 and 28, respectively), it is difficult to estimate the specific effect of bounces. However, we 

observe that bounces result in larger errors, and conditions with occluded bounces have a larger range of errors. 

(D) Error patterns could not be explained by an alternative visual tracking strategy, wherein the final paddle position 
is estimated based on the last visible position of the ball (yf_visible). To demonstrate this, we compared the distance 

between the average final paddle position to each of the candidate final positions, as predicted by visual tracking 

(dvisual) and mental tracking (dmental) strategies. We observe that the corresponding bias (dvisual - dmental) is significantly 

greater than zero (see red annotation, two-tailed t-test) and moreover is not dependent on the final ball position (as 

might be expected if this bias is somehow driven by boundary conditions, see gray title annotation), demonstrating 

that behavioral error patterns are inconsistent with a simpler visual tracking strategy.  
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Figure S3. Behavioral performance. (right) Each panel shows absolute average endpoint error against task 

parameters varying per condition. The strength of each dependence, measured via a Pearson correlation, is shown 
on the corresponding panel titles; significant dependences are highlighted in red. (left) The raw Pearson correlation 

and the partial Pearson correlation, after conditioning on the final ball position, are shown for each task parameter 

on the bar plot.  If errors were a result of a simple motor cost, we would predict that trials that require large 

movements (where the final ball position is far from the initial paddle position) would have larger errors on conditions; 

this is in fact not true (see “required paddle displacement” panel). If errors were a result of movement preparation, 

we would predict that trials with longer visible epochs (and thus longer preparatory time) would have smaller errors 

on average; this is in fact not true (see “visible epoch duration” panel). If errors were a result of visuo-spatial biases, 

we would predict that errors would depend on the initial, intermediate, or final vertical position of the ball; this is in 
fact not true (see “initial ball y”, “occlusion start ball y” and “final ball y” panels). Instead, error patterns depended 

largely on dynamic variables relating to the ball speed (see “initial ball dx”, “initial ball speed”, and “occluded epoch 

duration” panels); we additionally observe a non-monotonic relationship with vertical ball velocity (see “initial ball 

dy” panel). Given the correlation between initial x position and ball speed built into this dataset (see Figure S1), 

errors were additionally correlated to the initial x position (x0).  These dependencies are consistent with a noisy 

simulation model wherein errors in dynamic inference accumulated on a moment-by-moment basis during the 

occluded epoch. Notably, if errors were a result of such error accumulation, we would predict that trials where the 
vertical ball displacement during the occluded epoch is larger would have larger errors on average; we found this 

to be true (see “vertical ball displacement during the occluded epoch” panel). 
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Figure S4. Behavioral error patterns. (A) Comparison of error across spit-halves of data for the 12 human 

participants (left) and the 2 monkeys (center). (right) Sample size effect. We ran simulations to characterize the 
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correlations between split halves as a function of sample size. We generated 200-dimensional vectors (to match 

the error vector dimensions) with pairwise correlations of approximately r0. We then measured our similarity 
measure for disjoint split halves, averaged the values, and measured the correlation between these two vectors to 

estimate the effect of sample size. The dashed curves show the average similarity estimates for different r0. This 

analysis is consistent with a correlation of ~0.75 for both monkeys and humans. 

(B) Error patterns could not be explained by a simple function of initial position and velocity. We used cross-validated 

linear regression to predict the error pattern from the initial ball position and ball velocity (top), and the resulting 

prediction was not better than expected by chance (R2 < 0.05 for all, p>0.05 for all except initial position).  

(C) To characterize primate behavior, we constructed process models that explicitly “simulated” the moment-by-

moment ball position during the occluded epoch in the presence of noise, and fit the model parameters to human 
and monkey behavior. We found that the optimal parameters corresponded to noisy simulations with a moderate 

bias towards the last visible ball position (see red diamonds, top left panels). To contextualize this optimized model, 

we simulated specific control models that incorporated some of the key characteristics (e.g. “No bias, no simulation”, 

“No bias, with noisy simulation”, etc.; see gray circles, top left panels). As expected (by definition), the optimized 

model fits the primate data better than all of these controls (see bottom left panels). This analysis reveals that both 

noisy simulation and a bias towards the last visible ball position are necessary to capture primate behavior. The 

panels on the right show six example conditions, directly comparing the noisy process models with human behavior. 
Each panel shows the M-Pong frame, with the occluder delineated in gray, and the ground truth ball position during 

the occluded epoch shown with a dashed black line. Each green trace shows a single simulation run through the 

process model. The green arrow shows the model’s output, obtained by averaging the endpoint locations of all 

simulation runs. The red arrow shows the average human endpoint paddle position. 
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Figure S5. RNN hyper-parameters. (A) Different RNN models varied with respect to several hyper-parameters: 

different cell types (rnn_type: LSTM or GRU), number of cells (n_hidden: 10 or 20), input representation types 
(input: pixel_pca or gabor_pca), and regularization types (reg: L1_0.01, L1_0.1, L2_0.01, L2_0.1, or none); and 

were differently optimized (loss_weight_type: no_sim, vis_sim, all_sim, or all_sim2). The sixteen panels show the 

effect of each of the hyperparameter choices on task performance, simulation index,  and primate consistency (with 

respect to both human and monkey behavior). The precise number of models per distribution varies for each of the 

sixteen panels, which group n=232 models in total along different dimensions.  Each distribution is shown via a 

colored violin-plot (obtained by a kernel density estimate) as well as a gray boxplot. The range, maxima, and minima 

of the data are shown by the boxplot whiskers. The 25th, 50th, and 75th percentiles of the distribution are shown by 

the boxplot box. (B) Dependence of performance on bounces, separated by visible and occluded bounces (i.e. 
bounces that occurred during the visible and occluded epochs, respectively). Each panel shows this dependence 

for all tested RNN models of each of the four optimization types, with colors as in Fig 3C; thin lines correspond to 

individual RNN models, and dark lines correspond to the mean over all RNNs of a given optimization type. (C) In 

Figure S3C, we found that conditions where the vertical ball displacement during the occluded epoch is larger 

tended to yield larger errors for both humans and monkeys, consistent with a biased noisy simulation. Here, we 

tested whether this was true for RNNs, and estimated the correlation between their error (MAE) and the vertical ball 

displacement during the occluded epoch (Dy,occ) for each tested RNN model. The scatter shows that this estimated 
correlation is highly predictive of the consistency scores of RNNs, with respect to both human (left) and monkey 

(right) behavior. In other words, the similarity in error patterns between RNNs and primates is largely explained by 

this common feature. 
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Figure S6 RNN controls. (A) Effect of RNN optimization. For the RNN model architecture with the highest human-

consistency score, we evaluated key RNN metrics (e.g. performance, simulation index, consistency to humans and 

to monkeys) while varying both the number of training epochs and the training data (number of training samples 

and distribution of training data). We found that these metrics were largely insensitive to such variations in RNN 

optimization, suggesting that the extent of RNN training was sufficient to converge upon “stable” network solutions, 

and that our key results and inferences are largely robust of the details of this optimization procedure. Each point 

corresponds to the metric of a single (n=1) model estimated over n=200 Mental-Pong conditions. Error bars 
correspond to mean ± SE, estimated via bootstrapping over conditions. 

(B) Effect of RNN size. Starting with the RNN model architecture with the highest human-consistency score, we 

varied its architecture by testing networks with 100 units and 200 units of both LSTM and GRU types. These 

networks exhibited qualitatively similar results, whereby networks optimized for dynamic inference ability were most 

primate-like in their behaviors (left panel), and human consistency scores were correlated to dynamic inference 
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ability (right panel). The left panel shows the distribution of human consistency scores for each network optimization 

type; the range, maxima, and minima of the data are shown by the boxplot whiskers, and the 25th, 50th, and 75th 
percentiles of the distribution are shown by the box. 

(C) The left panel shows the causal graph of our RNN experiments. We experimentally controlled five different RNN 

hyper-parameters (top row, blue), and from the resulting RNN model instances, we measured several attributes 

(bottom row, red), including the simulation index and the human consistency. To uncover which RNN hyper-

parameters cause the strong negative correlation (r) between simulation index and human consistency, we 

measured the conditional correlation E[r|g], conditioning on each of the 30 possible combinations (g) of the five 

hyper-parameter types. The right panel shows the resulting conditional correlations for each of the 30 combinations. 

Darker values correspond to smaller magnitude correlations. The observed correlation between the simulation index 
and human consistency is largely driven by the hyper-parameter defining the optimization target 

(loss_weight_type).  
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Figure S7 RNN dynamics. (A) As a control, we optimized a new set of RNN models on task performance with 

additional regularization to promote simple dynamics, by adding regularization terms related to the L2-norms of the 

hidden state activity and the derivative of the hidden state activity (see Methods). To verify that this regularization 

had the intended effect on RNN representations, the four panels show the distribution of human-consistency against 
four representational metrics (dimensionality, speed, curvature, and norm) for all trained RNN models, grouped by 

their optimization type. Statistical comparisons between relevant distributions are shown above each scatter 

(unpaired t-test). The top comparison corresponds to ‘no_sim’ vs ‘simple_dynamics’ (blue vs purple), and the bottom 

comparison corresponds to ‘all_sim2’ vs ‘simple_dynamics’ (red vs purple). We observe that for all metrics that 

differed across RNN types, the ‘simple_dynamics’ RNNs (purple) did indeed diverge from the baseline ‘no_sim’ 

(blue) models as intended.  

(B) Comparison of average velocity coding during visible and occluded epochs, for all RNN models. The left panel 

shows velocity coding estimated via position-conditioned linear decoders, whereas the right panel shows the 
corresponding estimates with a single position-independent linear decoder.  
(C) Average velocity coding during visible epoch is not correlated to either performance or simulation index, in 

contrast to the corresponding metric during the occluded epoch (see Figure 5E).  

(D) We estimated a measure of “feedback control” to characterize the alignment between the read-out weights and 

the recurrent weights. While RNNs do not receive explicit instantaneous visual feedback, this metric aims to capture 

the extent to which the output of the network is fed back into its activity. The scatter plot shows the comparison of 
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this metric against the null, for each RNN model; marker color corresponds to model performance. We observed 

that the median amount of feedback control was significantly greater than expected by chance.   
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Figure S8. Eye data. (A) Example single-trial eye traces for six different trials of six different occluded M-Pong 

conditions. Note that we focus on monkey data for eye movement analysis where we had higher-fidelity eye tracking 

measurements (due to head-fixation and repeatedly calibrated). The left and right panels correspond to horizontal 

and vertical position, respectively. Each panel shows the time-course starting from the beginning of the trial; the 

vertical dashed lines correspond to the start and end of the occluded epoch. The eye trace is shown in blue, while 

the ball and paddle are shown in red and green respectively. We qualitatively observe sporadic saccadic eye 

movements that place the center of gaze on either the ball or the paddle, or occasionally on neither. We note that 

tracking the occluded ball via smooth pursuit eye movements is virtually impossible (as pursuit movements can only 
be made to visible targets, except in very rare experimental conditions). 

(B) Each histogram shows the frequency of eye-to-ball and eye-to-paddle distances during the visible and occluded 

epochs. During the visible epoch, monkeys typically either fixated on the center or tracked the visible ball (left panel, 

red) and sparingly tracked the paddle. During the occluded epoch, they typically either fixated on the center or 

tracked the moving paddle (left panel, green) and rarely made eye movements to the location of the invisible ball. 
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(C) We repeated the primary analyses of Figure 3 (F,G,H) using eye data. We extracted the eye position at specific 

time-points during the occluded epoch (final, last-occluded, and mid-occlusion). For each of these timepoints, we 
defined an error metric computed as the difference between the vertical eye position and the vertical ball position. 

We then compared the pattern of errors derived from this new error metric to the pattern of (endpoint paddle) errors 

of all tested RNN, resulting in new consistency scores. Each row shows the results for one such metric, with these 

new RNN consistency scores plotted against (left) RNN simulation ability and (middle) RNN task performance. The 

right plot shows the proportion of variance in consistency scores explained by RNN simulation ability and RNN task 

performance. Over all metrics, we observe results which are largely consistent with the corresponding results using 

paddle position (Figure 3F-H).  
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Figure S9. Alternative behavioral metrics. We repeated the primary analyses of Figure 3 (F, G,H) using 

alternative behavioral metrics. Formatting is identical to Figure S8C but includes both human and monkey data for 

measuring consistency scores. 

(A) We defined an error vector that measures the paddle error as the difference between the endpoint paddle 
position on trials with a fully opaque occluder and the endpoint paddle position on trials with a translucent occluder 

(“visible” trials), rather than the ground truth endpoint ball position. The four panels, formatted as in Figure S8C, 

show the replication of the primary analyses using this newly defined behavioral error vector; we observe results 

consistent with Figure 3F-H. 

(B) We defined an error vector that measures the paddle error as the difference between the time course of paddle 

position and ball position during the entire occluded epoch, rather than just the endpoint positions. The four panels, 

formatted as in Figure S8C, show the replication of the primary analyses using this newly defined behavioral error 

vector; we observe results consistent with Figure 3F-H. 
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