nature portfolio

Peer Review File

Open Access This file is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to

the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. In the cases where the authors are anonymous, such as is the case for the reports of anonymous peer reviewers, author attribution should be to 'Anonymous Referee' followed by a clear attribution to the source work. The images or other third party material in this file are included in the article's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit <u>http://creativecommons.org/licenses/by/4.0/</u>.

1 REVIEWER COMMENTS

23 Reviewer #1 (Remarks to the Author):

4 In this manuscript Eiger et al. describe the relevance of signaling via CXCR3 from 5 intracellular compartments following binding by the three chemokines CXCL9, 6 CXCL10 and CXCL11, which display differential biased agonism. The mechanisms 7 and outcome of biased agonistic signaling of CXCR3 are analyzed in vitro in a model 8 9 of HEK-293 cells. The translational relevance of the results obtained in vitro is further explored in vivo in a model of mouse contact hypersensitivity (CHS) and ex vivo in 10 human CD8 T cells. Experiments in vitro are elegant and support the conclusions of 11 12 the manuscript. However, the correlations between the results obtained in vitro with those obtained in human CD8 T cells and in the model of mouse CHS are poorly 13 14 presented. 15 16 Major concerns 17 Figure 6a should further confirm at the protein level, that the differences in the transcripts correlate with the differential activation of MAPK / cAMP / ERK signaling 18 19 pathways. 20 21 Figure 6g needs to include a control group of mice treated with DNFB alone to be 22 compared with the group treated with DNFB plus VUF1066. 23 24 It is not clear what are the values compared in the statistical analysis of Fig. 6g. The 25 figure should specify the statistic comparisons between measurements of ear thickness evaluated at 48, and 120 hours after CHS elicitation and indicate when there 26 27 are not significant differences between treatments. 28 29 The authors should explain why in the CHS of mice receiving treatment with VUF10661 in the absence of Dyngo 4a the maximum increase in ear thickness is 30 31 observed 5 days following elicitation. In wild-type mice, administration of 0.5% DNFB 'per se' should have induced a potent CHS between 24 and 48h following elicitation. 32 33 Topical skin application of Dyngo 4a in wild-type mouse is not a receptor- or cell-34 specific treatment. Besides of blocking internalization of CXCR3, the treatment has 35 36 the potential to inhibit endocytosis of other receptors relevant for type-1 biased 37 immunity and affect endocytosis in cells necessary for sensitization and elicitation of the CHS response (i.e.: dendritic cells and macrophages). Because in figure 1 the 38 39 authors show that β -defensin 2 plays a relevant role in the internalization of CXCR3 in HEK293 cells, to claim that the reduced CHS in mouse depends on the inhibition of 40 CXCR3 internalization in CD8 T cells, one possibility would be to perform the CHS 41 experiment in CD8 β-defensin 2 conditional KO mice. 42

- 43
- 44 Minor concerns:
- 45 **Pg 7, line 109 add c after Fig 2.**
- 46

Figure 1b: To better show differences in HEK293 cells treated with CXCL10, the "y" axis can be presented in two segments increasing the length of the lower segment ending in 50.

- 50 51 52
- 52
- 53
- 54

55 **Reviewer #2 (Remarks to the Author):**

- 56
- 57 GPCR signaling is central to numerous physiological and pathological processes and
- 58 the target of
- 59 many drug therapies. Therefore, there is enormous interest in understanding the
- 60 details of how
- 61 different ligands give rise to different cellular outcomes by signaling via the same
- 62 receptor. This
- 63 manuscript attempts to marry together two aspects of research in this area. First, it
- 64 has become
- 65 clear that different ligand can induce different signals upon binding to the same
- 66 receptors, a
- 67 phenomenon known as biased agonism. Second, it has become clear that GPCRs can 68 signal not only
- 69 from the plasma membrane but also from various cellular organelles, including
- 70 endosomes. This
- manuscript now makes the case that the biased agonism exhibited by ligands of the
 chemokine
- receptor CXCR3 is not the same when this receptor signals from endosomes as when
 the receptor
- rs signals from plasma membrane. As usual, the devil is in the details, so I include below
- 76 my notes on
- 77 each section.
- 78 Section: Biased G protein activation depends on receptor location
- The result that "CXCL10 and CXCL11 had nearly identical G protein activation at the
- endosome but different amounts at the plasma membrane" is valid and clear from Fig
 2c.d.
- The statement that G protein activation decreased for both ligands is dependent on how
- 84 **100%** is defined in these figures (which is not explained).
- Furthermore, the comparison between the responses to the two ligands needs to be
- normalised not only to the G protein concentration in each location (as done in Fig
 2i,j) but
- also to the concentration of receptor in each location, which has not been done here.
 It
- seems that the concentration of CXCR3 in the endosomal membrane is likely to be
 higher for
- 92 CXCL11 than CXCL10. Therefore, normalisation may actually amplify the apparent 93 bias!
- 94 Section: CXCR3-mediated cAMP inhibition is differentially dependent on receptor
 95 internalization
- 96 "Expression of Dynamin 146 K44A reduced inhibition of cAMP production following
- 97 stimulation with CXCL10 and CXCL11, but not CXCL9, reflecting a biased decrease in
- 98 Gαicoupled activity". This is not terribly convincing because it is based on a single
- 99 concentration
- 100 at which CXCL9 gives a measurable signal (Fig 3b,c)
- "CXCL10 and CXCL11 both demonstrated a ~40% decrease in cAMP inhibition when
 receptor
- internalization was inhibited, even though the chemokines were able to promote
 different
- amounts of total receptor internalization (Fig. 3d-3i)". This conclusion is based on
 there
- 107 being a real difference between the maximal signals from CXCL10 and CXCL11 (Fig
- 108 **3b). The**
- 109 difference is actually quite small and may not be statistically significant.

- Overall these concerns mean that the conclusion ("receptor internalization is critical
- 111 to the
- biased regulation of second messengers across subcellular compartments") is not
- 113 strongly
- 114 supported by the data.
- 115 Section: Biased ligands of CXCR3 promote differential patterns of β -arrestin 2
- 116 recruitment and
- 117 conformation at the plasma membrane and the endosome
- The key conclusion of this section is that CXCL10 and CXCL11 induce different
- 119 conformations
- 120 of β -arrestin 2 on endosomes compared to at the plasma membrane.
- The evidence for this is that endosome-localised versus membrane-localised biosensors give
- decreasing and increasing signals, respectively (in response to both CXCL10 and CXCL11; Fig
- 125 4f,g,i,j). However, because the endosome-localised and membrane-localised
- 126 biosensors are
- 127 different, it is unclear to the reader whether they would be expected to give the same
- signals in response to the same conformational changes. Does it not depend on the
- 129 position
- and orientation of the reconstituted (LgBit-SmBit) nanoluciferase relative to the
- 131 tetracysteine motif? Control experiments and careful explanation are required so that
- 132 **the**
- 133 reader can understand the relationship between the signals observed and the
- 134 conformational changes deduced.
- If it turns out that there is good reason to believe that the different sensors should
 report on
- conformational changes in the same way, I think the authors need to explain how this
 could
- happen. After all, we are still talking about the same receptor bound to the sameligands.
- The bias plots obviously are derived from the previous data so are affected by the
- 142 **same**
- 143 **issues**.
- 144 Section: CXCR3 signaling from endosomes differentially contributes to cytoplasmic
- 145 and nuclear ERK
- 146 activation
- The conclusion that "CXCR3 internalization is necessary for activation of nuclear
- 148 ERK, while
- 149 CXCR3 internalization contributes to, but is not required for, cytoplasmic ERK
- 150 activation" is
- 151 well-supported by the data.
- This is not particularly surprising and seems to be addressing a different question
- 153 **from**
- 154 biased agonism.
- 155 Sections on transcriptional regulation
- The data show that transcription (of certain reporters) stimulated by CXCL11 is
- 157 **~50%**
- decreased when receptor internalisation is blocked, whereas transcription stimulated
 by
- 160 CXCL9/10 is not significantly decreased. The conclusion that CXCL10 and CXCL11 161 stimulate
- 162 transcriptional activation by different mechanisms is supported by the data.
- Similarly, RNAseq data show that the different chemokines stimulate transcription of

- 164 different sets of genes.
- However, it is unclear whether the different mechanisms leading to these
- 166 transcriptional
- 167 differences are the same as the biased agonism observed/proposed above or
- 168 something
- else, e.g., more classical full versus partial agonism (different signalling efficacies for
 a
- 171 particular pathway).
- 172 Section: CXCR3 internalization contributes to potentiation of inflammation in a murine
- 173 model of
- 174 contact hypersensitivity
- Blocking receptor internalisation reduces inflammation in a CXCR3-dependent
- 176 inflammation
- 177 **model.**
- This indicates that receptor internalisation is required for maximal inflammatory
- 179 effect, but
- does not necessary support the conclusion that "sustained CXCR3 signaling from
- 181 endosomes
- 182 is required for maximal potentiation of the inflammatory response"
- 183 Overall, this manuscript extends observations on CXCR3 differential activation that
- 184 the authors have
- reported in previous papers. There is no doubt that different endogenous (chemokine)
- 186 ligands give
- rise to differences in the strength (efficacy) of signaling (for several readouts),
- 188 receptor
- 189 internalization, and downstream transcription. The observation that bias appears to
- 190 be different for
- 191 signalling from endosomes versus the plasma membrane is definitely interesting.
- 192 However, since
- bias itself is a difference between differences (different ligands and different signaling
 readouts), we
- are now looking at a difference between differences between differences (this is not a
- 196 **typo)!**
- 197 Unfortunately, the experimental errors compound, a problem that dogs the field.
- Finally, throughout this manuscript, the authors seem to assume that any change in signaling upon
- 200 blocking internalisation can be taken as an indication that the signaling was
- 201 previously occurring
- from endosomes. Is this the intended assumption? Are there not other possibilities? I
- 203 think this
- 204 needs to be discussed directly.
- 205 Minor Comments
- 1. Fig 1. The rescue experiment (Fig 1b) is not explained in the legend please clarify.
 Also,
- 208 please add times and concentrations.
- 209 2. In several figures, the times used (for concentration-response curves) and the
- 210 concentrations used (for time courses) are not give. Please add this information.
- 3. The transcriptional assays (including RNAseq) are done 2 hours after stimulation,
- 212 whereas
- the signaling assays are on a time scale of minutes. It is very challenging to make a
 direct
- connection between the short time scale biased agonism and the longer time scale
- 216 transcription.
- 217

- 220 In this manuscript the authors have assessed the effects of three different 221 endogenous CXCR3 ligands on regulating biased signaling from different subcellular 222 locations. Most biased signaling studies have used synthetic agonists and thus the 223 physiological relevance of those studies are not clear. The authors have cleverly 224 225 chosen the endogenous agonists of CXCR3 receptor to investigate biased signaling. 226 The experiments are nicely conducted, however, some of their data interpretations are over-stated and a few controls are missing. Here are the main issues that should be 227 228 addressed: 229 1. The authors conclude that the amount of Gi activation by CXCL11 was decreased on endosomes compared to the plasma membrane (Figure 2d). They reach this 230 conclusion by normalizing measured Gi activity to the total Gi present on endosomes. 231 232 Since most of these activity measurements are based on normalized BRET, it is important to show compartment-targeted BRET pairs are expressed at equal levels. 233 This is important as misleading conclusions could be drawn if the expression levels 234 of KB-1753-NLuc on the endosomes were to be lower compared to the plasma 235 236 membrane-localized KB-1753-NLuc. Controls showing similar expression levels of 237 these constructs are necessary to accurately interpret these data. 238 2. The authors further conclude that CXCL11 is beta-arrestin biased on the 239 endosomes. In bias plot data shown in Figure 4I, the authors claim that while G 240 protein activation by CXCL11 is decreased on the endosomes, CXCL11 is a better
- biased agonist for β -arrestin. However, they have clearly shown in Figure 4C that 241 242 CXCL11 recruits more beta-arrestin to the endosomes. So why not using the same logic they have used to assess G protein activation for beta-arrestin activation (i.e. 243 normalizing the ERK data in Figure 5 to total beta-arrestin levels on endosomes)? If 244 ERK activity is considered a readout for beta-arrestin activation, using that logic, then 245 CXCL10 is a much better beta-arrestin biased ligand compared to CXCL11, because it 246 247 can barely recruit beta-arrestin to the endosomes but induces similar ERK activity. 248 3. No experimental evidence has been provided to further support the observed
- decreased in FIAsH BRET signal at the endosome. In the discussion, the authors 249 suggest that distinct GPCR/beta-arrestin interactions at each compartment (tail 250 251 versus core) as an explanation. Can these differences be explained by different FIAsH sensors that have BRETs on different domains of beta-arrestin? A model with the
- 252 current FIAsH data should be included to better demonstrate the negative BRET data. 253

254

218

219 **Reviewer #3 (Remarks to the Author):**

Associate Editor,

We thank you and the reviewers for your thoughtful feedback on our manuscript titled *Location bias contributes to functionally selective responses of biased CXCR3 agonists* (NCOMMS-22-03532-T). Below you will find a list of changes made to our manuscript to address the points raised by the reviewers and the location of these changes in our manuscript. We believe these changes greatly strengthen the quality of our manuscript.

Reviewer #1		
Comment	Response	Location in
		Manuscript
Figure 6a should further confirm	We observed in HEK293 cells that biased subcellular MAPK	N/A
at the protein level, that the	activation and transcriptional activation is dependent on	
differences in the transcripts	differential receptor endocytosis. These data were the	
correlate with the differential	motivation for performing the RNAseq experiments in donor	
EDK sizesling nothways	numan primary CD8+ 1-cells. We observed that CXCL11	
ERK signaling pathways.	trepage 1-cells demonstrated the largest degree of	
	cells. Together, we used these data to state that the findings	
	regarding biased endocytosis observed in HEK293 cells may	
	extend into primary CD8+ T-cells. We do not make claims that	
	these biased transcriptional profiles align with changes at the	
	protein level.	
Figure 6g needs to include a	Figure 6g is normalized to the control groups requested by	Extended Data
control group of mice treated	reviewer 1. In our figure legend, we write "6g. Ear thickness	Figure 6
with DNFB alone to be	following DNFB elicitation and application of VUF10661 (50nM)	-
compared with the group	with or without Dyngo 4a (50nM). Data are presented as the	
treated with DNFB plus	VUF10661-induced increase in ear thickness over control	
VUF1066.	(DMSO or Dyngo 4a alone – see Extended Fig. 5 for changes	
	in ear thickness associated with control treatments)."	
	Creatifically, the data are presented as follows:	
	Specifically, the data are presented as follows:	
	 (DNFB+Dyng0+V0F10001)/(DNFB+Dyng0+DNISO) (DNFB+JVIJE10661)/(DNFB+DMSO) 	
	We have included the raw data for each treatment group in the	
	Extended Data Figure 6.	
It is not clear what are the	We have modified Figure 6g to demonstrate statistical	Line 571 in Figure
values compared in the	significance at each measured point and updated the figure	6g
statistical analysis of Fig. 6g.	legend as follows:	
The figure should specify the		
statistic comparisons between	*P < .05 using a two-way ANOVA analysis with Sidak multiple	
measurements of ear thickness	comparisons testing performed at timepoints following last drug	
evaluated at 48, and 120 hours	treatment.	
after CHS elicitation and		
indicate when there are not		
treatments		
The authors should explain why	All treatment groups demonstrated a robust CHS response 72-	Line 329 in section
in the CHS of mice receiving	120 hours following DNFB elicitation as best seen in the newly	titled "CXCR3
treatment with VUF10661 in the	added Extended Data Figure #6. We have added the following	internalization
absence of Dyngo 4a the	sentence to our manuscript	contributes to
maximum increase in ear		potentiation of
thickness is observed 5 days	The maximal ear thickness observed amongst all treatment	inflammation in a
following elicitation. In wild-type	groups was observed 72-120 hours following DNFB elicitation,	murine model of
mice, administration of 0.5%	consistent with previous reports (Extended Data Fig. 6b) ²⁷ .	contact
UNFB per se' should have		nypersensitivity"
Induced a potent CHS between		
Tonical skin application of	We agree that the effects of Dyngo 4a likely extend to other	Line 318 in section
Dyngo 4a in wild-type mouse is	receptors beyond CXCR3 that undergo dynamin-dependent	titled "CXCR3
not a receptor- or cell-specific	endocytosis. We account for this effect by normalizing our CHS	internalization

treatment. Besides of blocking internalization of CXCR3, the treatment has the potential to inhibit endocytosis of other receptors relevant for type-1 biased immunity and affect endocytosis in cells necessary for sensitization and elicitation of the CHS response (i.e.: dendritic cells and macrophages). Because in figure 1 the authors show that β -defensin 2 plays a relevant role in the internalization of CXCR3 in HEK293 cells, to claim that the reduced CHS in mouse depends on the	mouse data as detailed above. While Dyngo 4a alone did also lead to an increase in ear thickness, we normalize for this effect as explained above to reflect the effect of Dyngo 4a on CXCR3 signaling. We have performed the suggested experiment in our previous work (reference 27). Smith, J. S., et al. (2018). "Biased agonists of the chemokine receptor CXCR3 differentially control chemotaxis and inflammation." <u>Sci Signal</u> 11 (555). In this manuscript, we demonstrate that the enhanced inflammatory response seen with VUF10661 treatment is entirely lost in mice devoid of β -arrestin 2. Additionally, we demonstrate that the VUF10661 induced potentiation leads to increased chemotaxis of murine CD8+ and CD44+ T-cells to	contributes to potentiation of inflammation in a murine model of contact hypersensitivity"
inhibition of CXCR3 internalization in CD8 T cells, one possibility would be to perform the CHS experiment in CD8 β-defensin 2 conditional KO mice.	the site of inflammation, and this response is also lost in mice devoid of β -arrestin 2. These data demonstrate that the potentiated inflammatory responses is dependent on β -arrestin 2. We describe this in the manuscript as follows: <i>We previously showed in a murine model of allergic contact</i> <i>hypersensitivity (CHS) that a synthetic</i> β -arrestin-biased <i>CXCR3 agonist, VUF10661, potentiates inflammation through</i> <i>increased recruitment of CD8+ T cells in a</i> β -arrestin 2- <i>dependent manner</i> ²⁷ .	
Pg 7, line 109 add c after Fig 2.	Added the suggested change	Line 108 Figure 1
differences in HEK293 cells		
treated with CXCL10, the "y"		
segments increasing the length		
of the lower segment ending in		
50. Reviewer #2		
Comment	Response	Location in
		Manuscript
Section: Biased G protein activation depends on receptor location	N/A	
The result that "CXCL10 and CXCL11 had nearly identical G protein activation at the endosome but different		
amounts at the plasma membrane" is valid and clear from Fig 2c,d.		-
I he statement that G protein activation decreased for both ligands is dependent on how 100% is defined in these figures (which is not explained).	We defined 100% as the maximum G protein activation achieved by any ligand at any location. Our data demonstrate this maximum signal to be CXCL11 at the plasma membrane. In our figure legend, we write the following:	Figure 2
	Data for figures (c-q) are normalized to CXCL11-induced GTP-	
	$G\alpha$ at the plasma membrane.	
Furthermore, the comparison between the responses to the two ligands needs to be normalised not only to the G	 Gai at the plasma membrane. We performed the requested normalization as follows: (G protein activation normalized to maximum signal)/(G protein concentration normalized to maximum signal)/(Receptor amount in endosomes normalized to 	Line 130 in in section titled "Biased G protein activation depends

location (as done in Fig 2i,j) but also to the concentration of receptor in each location, which has not been done here. It seems that the concentration of CXCR3 in the endosomal membrane is likely to be higher for CXCL11 than CXCL10. Therefore, normalisation may actually amplify the apparent bias!	As the amount of receptor at the plasma membrane is equivalent for all of the chemokine treatments, we did not perform this calculation for the data collected at the plasma membrane. Additionally, it is difficult to quantitatively compare the absolute amount of CXCR3 present at the plasma membrane compared to the endosome using our data. As a result, we refrained from making any comparisons between these locations and only compared the chemokines in endosomes when performing this requested normalization. This data has been added to Extended Data 1 and the following text has been added: <i>We further normalized these data by the total amount of receptor</i> <i>present in the endosome and similarly found that CXCL9 and</i> <i>CXCL10 are relatively more efficacious at promoting endosomal</i> <i>G Protein activation than CXCL11 (Extended Data Fig. 1b).</i> <i>These data demonstrate ligand and location bias in G protein</i> <i>activation, with different levels of G protein activation at the</i> <i>plasma membrane compared to the endosome depending on</i> <i>the agonist.</i>	<i>location</i> " and Extended Data 1
Section: CXCR3-mediated cAMP inhibition is differentially dependent on receptor internalization "Expression of Dynamin 146 K44A reduced inhibition of cAMP production following stimulation with CXCL10 and CXCL11, but not CXCL9, reflecting a biased decrease in Gaicoupled activity". This is not terribly convincing because it is based on a single concentration at which CXCL9 gives a measurable signal (Fig 3b,c)	We agree with the reviewer and have added the following sentence: However, this result may be due to the low G protein signal generated by CXCL9, and all chemokines may demonstrate reduced inhibition of cAMP production at higher and supraphysiologic levels of chemokine.	Line 149 in in section titled "CXCR3-mediated cAMP inhibition is differentially dependent on receptor internalization"
"CXCL10 and CXCL11 both demonstrated a ~40% decrease in cAMP inhibition when receptor internalization was inhibited, even though the chemokines were able to promote different amounts of total receptor internalization (Fig. 3d-3i)". This conclusion is based on there being a real difference between the maximal signals from CXCL10 and CXCL11 (Fig 3b). The difference is actually quite small and may not be statistically significant. Overall these concerns mean that the conclusion ("receptor internalization is critical to the biased regulation of second messengers across subcellular compartments") is not strongly supported by the data.	We agree with the reviewers comments. A limitation of this assay is that we are measuring cAMP accumulation, a second messenger of Gi activation, which is an amplified response. Thus, detecting real differences between the maximal regulation of cAMP accumulation by CXCL10 and CXCL11 is difficult. However, the data demonstrate a clear contribution of sustained CXCR3 signaling to endosomes at CXCL10 and CXCL11 in regulating second messenger accumulation. As a result, we have reworded this section and section title to reflect these limitations. <i>New section title:</i> <i>CXCR3-mediated cAMP inhibition is partially dependent on receptor internalization</i> <i>Text added (bold):</i> <i>CXCL10 and CXCL11 both demonstrated a ~40% decrease in cAMP inhibition when receptor internalization was inhibited, even though the chemokines were able to promote different amounts of total receptor internalization (Fig. 3d-3i).</i> This conclusion is dependent on there being a significant	Line 157 in in section titled "CXCR3-mediated cAMP inhibition is differentially dependent on receptor internalization"

	difference in normalized cAMP inhibition by CXCL10 and CXCL11. Given that this assay directly measures cAMP production, which is an amplified response of $G\alpha$ activity, detecting real differences between high efficacy agonists is difficult. However, these data demonstrate that both CXCL10 and CXCL11 require receptor internalization to continue matrix.	
Section: Biased ligands of CXCR3 promote differential patterns of b-arrestin 2 recruitment and conformation at the plasma membrane and the endosome The key conclusion of this section is that CXCL10 and CXCL11 induce different conformations of b-arrestin 2 on endosomes compared to at the plasma membrane. The evidence for this is that endosome-localised versus membrane-localised versus membrane-localised biosensors give decreasing and increasing signals, respectively (in response to both CXCL10 and CXCL11; Fig 4f,g,i,j). However, because the endosome- localised and membrane- localised biosensors are different, it is unclear to the reader whether they would be expected to give the same signals in response to the same conformational changes. Does it not depend on the position and orientation of the reconstituted (LgBit-SmBit) nanoluciferase relative to the tetracysteine motif? Control experiments and careful explanation are required so that the reader can understand the relationship between the signals observed and the	We agree with the reviewer that the ultimate conformation depends on the interaction between β -arrestin and the location marker. Given that the location markers are inherently different, this could be the source of differences observed in β -arrestin conformation at the two locations, rather than a true change in conformation. As a result, we can confidently compare the differences between ligands at one location, but comparisons across locations should be made with caution. We have modified the text as follows to reflect this limitation: While the β -arrestin 2 conformation demonstrated an increase in BRET signal at the plasma membrane, we observed a decrease in BRET signal at the endosome, which could be due to differences in β -arrestin 2 conformation at the endosome compared to the plasma membrane and/or a change in orientation between β -arrestin 2 and the different location markers.	Line 196 in "Biased ligands of CXCR3 promote differential patterns of β - arrestin 2 recruitment and conformation at the plasma membrane and the endosome"
deduced. If it turns out that there is good reason to believe that the different sensors should report on conformational changes in the same way, I think the authors need to explain how this could happen. After all, we are still talking about the same receptor bound to the same ligands.	We agree that determining if the conformations are truly different at the plasma membrane versus endosome would require many controls and is beyond the scope paper. The conclusions we can draw from this assay are largely limited to conformational differences between chemokines at the same location. While there is evidence regarding the differences between the subcellular environment at the plasma membrane as compared to the endosome (pH, lipid composition, curvature, etc.), there is not sufficient evidence in the literature to suggest which specific factor(s) would lead to a change in β -arrestin conformation.	N/A

	There is recent structural and functional evidence demonstrating that the C-edge of β -arrestin interacts with the plasma membrane, and membrane phosphoinositides can stabilize GPCR-arrestin complexes. Given that the membrane composition of the plasma membrane is significantly different from the endosome, e.g., endosomes lack phosphoinositides, this could be one potential mechanism underlying different subcellular β -arrestin conformations. However, we refrain from these discussion because the main conclusions we wish to highlight are conformational differences between chemokines at the plasma membrane and endosome. <u>https://www.nature.com/articles/ncomms14258</u> <u>https://www.nature.com/articles/s41586-020-1954-0</u> <u>https://www.biorxiv.org/content/10.1101/2021.10.09.463790v2</u>)	
The bias plots obviously are derived from the previous data so are affected by the same issues.	The reviewer is correct in that the data included in the bias plots are affected by the same issue. However, determination of bias is relative, and these concerns affect all of the chemokines. As a result, comparisons between the chemokines allows us to normalize for these concerns as we are comparing the difference across the chemokines between two locations (i.e. the difference of differences). We have added the following sentences to address this concern:	Line 208 in "Biased signaling profiles of the chemokines changes as the receptor traffics to endosomes"
	Measurements in G protein activation/recruitment and β - arrestin recruitment at different locations are potentially impacted by the biosensor used to detect these events. For example, the absolute change in BRET signal of CXCL11 mediated G protein activation at the plasma membrane and endosome are different, but it is possible that this difference is due to using two different location specific biosensors, rather than amounts of activated G protein. However, we did not observe such a difference in CXCL10 mediated G protein activation at these two locations. Calculating and comparing the difference of differences (differences between chemokines and locations), removes any potential contribution that the location-specific biosensors may have on detecting cellular events (Fig. 4k-4l). In the bias plots, we highlight these difference of different rank order for the three ligands at the plasma membrane versus the endosome. This analysis, which avoids direct comparison of biosensors in different compartments, demonstrates that biosensor location-specific effects cannot account for the observed signaling biases.	
Section: CXCR3 signaling from endosomes differentially contributes to cytoplasmic and nuclear ERK	We hypothesize that CXCR3 internalization is one factor that contributes to bias in patterns of cytoplasmic vs. nuclear ERK activity, with different chemokines.	N/A
The conclusion that "CXCR3 internalization is necessary for activation of nuclear ERK, while CXCR3 internalization contributes to, but is not required for, cytoplasmic ERK activation" is well-supported by the data. This is not particularly surprising and		

seems to be addressing a different question from biased agonism.		
Sections on transcriptional regulation	It is likely that multiple factors contribute to the observed changes in RNAseq data, which include bias as well as classic partial versus full agonism.	N/A
The data show that transcription (of certain reporters) stimulated by CXCL11 is ~50% decreased when receptor internalisation is blocked, whereas transcription stimulated by CXCL9/10 is not significantly decreased. The conclusion that CXCL10 and CXCL11 stimulate transcriptional activation by different mechanisms is supported by the data.	However, our data demonstrate that not only do these chemokines demonstrate differing biased agonism, but the relative degree of biased agonism depends on the specific locations in the cell, highlighting the complexity of biased GPCR signaling. We use this RNAseq data set as supporting evidence that biased agonism is not a phenomenon limited to what we observed in non-physiological cell lines but extends to physiologically-relevant cells.	
Similarly, RNAseq data show that the different chemokines stimulate transcription of different sets of genes.		
However, it is unclear whether the different mechanisms leading to these transcriptional differences are the same as the biased agonism observed/proposed above or something else, e.g., more classical full versus partial agonism (different signalling efficacies for a particular pathway).		
Section: CXCR3 internalization contributes to potentiation of inflammation in a murine model of contact hypersensitivity	N/A	N/A
 Blocking receptor internalisation reduces inflammation in a CXCR3- dependent inflammation model. This indicates that receptor internalisation is required for maximal inflammatory effect, but does not necessary support the conclusion that "sustained CXCR3 signaling from endosomes is required for maximal potentiation of the inflammatory response" 		
extends observations on CXCR3 differential activation that the authors have reported in previous papers.		

There is no doubt that different endogenous (chemokine) ligands give rise to differences in the strength (efficacy) of signaling (for several readouts), receptor internalization, and downstream transcription. The observation that bias appears to be different for signalling from endosomes versus the plasma membrane is definitely interesting. However, since bias itself is a	We agree that we are reporting on the difference between	Line 383 in
difference between differences	differences between differences; however, we believe that this approach normalizes for experimental error. Specifically, if the	"Discussion"
signaling readouts), we are now	biosensors used in different locations in this manuscript	
looking at a difference between	inherently add in variability to our assays, by comparing the	
differences between differences	difference of differences (i.e. differences between ligands	
	experimental variability, as we described and addressed above.	
Unfortunately, the experimental	Moreover, this does not change the major finding of our	
that dogs the field.	subcellular signaling ("location bias") that are associated with	
Finally, throughout this	responses.	
manuscript, the authors seem	Ma an aifir allo utilizzada na da na na bia a di linan da 4a (4) allo u	
signaling upon blocking	for normalization of this potential experimental limitation and (2)	
internalisation can be taken as	demonstrate that the degree of relative biased agonism	
an indication that the signaling	depends on the specific subcellular locations being compared.	
from endosomes. Is this the	We agree with the reviewers final point that we are assuming	
intended assumption? Are there	that any change in signaling upon blocking internalization is	
this needs to be discussed	occurring from endosomes. We have attempted to use controls	
directly.	to account for this limitation. However, there are other possible	
	explanations for our findings, and we have added the following text to our discussion:	
	In this manuscript, we assume that changes in signaling	
	occurring from endosomes. While this is one interpretation of	
	these data, it is also possible that inhibition of internalization	
	simultaneously prolongs and/or alters signaling observed from the plasma membrane or other subcellular compartments like	
	the late endosome, Golgi apparatus, or endoplasmic reticulum.	
	It is difficult to quantify the absolute contribution of endosomal	
	demonstrate that the relative contribution of signaling from	
	endosomes is highly dependent on the ligand used to activate	
	the receptor, and that signaling beyond the plasma membrane is	
	Further studies are needed to assess the specific signaling	
	functions that are unique to the endosome and other subcellular	
Minor Comments	We have updated the figure legend for Fig. 1 as requested.	Figure 1 Legend
Fig 1. The rescue experiment	(b) CXCR3 trafficking away from the plasma membrane	
(Fig 1b) is not explained in the	using Myrpalm-mVenus in β -arrestin 1/2 knock out cells	
legend – please clarify. Also,	following transfection of an empty vector (pcDNA 3.1), β -	
	arrestin 1, β -arrestin 2, or both β -arrestin 1 and β -arrestin 2.	

please add times and concentrations. In several figures, the times used (for concentration- response curves) and the concentrations used (for time courses) are not give. Please add this information.	Data are normalized to maximum signal measured between 25- and 30-minutes following 100nM chemokine treatment and are the mean ± SEM, n=4 We have added the times and concentrations used as requested to all figures.	All Figure Legends
The transcriptional assays (including RNAseq) are done 2 hours after stimulation, whereas the signaling assays are on a time scale of minutes. It is very challenging to make a direct connection between the short time scale biased agonism and the longer time scale transcription.	It is difficult to make a direct connection between proximal and distal signaling assays that are on drastically different timescales. However, there is a significant amount of previously published data similarly demonstrating that GPCRs can modulate transcriptional activation through G proteins, β -arrestin, and various kinases like ERK and PKA. While there are likely other factors which play a role beyond canonical G protein and β -arrestin signaling, these two effectors are highly implicated in directing downstream signaling pathways like transcription. https://www.nature.com/articles/nchembio.1665 https://doi.org/10.1242/jcs.03338 https://www.nature.com/articles/1210407	N/A
Poviowor #3		
The authors conclude that the amount of Gi activation by CXCL11 was decreased on endosomes compared to the plasma membrane (Figure 2d). They reach this conclusion by normalizing measured Gi activity to the total Gi present on endosomes. Since most of these activity measurements are based on normalized BRET, it is important to show compartment-targeted BRET pairs are expressed at equal levels. This is important as misleading conclusions could be drawn if the expression levels of KB-1753-NLuc on the endosomes were to be lower compared to the plasma membrane-localized KB-1753- NLuc. Controls showing similar expression levels of these constructs are necessary to accurately interpret these data.	To address the reviewers concern, we quantified the expression levels of the luminescence emission in these experiments. The raw luminescence values are a direct read out of expression level of the KB-1743-NLuc construct. We have added the following sentence and a supplemental figure demonstrating that the expression level of the endosomal and membrane KB-1743-NLuc constructs is not significantly different: <u>Manuscript Text</u> <u>Importantly, the endosomal and membrane BRET biosensor</u> was expressed at similar levels (Extended Data Fig 1). <u>Figure Legend</u> <u>Extended Data Figure 1: Raw luminescence values of KB- 1753-nLuc constructs and alternative data normalization. Related to Figure 2. (A) Raw luminescence values of the KB- 1753-nLuc constructs at the endosome and the plasma membrane. (B) Alternative normalization approach for assessing G protein activation. Specifically, the amount of active G protein normalized to maximum signal was divided by the amount of total G protein normalized to maximum signal which was further divided by the amount of receptor present in endosomes normalized to maximum signal. Data are the mean ± SEM, n = 5. * denotes statistically significant differences between paired luminescence averages between the location specific nanoluciferase construct as measured using a paired t-test.</u>	Extended Data 1 Line 114 in "Biased G Protein activation depends on receptor location"
that CXCL11 is beta-arrestin biased on the endosomes. In bias plot data shown in Figure 4I, the authors claim that while G protein activation by CXCL11	to ERK activation is incompletely understood and depends on multiple factors including receptor, agonist, cellular location, and cell/tissue type, among others. This has led to a number of papers in the literature, including those from the Kostenis and Lefkowitz groups, that argue that G proteins and β -arrestins	IN/A

is decreased on the	play less and more important respectively roles in FRK	
endosomes CXCI 11 is a better	activity. In a recently nublished manuscrint from our group in	
hiased agonist for h-arrestin		
However, they have clearly	(https://www.science.org/doi/10.1126/scisignal.abg5203)	
shown in Figure 4C that	focused on CYCP3, we demonstrate that EPK activation	
CYCL 11 regule 40 that	increases following knock down of β arrestin 2 depending on	
CACL IT recruits more beta-	the perental call type used for the experiment. Similarly, using	
arresult to the endosomes. So	the parental cell type used for the experiment. Similarly, using	
why not using the same logic	p-arrestin 1 and 2 CRISPR-KO cells, we saw a decrease in	
they have used to assess G	ERK activation following rescue of β -arrestin 2 in one of the cell	
protein activation for beta-	lines, but no effect in the other cell line.	
arrestin activation (i.e.		
normalizing the ERK data in	We, along with other groups, have demonstrated that both G	
Figure 5 to total beta-arrestin	proteins and β -arrestins can contribute to ERK signaling.	
levels on endosomes)? If ERK		
activity is considered a readout	https://www.science.org/doi/10.1126/scisignal.aat7650	
for beta-arrestin activation,	https://www.science.org/doi/10.1126/science.aay1833	
using that logic, then CXCL10		
is a much better beta-arrestin	Therefore, normalizing ERK activity by endosomal β -arrestin	
biased ligand compared to	recruitment may not be warranted as the specific relationship	
CXCL11, because it can barely	between ERK activation and proximal signal transducers is	
recruit beta-arrestin to the	most likely multifactorial.	
endosomes but induces similar		
ERK activity.		
2		
No experimental evidence has	We agree that the current experimental evidence does not	Line 197 in
been provided to further	allow us to comment on how the sign or magnitude of the	"Biased ligands of
support the observed	FIAsH BRET signal reflect specific changes in β-arrestin	CXCR3 promote
decreased in FIAsH BRET	conformation outside of the known association with interdomain	differential
signal at the endosome. In the	twist. We have modified the text to reflect this limitation:	patterns of B-
discussion the authors suggest		arrestin 2
that distinct GPCR/beta-arrestin	While the <i>B</i> -arrestin 2 conformation demonstrated an increase	recruitment and
interactions at each	in BRET signal at the plasma membrane, we observed a	conformation at
compartment (tail versus core)	decrease in PDET signal at the andeceme, we observed a	the plasma
as an explanation. Can these	te e differences in <i>Correctio</i> 2 confermention et the endecorrec	membrane and
differences be explained by	to a difference in p-arrestin 2 conformation at the endosome	the and a series "
different ELAsH conserve that	compared to the plasma membrane and/or a change in	the endosome
uniereni FIASE sensors inal	orientation between β -arrestin 2 and the different location	
have BRETS on different	markers.	
domains of beta-arrestin? A		
model with the current HASH		
data should be included to		
better demonstrate the negative		
BRET data.		

- 1 **REVIEWERS' COMMENTS** 2 3 Reviewer #1 (Remarks to the Author): 4 5 The authors have addressed the concerns of this reviewers in a satisfactory way 6 7 8 Reviewer #2 (Remarks to the Author): 9 10 This version of the manuscript is greatly improved. The authors have adequately addressed the 11 previous concerns and the manuscript is also easier to read and understand. 12 I noticed the following very minor issues that should be addressed. 13 1. Line 154: Change "cAMP production" to "inhibition of cAMP production"? 14 2. Fig 3 legend (line 506): Change to "Dynamin K44A inhibits internalization as measured..." 15 3. Fig 4: Panels a and c require a colour key 16 17 18 19 Reviewer #3 (Remarks to the Author): 20 21 Although the authors have made revisions to the manuscript, my main issues that I had raised last 22 time remain unresolved. A summary of these issues is below: 23 24 1) This manuscript fails to provide additional mechanistic information or insight or novelty beyond 25 what the same lab has already reported regarding the differential effects of CXCR3 chemokines on 26 downstream responses. 27 28 2) The overall interpretation that the noted observations are due to biased agonism is not 29 supported. It is not surprising that different chemokines would promote different levels of receptor 30 internalization resulting in differential extents of signaling and transcriptional responses. Their 31 conclusion that this differential signaling is due to biased agonism at the endosome versus the 32 plasma membrane is based on unsupported interpretations of their biosensor data. Importantly, 33 their own functional data does not support their interpretations. For example, data in extended 34 figure 2b-d suggests that CXCL9 is the weakest ligand in inhibiting nuclear cAMP, but the authors 35 have concluded from data in Figure 2 that "CXCL9 and CXCL10 are relatively more efficacious at 36 promoting endosomal G Protein activation than CXCL11". If endosomal coupling to Gi is the reason 37 for the observed nuclear inhibition, then one would expect that CXCL9, which is a more efficacious 38 Gi activator than CXCL11, would cause a more robust inhibition instead of the weakest inhibition. 39 In summary, the differences in activating these transcriptional responses or potentiation of 40 inflammatory responses are, not surprisingly, due to the effect of full versus partial agonisms, as 41 full agonist (CXCL11) is inducing better receptor internalization, thus more robust transcriptional 42 responses. 43 44 3) One point of novelty in this paper is the different conformational change that beta-arrestin
- 45 adopts on the plasma membrane compared to endosomes. This is worth further investigation,
- 46 however the authors did not provide a convincing response or explanation for what underlies these
- 47 distinct conformations.
- 48

Associate Editor,

We thank you and the reviewers for your thoughtful feedback on our manuscript titled *Location bias contributes to functionally selective responses of biased CXCR3 agonists* (NCOMMS-22-03532-T). Below you will find a list of changes made to our manuscript to address the points raised by the reviewers and the location of these changes in our manuscript. We believe these changes greatly strengthen the quality of our manuscript.

Reviewer #1		
Comment	Response	Location in Manuscript
The authors have addressed the concerns of this reviewers	N/A	N/A
in a satisfactory way		
Reviewer #2		
Comment	Response	Location in Manuscript
This version of the manuscript is greatly improved. The authors have adequately addressed the previous concerns and the manuscript is also easier to read and understand. I noticed the following very minor issues that should be addressed.	N/A	N/A
1. Line 154: Change "cAMP production" to "inhibition of cAMP production"?	Changed	Line 154
2. Fig 3 legend (line 506): Change to "Dynamin K44A inhibits internalization as measured…"	Changed	Line 506
3. Fig 4: Panels a and c require a colour key	Changed	Figure 4a and 4c
Reviewer #3		
This manuscript fails to provide additional mechanistic information or insight or novelty beyond what the same lab has already reported regarding the differential effects of CXCR3 chemokines on downstream responses.	Our lab and other laboratories have previously published on the differential effects on CXCR3 chemokines on downstream responses. However, this is the first time our laboratory, or any laboratory to our knowledge, has studied the differential effects of biased CXCR3 chemokines at specific subcellular locations. We believe that we provide overwhelming evidence to suggest that signaling from subcellular locations is (1) different from that observed at the plasma membrane and (2) critical to generating biased responses both in cells and <i>in vivo</i> . These findings are novel and, as mentioned in the Author Checklist by Reviewer #2, "will likely encourage others to test the same idea in different systems and may eventually lead to improved approaches towards drug development". We believe these findings are substantial contributions to the field of biased agonism, GPCR signaling, and receptor pharmacology as a whole.	N/A
The overall interpretation that the noted observations are due to biased agonism is not supported. It is not surprising that different chemokines would promote different levels of receptor internalization resulting in differential extents of signaling and transcriptional	Classical receptor theory of partial versus full agonism is unable to explain the findings observed in this manuscript. Biased agonism where a ligand can demonstrate different efficacies across multiple signaling pathways relative to a reference agonist. Ultimately, the exact nomenclature used to describe the signaling depends on how ones define biased agonism. Here and in many previously published reports (PMID: 34468132, 28290478, 21610196), we define it as the ability of a ligand to activate G proteins and β -arrestin when	Section titled "Biased signaling profiles of the chemokines changes as the receptor traffics to endosomes"

responses. Their conclusion that this differential signaling is due to biased agonism at the endosome versus the plasma membrane is based on unsupported interpretations of their biosensor data. Importantly, their own functional data does not support their interpretations.

For example, data in extended figure 2b-d suggests that CXCL9 is the weakest ligand in inhibiting nuclear cAMP, but the authors have concluded from data in Figure 2 that "CXCL9 and CXCL10 are relatively more efficacious at promoting endosomal G Protein activation than CXCL11". If endosomal coupling to Gi is the reason for the observed nuclear inhibition, then one would expect that CXCL9, which is a more efficacious Gi activator than CXCL11, would cause a more robust inhibition instead of the weakest inhibition.

In summary, the differences in activating these transcriptional responses or potentiation of inflammatory responses are, not surprisingly, due to the effect of full versus partial agonisms, as full agonist (CXCL11) is inducing better receptor internalization, thus more robust transcriptional responses. considering the potency and efficacy of a particular ligand relative to a reference ligand. Using bias plots, we qualitatively demonstrate that these ligands demonstrate biased signaling profiles relative to one another in a manner that is location dependent. Partial agonism does not accurately explain our data (as the Response 1 vs Response 2 curves would be superimposable for partial vs full agonists).

For example, CXCL11 is significantly more efficacious at activating G proteins at the plasma membrane than CXCL10, but the two ligands are similar in nature at the endosome. Additionally, CXCL11 is a more efficacious agonist at recruiting β -arrestin at the plasma membrane than CXCL10, but at the endosome, CXCL10 demonstrates minimal β -arrestin recruitment while CXCL11 has a robust response. Given that the ratio of relative intrinsic efficacies of G protein signaling and β -arrestin recruitment between these two ligands are different depending on the subcellular location, partial agonism alone cannot explain these data.

As for the specific example mentioned in Figure 2b-d, there is a need to understand the distinction between biased signaling and partial/full agonism. We demonstrate that CXCL9 is relatively G protein-biased in the endosome while CXCL11 is relatively beta-arrestin-biased in the endosome - this statement refers to the observation that CXCL9 activates more G protein relative to recruiting beta-arrestin while CXCL11 recruitments more beta-arrestin relative to activating G proteins. This is a description of biased signaling. However, if we observe the absolute agonism of these ligands, CXCL11 activates more G proteins than CXCL9 and recruits more beta-arrestin than CXCL9 in the endosome. Biased signaling focuses on the ratio of these two pathways at one ligand in comparison to this ratio at another ligand, while agonism alone looks at the difference between two ligands across just one signaling pathway. We see a more substantial decrease in inhibition of cAMP with CXCL11 when inhibiting endocytosis because it activates more absolute amounts of G protein in the endosome.

In our manuscript, we write "Biased agonism at GPCRs is commonly assessed in terms of the relative activation between G proteins and β -arrestins, and we summarized the above findings using bias plots (Fig. 4k-4I)^{55,56}. Bias plots allow for simultaneous assessment of relative activity between two assays, and the best fit lines obtained for each chemokine can assess relative bias across the ligands" (Section titled Biased signaling profiles of the chemokines changes as the receptor traffics to endosomes).

This sentence explains that the bias plot allows for assessment of <u>relative</u> activity between two assays.

We have added the following sentence for clarification:

"Bias plots do not assess the absolute degree of agonism of signaling across ligands. For example, although CXCL11 is β -arrestin-biased at the endosome and CXCL9 is G protein-biased at the endosome, CXCL11 activates more absolute amounts of G protein in the endosome than CXCL9. The relative bias between the two ligands is determined when comparing both G protein and β -arrestin signaling between the two ligands. Our analysis provides an assessment of biased signaling which

	considers the intrinsic efficacy and potency of one ligand to signal across multiple pathways in reference to another ligand."	
One point of novelty in this paper is the different conformational change that beta-arrestin adopts on the plasma membrane compared to endosomes. This is worth further investigation, however the authors did not provide a convincing response or explanation for what underlies these distinct conformations.	We appreciate the reviewers comments on the novelty of these findings and agree that these findings warrant further investigation. At this time, we are performing additional experiments to better characterize the distinct conformations of β -arrestin in different locations.	