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A Nonlinear, Population Model of Temperate Phage Dynamics

A.1 Main models

The resource-implicit model with explicit infections from the main text is

Ṡ =

logistic growth︷ ︸︸ ︷
rSS

(
1− N

K

)
−

infection︷ ︸︸ ︷
φSV −

decay︷︸︸︷
dSS

Ė =

infection︷ ︸︸ ︷
φSV −

transition︷︸︸︷
λE −

decay︷︸︸︷
dEE

L̇ =

lysogenic infection︷︸︸︷
pλE +

logistic growth︷ ︸︸ ︷
rLL

(
1− N

K

)
−

induction︷︸︸︷
γL −

decay︷︸︸︷
dLL

İ =

lytic infection︷ ︸︸ ︷
(1− p)λE +

induction︷︸︸︷
γL −

lysis︷︸︸︷
ηI −

decay︷︸︸︷
dII

V̇ =

burst︷︸︸︷
βηI −

infection︷ ︸︸ ︷
φNV −

decay︷︸︸︷
mV

(A.1)

where S, E, L, I and V denote the densities of susceptible cells, exposed infected cells, lysogens, lytic-
fated infected cells and virus particles respectively, and N = S + E + L + I is the total cell density.
Parameters rS and rL denote the maximal cellular growth rates of susceptible cells and lysogens, K is the
carrying capacity, φ is the adsorption rate, dS , dE , dL and dI are the cellular death rates of susceptible
cells, exposed infected cells, lysogens and lytic-fated infected cells respectively, λ is the transition rate
from exposed cells to the fate determined cells, p is the probability of lysogenization, γ is the induction
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rate, η is the lysis rate, β is the burst size and m is the virion decay rate. The resource-explicit model
with explicit infections from the main text is

Ṙ =

influx︷︸︸︷
J −

cumulative uptake of nutrients by cells︷ ︸︸ ︷
eψ(R) (L+ (1− αs)S) −

decay︷︸︸︷
dRR

Ṡ =

growth with fitness selection︷ ︸︸ ︷
(1− αs)ψ(R)S −

infection︷ ︸︸ ︷
φSV −

decay︷︸︸︷
dSS

Ė =

infection︷ ︸︸ ︷
φSV −

transition︷︸︸︷
λE −

decay︷︸︸︷
dEE

L̇ =

lysogenic infection︷︸︸︷
pλE +

lysogens growth︷ ︸︸ ︷
ψ(R)L −

induction︷︸︸︷
γL −

decay︷︸︸︷
dLL

İ =

lytic infection︷ ︸︸ ︷
(1− p)λE +

induction︷︸︸︷
γL −

lysis︷︸︸︷
ηI −

decay︷︸︸︷
dII

V̇ =

burst︷︸︸︷
βηI −

infection︷ ︸︸ ︷
φNV −

decay︷︸︸︷
mV

(A.2)

where R, S, E, L, I and V denote the densities of resources, susceptible cells, exposed infected cells,
lysogens, lytic-fated infected cells and virus particles, respectively, and N = S + E + L + I is the total
cell density. The growth function ψ(R) = µmaxR/(Rin + R) is a Monod equation, where µmax is the
maximal cellular growth rate and Rin is the half-saturation constant. The parameters J and dR are the
influx and decay rates of resources, e is the host conversion efficiency, αS is the selection coefficient that
measures the relative fitness between lysogens and susceptible cells. All other parameters are defined as
in model [A.1]. The resource-implicit model with implicit infections in Berngruber et al. (2013) is

Ṡ =

logistic growth︷ ︸︸ ︷
rSS

(
1− N

K

)
+

lysogens fail to vertically transmit︷ ︸︸ ︷
rL(1− δ)L

(
1− N

K

)
−

infection︷ ︸︸ ︷
bφSV −

decay︷︸︸︷
mS

L̇ =

logistic growth︷ ︸︸ ︷
rLδL

(
1− N

K

)
+

lysogenic path︷ ︸︸ ︷
pbφSV −

induction︷︸︸︷
γL −

decay︷︸︸︷
mL

V̇ =

induction︷︸︸︷
βγL +

lytic path︷ ︸︸ ︷
(1− p)βbφSV −

absorption to cells︷ ︸︸ ︷
φNV −

decay︷︸︸︷
mV

(A.3)

where N = S +L is the density of total cells, L is the density of infected cells, the density of susceptible
cells is S and the free-virus density is V . More details about model [A.3] can be found in (Berngruber
et al. (2013)). The resource-explicit model with implicit infections from Stewart and Levin (1984) is

Ṙ =

media inflow︷︸︸︷
ρC −

nutrient consumption︷ ︸︸ ︷
eψ(R) (L+ (1− αs)S)−

outflow︷︸︸︷
ρR

Ṡ =

growth with fitness selection︷ ︸︸ ︷
(1− αs)ψ(R)S −

infection︷ ︸︸ ︷
φSV +

vegetative segregation from lysogens︷︸︸︷
νL −

outflow︷︸︸︷
ρS

L̇ =

lysogens growth︷ ︸︸ ︷
ψ(R)L +

lysogenic infection︷ ︸︸ ︷
pφSV −

induction︷︸︸︷
γL −

vegetative segregation︷︸︸︷
νL −

outflow︷︸︸︷
ρL

V̇ =

induction︷︸︸︷
βγL +

lytic infection︷ ︸︸ ︷
β(1− p)φSV −

absorption to lysogens︷ ︸︸ ︷
φLV −

outflow︷︸︸︷
ρV

(A.4)

where R, S, L, and V denote the densities of resources, susceptible cells, lysogens and virus particles,
respectively. Model [A.4] describes the dynamics of populations in a chemostat, where ρ is the inflow
(and outflow) rate and ν is the segregation rate whereby lysogens become susceptible cells. See (Stewart
and Levin (1984)) for more details.

In the four model variants, the phage strategies are defined by two parameters: p defines the prob-
ability a virus enters the lysogenic pathway and γ defines the induction rate after a virus enters the
lysogenic pathway. We define the viral strategy space Θ as

Θ = {(p, γ) : 0 ≤ p ≤ 1, γmin ≤ γ ≤ γmax} (A.5)

where γmin > 0.
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A.2 From explicit infections to implicit infections

In this section, we show that the explicit infection models [A.1] and [A.2] can be reduced to the models
with implicit infections via a quasi–steady–state (QSS) approximation.

For model [A.1] and model [A.2], we assume the (lysis-lysogeny decision) transition process and lysis
process are extremely rapid in comparison to all the other biological processes. In other words, we let
λ � dE and η � dI . The population dynamics of exposed cells from model [A.1] and model [A.2] can
be rewritten as

εĖ =
φSV

λ
− E(1 + εdE) ≈ φSV

λ
− E (A.6)

where ε = 1/λ � 1. Hence, the QSS equilibrium density of exposed cells population is Eε = φSV/λ.
Using Eε, the population dynamics of lytic-fated infected cells from model [A.1] and model [A.2] are
rewritten as

ε′İ =
(1− p)λEε + γL

η
− I(1 + ε′dI) ≈

(1− p)φSV + γL

η
− I (A.7)

where ε′ = 1/η � 1. Hence, the QSS equilibrium density of lytic-fated infected cells is Iε
′

= [(1 −
p)φSV + γL]/η. Substituting Eε and Iε

′
into model [A.1] reduces it to the S,L, V -system with implicit

infections,

Ṡ = rSS

(
1− N

K

)
− φSV − dSS

L̇ = pφSV + rLL

(
1− N

K

)
− γL− dLL

V̇ = β(1− p)φSV + βγL− φNV −mV.

(A.8)

Substituting Eε and Iε
′

into model [A.2] reduces it to the R,S, L, V -system with implicit infections,

Ṙ = J − eψ(R) (L+ (1− αs)S)− dRR
Ṡ = (1− αs)ψ(R)S − φSV − dSS
L̇ = pφSV + ψ(R)L− γL− dLL
V̇ = β(1− p)φSV + βγL− φNV −mV.

(A.9)

B Viral Invasion Analysis

B.1 Virus-free equilibrium

For the resource-implicit models [A.1] and [A.3], there are only susceptible cells (S∗) in the virus-free
environments. The virus-free equilibrium of model [A.1] is

(S∗, 0, 0, 0, 0), where S∗ = K

(
1− dS

rS

)
. (B.10)

The virus-free equilibrium of model [A.3] is

(S∗, 0, 0), where S∗ = K

(
1− dS

m

)
. (B.11)

For the resource-explicit models [A.2] and [A.4], there are both resources and susceptible cells (R∗, S∗)
in the virus-free environments. The virus-free equilibrium of model [A.2] is

(R∗, S∗, 0, 0, 0, 0), where R∗ =
RindS

(1− αs)µmax − dS
and S∗ =

J − dRR∗

edS
. (B.12)

The virus-free equilibrium of model [A.4] is

(R∗, S∗, 0, 0), where R∗ =
Rinρ

(1− αs)µmax − ρ
and S∗ =

C −R∗

e
. (B.13)
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B.2 Next-generation matrix approach

We start by computing the next-generation matrix (NGM) for the resource implicit model with ex-
plicit infections [A.1]. Consider the Jacobian of the model [A.1] evaluated at the virus-free equilibrium,
Eq. [B.12]. We denote J as the submatrix of Jacobian for the E,L, I, V -subsystem. We decompose the
submatrix as J = F + V where the transmission matrix F and the transition matrix V are

F =


0 0 0 φS∗

0 rL(1− S∗

K ) 0 0
0 0 0 0
0 0 0 0

 , V =


−(λ+ dE) 0 0 0

pλ −(γ + dL) 0 0
(1− p)λ γ −(η + dI) 0

0 0 βη −(φS∗ +m)

 .
Via NGM theory (Diekmann et al. (2010)), the basic reproduction number R0 corresponds to the largest
eigenvalue of the matrix −FV−1, namely R0 = %(−FV−1) where %(M) is the spectral radius of the
matrix M . There are two epidemiological birth states in model [A.1], hence, there are only two non-zero
eigenvalues in −FV−1. Here we introduce an augmented operator Q, where Q is a matrix in R4×2 with
unit vectors in columns 1 and 2. The spectral radius of the 4 × 4 matrix −FV−1 is the same as the
spectral radius of the 2× 2 matrix −QTFV−1Q. For convenience, we define the next generation matrix
of model [A.1] as

Φ = −QTFV−1Q =

[
Φ11 Φ12

Φ21 Φ22

]
,

where the entries of Φ are

Φ11 =

E→L︷ ︸︸ ︷(
pλ

λ+ dE

) L→I︷ ︸︸ ︷(
γ

γ + dL

) I→V︷ ︸︸ ︷(
β η

η + dI

) V→E︷ ︸︸ ︷(
φS∗

φS∗ +m

)
+

E→I︷ ︸︸ ︷(
(1− p)λ
λ+ dE

) I→V︷ ︸︸ ︷(
β η

η + dI

) V→E︷ ︸︸ ︷(
φS∗

φS∗ +m

)

Φ22 =

L→L︷ ︸︸ ︷
rL(1− S∗/K)

γ + dL

Φ12 =

L→I︷ ︸︸ ︷(
γ

γ + dL

) I→V︷ ︸︸ ︷(
β η

η + dI

) V→E︷ ︸︸ ︷(
φS∗

φS∗ +m

)

Φ21 =

E→L︷ ︸︸ ︷(
pλ

λ+ dE

) L→L︷ ︸︸ ︷
rL(1− S∗/K)

γ + dL
.

(B.14)

Entry Φij represents the expected number of new infected individuals in state i, generated by one infected
individual at state j (i, j = L,E), accounting for new infections that arise via the lytic and lysogenic
pathways. Φ can be rewritten in terms of the basic reproductive number for viruses with purely lytic
strategies (p = 0; Rhor) and the basic reproductive number for viruses with purely lysogenic strategies
(p = 1, γ = 0; Rver),

Φ =

[
Rhorγ̃p+ (1− p)Rhor Rhor(γ̃/λ̃)

Rverpλ̃(1− γ̃) Rver(1− γ̃)

]
(B.15)

where

γ̃ =
γ

γ + dL
, λ̃ =

λ

λ+ dE
, Rhor(S∗) =

βηφS∗λ

(η + dI)(φS∗ +m)(λ+ dE)
, Rver(S∗) =

rL
dL

(
1− S∗

K

)
.

(B.16)

Next we compute the NGM for the implicit model with implicit infections [A.3]. We decompose
the linearized infected subsystem of model [A.3], at the virus-free equilibrium, Eq. [B.11], into the
transmission matrix F and the transition matrix V:

F =

[
rLδ

(
1− S∗

K

)
bpφS∗

0 (1− p)βbφS∗

]
, V =

[
−(γ +m) 0

γβ −(m+ φS∗)

]
.
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The NGM of model [A.3] is defined as

Φ = −FV−1 =



L→L︷ ︸︸ ︷
rLδ

(
1− S∗

K

)
γ +m

+

L→V︷ ︸︸ ︷
βγ

γ +m

V→L︷ ︸︸ ︷
pbφS∗

(φS∗ +m)

V→L︷ ︸︸ ︷
pb

φS∗

φS∗ +m
L→V︷ ︸︸ ︷
βγ

γ +m

V→V︷ ︸︸ ︷
(1− p)bβ φS∗

φS∗ +m

V→V︷ ︸︸ ︷
(1− p)bβ φS∗

φS∗ +m


. (B.17)

As before, the NGM can be rewritten as

Φ =

[
Rhorγ̃p+ (1− γ̃)Rver Rhor(p/β)
Rhor(1− p)γ̃β Rhor(1− p)

]
(B.18)

where

γ̃ =
γ

γ +m
, Rhor(S∗) =

bβφS∗

φS∗ +m
, Rver(S∗) =

rLδ

m

(
1− S∗

K

)
. (B.19)

Similarly, we compute the NGM for the resource explicit model with explicit infections [A.2]. We
decompose the linearized infected subsystem of model [A.2] evaluated at the virus-free equilibrium,
Eq. [B.12], into the transmission matrix F and transition matrix V:

F =


0 0 0 φS∗

0 ψ(R∗) 0 0
0 0 0 0
0 0 0 0

 , V =


−(λ+ dE) 0 0 0

pλ −(γ + dL) 0 0
(1− p)λ γ −(η + dI) 0

0 0 βη −(φS∗ +m)

 .
The NGM of model [A.2] is defined as

Φ = −QTFV−1Q =

[
Φ11 Φ12

Φ21 Φ22

]
,

where Q is a matrix in R4×2 with unit vectors in columns 1 and 2. The entries of Φ are

Φ11 =

E→L︷ ︸︸ ︷(
pλ

λ+ dE

) L→I︷ ︸︸ ︷(
γ

γ + dL

) I→V︷ ︸︸ ︷(
β η

η + dI

) V→E︷ ︸︸ ︷(
φS∗

φS∗ +m

)
+

E→I︷ ︸︸ ︷(
(1− p)λ
λ+ dE

) I→V︷ ︸︸ ︷(
β η

η + dI

) V→E︷ ︸︸ ︷(
φS∗

φS∗ +m

)

Φ22 =

L→L︷ ︸︸ ︷
ψ(R∗)

γ + dL

Φ12 =

L→I︷ ︸︸ ︷(
γ

γ + dL

) I→V︷ ︸︸ ︷(
β η

η + dI

) V→E︷ ︸︸ ︷(
φS∗

φS∗ +m

)

Φ21 =

E→L︷ ︸︸ ︷(
pλ

λ+ dE

) L→L︷ ︸︸ ︷
ψ(R∗)

γ + dL
.

(B.20)

As before, we can rewrite the NGM as

Φ =

[
Rhorγ̃p+ (1− p)Rhor Rhor(γ̃/λ̃)

Rverpλ̃(1− γ̃) Rver(1− γ̃)

]
(B.21)

where

γ̃ =
γ

γ + dL
, λ̃ =

λ

λ+ dE
, Rhor(S∗) =

βηφS∗λ

(η + dI)(φS∗ +m)(λ+ dE)
, Rver(R∗) =

ψ(R∗)

dL
.

(B.22)

5



Finally, we compute the NGM for the resource explicit model with implicit infections [A.4]. We
decompose the linearized infected subsystem of model [A.4], at the virus-free equilibrium, Eq. [B.13], in
to the transmission matrix F and the transition matrix V:

F =

[
ψ(R∗) pφS∗

0 (1− p)βφS∗
]
, V =

[
−(ρ+ γ + ν) 0

γβ −ρ

]
.

The NGM of model [A.4] is defined as

Φ = −FV−1 =



L→L︷ ︸︸ ︷
ψ(R∗)

ρ+ γ + ν
+

L→V︷ ︸︸ ︷
βγ

ρ+ γ + ν

V→L︷ ︸︸ ︷
p
φS∗

ρ

V→L︷ ︸︸ ︷
p
φS∗

ρ
L→V︷ ︸︸ ︷
βγ

ρ+ γ + ν

V→V︷ ︸︸ ︷
(1− p)βφS

∗

ρ

V→V︷ ︸︸ ︷
(1− p)βφS

∗

ρ

 . (B.23)

As before, we can rewrite the NGM as

Φ =

[
Rhorγ̃p+ (1− γ̃)Rver Rhor(p/β)
Rhor(1− p)γ̃β Rhor(1− p)

]
(B.24)

where

γ̃ =
γ

γ + ρ+ ν
, Rhor(S∗) =

φS∗β

ρ
, Rver(R∗) =

ψ(R∗)

ρ+ ν
. (B.25)

Notably, the next-generation matrices for all four model variants are 2 × 2 matrices, as shown in
Eq. [B.15], Eq. [B.17], Eq. [B.21] and Eq. [B.24]. The traces, T (Φ), and determinants, D(Φ), of each
next-generation matrix can be written as

T (Φ) = Rhorγ̃p+ (1− p)Rhor + (1− γ̃)Rver , D(Φ) = RhorRver(1− p)(1− γ̃). (B.26)

where the values of Rhor,Rver and γ̃ are given in Eq. [B.16], Eq. [B.19], Eq. [B.22] and Eq. [B.25].
The dominate eigenvalue R0 can be obtained from the trace and the determinant of the next-generation
matrix,

R0 =
1

2

(
T (Φ) +

√
T (Φ)2 − 4D(Φ)

)
. (B.27)

In general, R0 = max(Rhor, (1 − γ̃)Rver) when p = 0. However, we define R0 = Rhor when p = 0
because that matches the biological scenario defined by a virus with a purely lytic strategy.

B.3 Loop-based interpretation of R0

Motivated by Levins’ loop analysis (Levins (1974)), we can rewrite Eq. [B.27] in a biological interpretable
way. We define, P1 = (1− p)Rhor, P2 = (1− γ̃)Rver and P3 = pγ̃Rhor. Then, Eq. [B.27] can be written
as

2R0 = P1 + P2 + P3 +
√
P 2

1 + P 2
2 + P 2

3 + 2P1P3 + 2P2P3 − 2P1P2. (B.28)

A full description of this interpretation is presented in the main text.

C Maximization of R0 and Feasible Invasion Strategies

C.1 Preliminaries

A strategy (p∗, γ∗) maximizes the basic reproduction number corresponding to the viral invasion fitness
as measured at the individual level if

R0(p∗, γ∗) ≥ R0(p, γ) ∀ (p, γ) ∈ Θ.

Given its use in the calculations and proofs, we note that while γ̃ = γ/(γ+ dL) lies in the closed interval

γ̃ ∈
[

γmin
γmin + dL

,
γmax

γmax + dL

]
where 0 <

γmin
γmin + dL

<
γmax

γmax + dL
< 1,

we generally use γ̃ ∈ (0, 1) instead of γ ∈ [γmin, γmax] for convenience.
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Proposition C.1 The basic reproduction number R0(p, γ), Eq. [B.27], is marginal continuous on (p, γ) ∈
Θ and marginal differentiable on (p, γ) ∈ Θ except at

(
0,
(Rver

Rhor − 1
)
dL
)
.

Proof. The marginal continuity of R0(p, γ) on (p, γ) ∈ Θ is obvious. Let θ ∈ {p, γ̃}, the derivative of
R0(p, γ̃) with respect to θ is

∂R0

∂θ
=

1

2

[
Tθ +

TθT − 2Dθ√
T 2 − 4D

]
where Tθ = ∂T

∂θ and Dθ = ∂D
∂θ . Thus, we need T 2 − 4D to be strictly positive to ensure the marginal

differentiability. We write out T 2 − 4D in terms of p and γ̃

T 2 − 4D =
[
Rhor(1− p)−Rver(1− γ̃)

]2
+ 2Rhorpγ̃

[
Rhor(1− p) +Rver(1− γ̃)

]
+ (Rhorpγ̃)2 .

Algebraic manipulation shows that T 2 − 4D > 0 everywhere in Θ except at
(
0,
(Rver

Rhor − 1
)
dL
)
. �

Lemma C.2 Given a fixed γ satisfying 0 < γmin ≤ γ ≤ γmax, the basic reproduction number R0(p, γ)
is uniquely maximized at p∗ = 1 if Rhor < Rver. In contrast, the basic reproduction number R0(p, γ) is
uniquely maximized at p∗ = 0 if Rhor > Rver.

Proof. In the proof, we assume Rhor < Rver; the case Rhor > Rver can be proved with a similar
argument. The uniqueness of the maximal strategy p∗ is showed by the strict monotonicity of R0 for all
p ∈ [0, 1]. Calculating the derivative of R0 with respect to p yields

∂R0

∂p
> 0 ⇔ 1

2

[
Tp +

TpT − 2Dp√
T 2 − 4D

]
> 0

⇔ [4Dp − 2TpT ]
2
> 4T 2

p

[
T 2 − 4D

]
⇔ T 2

pD > DpTpT −D2
p

where the derivatives are Tp = Rhor(γ̃ − 1) < 0 and Dp = −RhorRver(1− γ̃) < 0. Note that

2TpT − 4Dp = 2Rhor(1− γ̃)
[
(Rver −Rhor) +Rhorp(1− γ̃) + γ̃(Rver −Rhorp)

]
> 0 .

Substitution yields

T 2
pD > DpTpT −D2

p

⇔ (Rhor)2Rver(γ̃ − 1)2
[
RhorRver(1− γ̃)(1− p)−Rver(Rhorγ̃p+Rhor(1− p) +Rver(1− γ̃)−Rver)

]
> 0

⇔ (Rhor)2Rver(γ̃ − 1)2γ̃(Rver −Rhor) > 0

⇔ Rver −Rhor > 0 .

Therefore, the basic reproduction number is a strictly monotone increasing function of p in the range of
[0, 1]. This implies R0 is maximized at p∗ = 1 and minimized at p = 0 by the continuity of R0. �

Lemma C.3 Given a fixed p satisfying 0 < p ≤ 1, the basic reproduction number R0(p, γ) is uniquely
maximized at γ∗ = γmin if Rhor < Rver. In contrast, the basic reproduction number R0(p, γ) is uniquely
maximized at γ∗ = γmax if Rhor > Rver.

Proof. The proof is similar to the proof of lemma (C.2). According to proposition (C.1), we fix p 6= 0
such that R0 is differentiable on γmin ≤ γ ≤ γmax. We assume Rhor < Rver; the proof for Rhor > Rver
is similar. Note by the chain rule that

∂R0

∂γ
=
∂R0

∂γ̃

∂γ̃

∂γ
where

∂γ̃

∂γ
> 0 .

Let γ̃ ∈ (0, 1). Differentiating R0 yields

∂R0

∂γ̃
=

1

2

[
Tγ̃ +

Tγ̃T − 2Dγ̃√
T 2 − 4D

]
.
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Given Rhor < Rver, the derivatives are Tγ̃ = Rhorp−Rver < 0 and Dγ̃ = −RhorRver(1− p) < 0. The
sign of Tγ̃T − 2Dγ̃ is unknown, which can be expanded as

Tγ̃T − 2Dγ̃ = γ̃(Rhorp−Rver)2 + (Rhor)2p(1− p) +Rver(Rhor −Rver) .

If Tγ̃T − 2Dγ̃ ≤ 0 then ∂R0

∂γ̃ < 0. If Tγ̃T − 2Dγ̃ > 0, then

∂R0

∂γ̃
< 0 ⇔ 1

2

[
Tγ̃ +

Tγ̃T − 2Dγ̃√
T 2 − 4D

]
< 0

⇔ [4Dγ̃ − 2Tγ̃T ]
2
< 4T 2

γ̃

[
T 2 − 4D

]
⇔ T 2

γ̃D < Dγ̃Tγ̃T −D2
γ̃

⇔ (Rhor)2Rver(1− p)p(Rhor −Rver) < 0

⇔ Rhor < Rver.

Thus, if Rhor < Rver then ∂R0

∂γ̃ < 0. This means the basic reproduction number is a strictly monotone

decreasing function of γ when Rhor < Rver. Thus, by the continuity of R0 is maximized at γ∗ = γmin
and minimized at γ = γmax uniquely. �

C.2 Maximization of R0 and feasible invasion strategies

Using lemma (C.2) and lemma (C.3), we summarize the results of maximal viral strategy in the following
theory.

Theorem 1 The basic reproduction number R0(p, γ), Eq. [B.27], is maximized at p∗ = 0 and all γmin ≤
γ ≤ γmax if Rhor > Rver. On the other hand, R0(p, γ) is maximized uniquely at (p∗, γ∗) = (1, γmin) if
Rhor < Rver.

Proof. The proof follows from lemma (C.2) and lemma (C.3). If Rhor > Rver, then

max
γ∈[γmin,γmax]

max
p∈[0,1]

R0(p, γ) = max
γ∈[γmin,γmax]

R0(p∗ = 0, γ)

= max
γ∈[γmin,γmax]

max{Rhor, (1− γ̃)Rver}

= Rhor ∀ γ ∈ [γmin, γmax].

On the other hand, if Rhor < Rver, then

max
γ∈[γmin,γmax]

max
p∈[0,1]

R0(p, γ) = max
γ∈[γmin,γmax]

R0(p∗ = 1, γ)

= max
γ∈[γmin,γmax]

γ̃Rhor + (1− γ̃)Rver

= R0(1, γmin).

�

Remark 1 We note the following:
(i) R0(p, γ) is bounded above by max(Rhor,Rver) and bounded below by min(Rhor,Rver).
(ii) If Rhor = Rver, then R0(p, γ) = Rhor for all (p, γ) ∈ Θ.
(iii) If min(Rhor,Rver) > 1, then R0(p, γ) > 1 for all (p, γ) ∈ Θ.
(iv) If max(Rhor,Rver) < 1, then R0(p, γ) < 1 for all (p, γ) ∈ Θ.
(v) If max(Rhor,R0(1, γmin)) > 1 and min(Rhor,R0(1, γmin)) < 1, then there exists a critical curve
C = {(p, γ) : R0(p, γ) = 1}, which partitions the viral strategy space Θ into feasible strategy regime (i.e.,
R0(p, γ) > 1) and infeasible strategy regime (i.e., R0(p, γ) < 1).

Remark 2 For the two resource-implicit models [A.1] and [A.3], theorem (1) can be restated in terms
of the density of susceptible hosts at the virus-free equilibrium (S∗). Specifically, because Rhor is a
monotonically increasing function of S∗ and Rver is a monotonically decreasing function of S∗, there
exists a critical value Sc that satisfies Rhor(Sc) = Rver(Sc). Thus, we can restate theorem (1) in terms
of S∗: If S∗ > Sc, then Rhor > Rver and the maximal strategy is p∗ = 0 and arbitrary γ ∈ [γmin, γmax].
If S∗ < Sc, then Rhor < Rver and the maximal strategy is p∗ = 1 and γ = γmin.
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Remark 3 For the two resource-explicit models [A.2] and [A.4], theorem (1) can be restated in terms
of the resource concentration and the density of susceptible hosts at the virus-free equilibrium (R∗, S∗).
Specifically, because Rhor is a monotonically increasing function of S∗ and Rver is a monotonically
increasing function of R∗, there exists a curve in R∗, S∗-space where there is a transition from the purely
lytic strategy (p = 0) maximizing R0 to the purely lysogenic strategy (p = 1, γ = γmin) maximizing
R0. That curve is defined by Γ = {(R∗, S∗) : Rhor(S∗) − Rver(R∗) = 0}. We decompose R∗, S∗-space
into two regions based on Γ, let Γ+ = {(R∗, S∗) : Rhor(S∗) − Rver(R∗) > 0} and Γ− = {(R∗, S∗) :
Rhor(S∗)−Rver(R∗) < 0}. Thus, we can restate theorem (1) in terms of R∗ and S∗: If (R∗, S∗) ∈ Γ+,
then Rhor > Rver and the maximal strategy is p∗ = 0 and arbitrary γ ∈ [γmin, γmax]. If (R∗, S∗) ∈ Γ−,
then Rhor < Rver and the maximal strategy is p∗ = 1 and γ = γmin.

Remark 4 Let σ denote the largest eigenvalue of the linearized infected subsystem, J . Biologically, σ
is the exponential growth rate of viral strategy in a virus-free host population. Both σ and R0 can be
used to predict viral invasion because sign{σ} = sign{R0 − 1}. The values of σ and R0 may not be
maximized by the same viral strategy. We numerically explored what viral strategies maximized σ in
model [A.1]. Our numerical results showed that there exists a critical density of susceptible hosts, S′c,
such that if S∗ > S′c then σ is maximized at p∗ = 0 and arbitrary γ ∈ (γmin, γmax) and if S∗ < S′c then
σ is maximized at p∗ = 1 and γ = γmin. However, the critical values Sc and S′c are not the same; see
Table (1) for an example. Thus, in general, the viral strategy that maximizes R0 is not the strategy that
maximizes instantaneous growth rate.

D Endemically Infected States and Viral Invasion

In this section, we provide details about the evolutionary analysis for the four model variants. In doing
so, we apply an invasion analyses (Hurford et al. (2010); Wahl et al. (2019)), in which the system reaches
a stable endemic equilibrium with a resident viral strategy (pr, γr) ∈ Θ. We then introduce a mutant
viral strain with strategy (pm, γm) ∈ Θ and determine if the mutant can invade the resident equilibrium.
We start by deriving the next-generation matrix of the mutant at the resident equilibrium.

D.1 Mutual invasion analysis via NGM approach

The mutant-resident system of model [A.1] is

Ṡ = rSS

(
1− N

K

)
− φSV − φSVm − dSS

Ė = φSV − (λ+ dE)E

L̇ = prλE + rLL

(
1− N

K

)
− (γr + dL)L

İ = (1− pr)λE + γrL− (η + dI)I

V̇ = βηI − φNV −mV
Ėm = φSVm − (λ+ dE)Em

L̇m = pmλEm + rLLm

(
1− N

K

)
− (γm + dL)Lm

İm = (1− pm)λEm + γmLm − (η + dI)Im

V̇m = βηIm − φNVm −mVm

(D.29)

where N = S+E+L+I+Em+Lm+Im is the total population of hosts. The Em, Lm, Im, Vm-subsystem
denotes the classes with the mutant viral strategies. The resident endemic equilibrium of system [D.29]
is (S+, E+, L+, I+, V +, 0, 0, 0, 0). Invasion of the resident endemic equilibrium is determined by the
magnitude of the maximum eigenvalue of the next generation matrix,

Φmr =

[
Rhor+ γ̃mpm + (1− pm)Rhor+ Rhor+ (γ̃m/λ̃)

Rver+ pmλ̃(1− γ̃m) Rver+ (1− γ̃m)

]
(D.30)
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where

γ̃m =
γm

γm + dL
, λ̃ =

λ

λ+ dE
, Rhor+ (S+, N+) =

βηφS+λ

(η + dI)(φN+ +m)(λ+ dE)
, Rver+ (N+) =

rL

(
1− N+

K

)
dL
(D.31)

and N+ = S++E++L++I+. Note thatRhor+ has two inputs, we defineRhor+ (x, y) = βηφxλ
(η+dI)(φy+m)(λ+dE) .

The largest eigenvalue of Φmr (mutant invasion fitness) is denoted by Rinv(pm, γm|pr, γr). The sign
of Rinv(pm, γm|pr, γr)− 1 determines the invasion of the resident endemic equilibrium in system [D.29].

Similarly, we add the Lm, Vm-subsystem to model [A.3]. The resident endemic equilibrium of the
augmented resident-mutant system of model [A.3] is denoted by (S+, L+, V +, 0, 0). The next-generation
matrix of a mutant strain with viral strategy (pm, γm) is

Φmr =

[
Rhor+ γ̃mpm + (1− γ̃m)Rver+ Rhor+ (pm/β)
Rhor+ (1− pm)γ̃mβ Rhor+ (1− pm)

]
(D.32)

where

γ̃m =
γm

γm +m
, Rhor+ =

bβφS+

φN+ +m
, Rver+ =

rLδ

m

(
1− N+

K

)
(D.33)

and N+ = S+ + L+.
Again, we add the Em, Lm, Im, Vm-subsystem to model [A.2]. The resident endemic equilibrium of

the augmented resident-mutant system of model [A.2] is denoted by (R+, S+, E+, L+, I+, V +, 0, 0, 0, 0).
The next-generation matrix of a mutant strain with viral strategy (pm, γm) is

Φmr =

[
Rhor+ γ̃mpm + (1− pm)Rhor+ Rhor+ (γ̃m/λ̃)

Rver+ pmλ̃(1− γ̃m) Rver+ (1− γ̃m)

]
(D.34)

where

γ̃m =
γm

γm + dL
, λ̃ =

λ

λ+ dE
Rhor+ (S+, N+) =

βηφS+λ

(η + dI)(φN+ +m)(λ+ dE)
, Rver+ (R+) =

ψ(R+)

dL
.

(D.35)

Finally, we add the Lm, Vm-subsystem to model [A.4]. The resident endemic equilibrium of the aug-
mented resident-mutant system of model [A.4] is denoted by (R+, S+, L+, V +, 0, 0). The next-generation
matrix of a mutant strain with viral strategy (pm, γm) is

Φmr =

[
Rhor+ γ̃mpm + (1− γ̃m)Rver+ Rhor+ (pm/β)
Rhor+ (1− pm)γ̃mβ Rhor+ (1− pm)

]
(D.36)

where

γ̃m =
γm

γm + ρ+ ν
, Rhor+ (S+) =

φS+β

ρ+ φL+
, Rver+ (R+) =

ψ(R+)

ρ+ ν
. (D.37)

Notably, the derived next-generation matrices for the mutant strains in all four model variants are
2 × 2 matrices. The traces, T (Φmr ), and determinants, D(Φmr ) of four next-generation matrices are
written as

T (Φmr ) = Rhor+ γ̃mpm + (1− pm)Rhor+ + (1− γ̃m)Rver+ , D(Φmr ) = Rhor+ Rver+ (1− pm)(1− γ̃m),

(D.38)

where theRhor+ ,Rver+ and γ̃m are given in Eq. [D.31], Eq. [D.33], Eq. [D.35] and Eq. [D.37]. The dominate
eigenvalueRinv(pm, γm|pr, γr) can be obtained from the trace and the determinant of the next-generation
matrix,

Rinv(pm, γm|pr, γr) =
1

2

(
T (Φmr ) +

√
T (Φmr )2 − 4D(Φmr )

)
. (D.39)

Using the fact thatRinv(pm, γm|pr, γr) = 1 when (pm, γm) = (pr, γr), and the monotonicity ofRinv(pm, γm|pr, γr)
on (pm, γm) ∈ Θ provided by lemma (C.2), lemma (C.3) and theorem (1), we immediately obtain the
following theorem.
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Theorem 2 For all of the four model variants, we assume the susceptible cell population is positive at
the stable resident endemic equilibrium, i.e., S+ > 0. Then, we have:

(i) If Rhor+ < Rver+ , viral strains with more lysogenic strategies (i.e., pr < pm ≤ 1 and γmin ≤ γm <
γr) can invade, and viral strains with more lytic strategies (i.e., 0 ≤ pm < pr and γr < γm ≤ γmax)
cannot invade.

(ii) If Rhor+ > Rver+ , viral strains with more lysogenic strategies (i.e., pr < pm ≤ 1 and γmin ≤ γm <
γr) cannot invade, and viral strains with more lytic strategies (i.e., 0 ≤ pm < pr and γr < γm ≤ γmax)
can invade.

Remark 5 For model [A.1] and model [A.2], the stable resident endemic equilibrium might be a boundary
equilibrium with S+ = 0. If the resident system reaches a stable endemic equilibrium with S+ = 0, then
no mutant strain can invade. Specifically, a mutant strain is introduced at the resident equilibrium through
a virus particle, the first step in the proliferation of a virus is that it infects a susceptible cell, hence, a
virus mutant cannot spread given the absence of a susceptible population.

D.2 Robustness of maximal strategies

Theorem (2) requires the specification of the resident equilibrium to determine whether mutant invasion
scenarios correspond to case (i) or case (ii). In this section, we provide additional results to apply
theorem (2) to model [A.1] and model [A.2]. Further, we assume the resident strain is either the purely
lytic (p = 0) or purely lysogenic strategy (p = 1, γ = γmin).

Proposition D.1 (i) The stable resident endemic equilibrium of model [A.1], (S+, E+, L+, I+, V +) with
S+ > 0, satisfies S+ < N+ < S∗, where S∗ is given by Eq. [B.10].

(ii) The stable resident endemic equilibrium of model [A.2], (R+, S+, E+, L+, I+, V +) with S+ > 0,
satisfies R+ > R∗ and S+ < S∗, where R∗ and S∗ are given by Eq. [B.12].

Proof. Proof of (i) : S+ < N+ is a trivial observation. We prove N+ < S∗ by contradiction. Suppose
N+ ≥ S∗ and set Ṡ = 0 in model [A.1]

0 = S+

[
rS

(
1− N+

K

)
− dS

]
− φS+V + ≤ −φS+V + < 0 .

This shows a contradiction such that (i) is true.
Proof of (ii) : At the stable resident endemic equilibrium of model [A.2], we set Ṙ = 0 and Ṡ = 0{

0 = J − dRR+ − eψ(R+) (L+ + (1− αs)S+)
0 = S+ [(1− αs)ψ(R+)− φV + − dS ]

Given S+ > 0, we rewrite the above system and find that

S+ =
(J − dRR+)− eψ(R+)L+

e(dS + φV +)
, ψ(R+) =

φV + + dS
1− αs

Note that ψ(R∗) = dS/(1 − αs) by substituting virus-free equilibrium, Eq. [B.12], into the Monod
equation. Then, we find that

ψ(R+) =
φV + + dS

1− αs
>

dS
1− αs

= ψ(R∗).

It should be clear that R+ > R∗ since ψ, the Monod equation, is a strictly monotone increasing function.
In addition,

S+ =
(J − dRR+)− eψ(R+)L+

e(dS + φV +)
<

(J − dRR∗)
edS

= S∗.

�

Proposition D.2 (i) If the virus-free equilibrium of model [A.1] satisfies Rhor(S∗) < Rver(S∗), where
Rhor(S∗) and Rver(S∗) are given by Eq. [B.16], then Rhor+ (S+, N+) < Rver+ (N+) at the stable resident
endemic equilibrium, where Rhor+ (S+, N+) and Rver+ (N+) are given by Eq. [D.31].

(ii) If the virus-free equilibrium of model [A.2] satisfies Rhor(S∗) < Rver(R∗), where Rhor and Rver
are given by Eq. [B.22], then Rhor+ (S+, N+) < Rver+ (R+) at the stable resident endemic equilibrium,
where Rhor+ (S+, N+) and Rver+ (R+) are given by Eq. [D.35].
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Proof. Proof of (i): First, we assume that the susceptible cells population at resident equilibrium of
model [A.1] is positive, S+ > 0, then we have S+ < N+ < S∗ by proposition (D.1). Given Rhor(S∗) <
Rver(S∗) in Eq. [B.16], we arrive

Rver+ (N+) > Rver(S∗) > Rhor(S∗) > Rhor+ (S+, S+) > Rhor+ (S+, N+).

Second, if S+ = 0 at the resident equilibrium of model [A.1], Rhor+ = 0, it’s clear that Rver+ > Rhor+ .
Proof of (ii): First, we assume that the susceptible cells population at resident equilibrium of

model [A.2] is positive, S+ > 0, then we have S+ < S∗ and R+ > R∗ by proposition (D.1). Given
Rhor(S∗) < Rver(R∗) in Eq. [B.22], we arrive

Rver+ (R+) > Rver(R∗) > Rhor(S∗) > Rhor+ (S+, S+) > Rhor+ (S+, N+).

Second, if S+ = 0 at the resident equilibrium of model [A.2], Rhor+ = 0, it’s clear that Rver+ > Rhor+ . �

For model [A.1] and model [A.2], when the resident strains are either the purely lytic strategy (p = 0)
or the purely lysogenic strategy (p = 1, γ = γmin), some qualitative results of evolutionary invasion are
immediately obtained by theorem (2) and proposition (D.2). First, in the event that resident strains are
purely lytic (p = 0), then, we have remark (6).

Remark 6 We assume the resident viral strain is the purely lytic strategy (p = 0).
(i) If the virus-free equilibrium of model [A.1] satisfies Rhor(S∗) < Rver(S∗), where Rhor(S∗) and

Rver(S∗) are given by Eq. [B.16], the viral strains with more lysogenic strategies (i.e., 0 < pm ≤ 1) can
invade the stable resident endemic equilibrium.

(ii) If the virus-free equilibrium of model [A.1] satisfies Rhor(S∗) > Rver(S∗), where Rhor(S∗) and
Rver(S∗) are given by Eq. [B.16], the viral strains with more lysogenic strategies (i.e., 0 < pm ≤ 1)
can invade the stable resident endemic equilibrium if Rhor+ < Rver+ , where Rhor+ and Rver+ are given by
Eq. [D.31]. In contrast, the viral strains with more lysogenic strategies cannot invade the stable resident
endemic equilibrium if Rhor+ > Rver+ .

(iii) If the virus-free equilibrium of model [A.2] satisfies Rhor(S∗) < Rver(R∗), where Rhor(S∗) and
Rver(R∗) are given by Eq. [B.22], the viral strains with more lysogenic strategies (i.e., 0 < pm ≤ 1) can
invade the stable resident endemic equilibrium.

(iv) If the virus-free equilibrium of model [A.2] satisfies Rhor(S∗) > Rver(R∗), where Rhor(S∗) and
Rver(R∗) are given by Eq. [B.22], the viral strains with more lysogenic strategies (i.e., 0 < pm ≤ 1)
can invade the stable resident endemic equilibrium if Rhor+ < Rver+ , where Rhor+ and Rver+ are given by
Eq. [D.35]. In contrast, the viral strains with more lysogenic strategies cannot invade the stable resident
endemic equilibrium if Rhor+ > Rver+ .

Second, in the event that the resident strain is purely lysogenic (p = 1, γ = γmin) and the susceptible
cell population is positive at the resident equilibrium, S+ > 0, then we arrive at remark (7). Note that
the invasion scenario of S+ = 0 is provided in remark (5).

Remark 7 We assume the resident viral strain is the purely lysogenic strategy (p = 1, γ = γmin) and
the susceptible cell population is positive at the resident equilibrium, S+ > 0.

(i) If the virus-free equilibrium of model [A.1] satisfies Rhor(S∗) < Rver(S∗), where Rhor(S∗) and
Rver(S∗) are given by Eq. [B.16], the viral strains with more lytic strategies (i.e., 0 ≤ pm < 1 and
γmin < γm ≤ γmax) cannot invade the stable resident endemic equilibrium.

(ii) If the virus-free equilibrium of model [A.1] satisfies Rhor(S∗) > Rver(S∗), where Rhor(S∗) and
Rver(S∗) are given by Eq. [B.16], the viral strains with more lytic strategies (i.e., 0 ≤ pm < 1 and
γmin < γm ≤ γmax) can invade the stable resident endemic equilibrium if Rhor+ > Rver+ , where Rhor+ and
Rver+ are given by Eq. [D.31]. In contrast, the viral strains with more lytic strategies cannot invade the
stable resident endemic equilibrium if Rhor+ < Rver+ .

(iii) If the virus-free equilibrium of model [A.2] satisfies Rhor(S∗) < Rver(R∗), where Rhor(S∗) and
Rver(R∗) are given by Eq. [B.22], the viral strains with more lytic strategies (i.e., 0 ≤ pm < 1 and
γmin < γm ≤ γmax) cannot invade the stable resident endemic equilibrium.

(iv) If the virus-free equilibrium of model [A.2] satisfies Rhor(S∗) > Rver(R∗), where Rhor(S∗) and
Rver(R∗) are given by Eq. [B.22], the viral strains with more lytic strategies (i.e., 0 ≤ pm < 1 and
γmin < γm ≤ γmax) can invade the stable resident endemic equilibrium if Rhor+ > Rver+ , where Rhor+ and
Rver+ are given by Eq. [D.35]. In contrast, the viral strains with more lytic strategies cannot invade the
stable resident endemic equilibrium if Rhor+ < Rver+ .
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By theorem (1), the maximal strategies, i.e., the strategies that maximize R0, are either purely lytic
strategy or the purely lysogenic strategy. For model [A.1] and model [A.2], when the resident strains are
the maximal strategies, we provide remark (8).

Remark 8 (i) If the purely lysogenic strategy maximizes R0, then no other strategy can invade the
endemic equilibrium for the purely lysogenic strategy.

(ii) If the purely lytic strategy maximizes R0, then no other strategy can invade the endemic equilib-
rium for the purely lytic strategy, provided Rhor+ > Rver+ holds. Otherwise, if Rhor+ < Rver+ , the endemic
equilibrium for the purely lytic strategy can be invaded by viral strains with more temperate strategies
(i.e., pr < pm ≤ 1 and γmin ≤ γm < γr).

D.3 Invasion of temperate phage with varying degrees of super-infection
immunity

In this section, we detail the invasion analysis for model [A.2] that includes super-infection. In order
to control the degree of super-infection immunity, we introduce a new parameter ε, where 0 ≤ ε ≤ 1.
When ε = 1, lysogens have full super immunity, viruses are absorbed into all the cells but only actively
infect susceptible cells (i.e., super-infection is a ‘sink’ for viruses). When ε = 0, purely lytic viruses are
absorbed into all cells and can switch a lysogen into an actively infected cell. We consider the following
mutant-resident system of model [A.2] with the super-infection immunity mechanism (assuming resident
strain is purely lytic (p = 0), while the mutant strain is temperate with pm > 0)

Ṙ = J − dRR− f(R,S, Lm)

Ṡ = (1− αS)ψ(R)S − φSV − φSVm − dSS
Ė = φSV + (1− ε)φLmV − (λ+ dE)E

İ = λE − (η + dI)I

V̇ = βηI − φNV −mV
Ėm = φSVm − (λ+ dE)Em

L̇m = pmλEm + ψ(Lm)Lm − (1− ε)φLmV − (γm + dL)Lm

İm = (1− pm)λEm + γmLm − (η + dI)Im

V̇m = βηIm − φNVm −mVm

(D.40)

where f(R,S, Lm) = eψ(R) (Lm + (1− αS)S) denotes the cumulative uptake of nutrients by all cells
and N = S + E + I + Em + Lm + Im is the total population of hosts. The next-generation matrix of a
mutant strain with viral strategy (pm, γm) is

Φmr =

[
Rhor+ γ̃mpm + (1− pm)Rhor+ Rhor+ (γ̃m/λ̃)

Rver+ pmλ̃(1− γ̃m) Rver+ (1− γ̃m)

]
(D.41)

where γ̃m = γm
γm+dL

, λ̃ = λ
λ+dE

and

Rhor+ (S+, N+) =
βηφS+λ

(η + dI)(φN+ +m)(λ+ dE)
, Rver+ (R+) =

ψ(R+)

dL + (1− ε)φV +
. (D.42)

The mutant invasion fitness Rinv is the largest eigenvalue of NGM Φmr presented in Eq. [D.41].

E Model Parameters

Here we present the parameters used to support the figures presented in this study.
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Table 1: Parameters of model (A.1), source from (Weitz (2015), Weitz et al. (2019))

Parameters Value Unit

rS , maximal cellular growth rate of susceptible cells 0.2 + 10−4 ∼ 1 h−1

rL, maximal cellular growth rate of lysogens (with direct benefits) 1.1 h−1

rL, maximal cellular growth rate of lysogens (with indirect benefits) 0.1 h−1

rS , maximal cellular growth rate of susceptible cells 0.2 + 10−4 ∼ 1 h−1

dE , cellular death rate of exposed infected cells 0.2 h−1

dL, cellular death rate of lysogens 0.2 h−1

dI , cellular death rate of lytic infected cells 0.2 h−1

K, carrying capacity 2× 108 ml−1

λ, transition rate from exposed state to fated determined states 2 h−1

η, lysis rate 1 h−1

β, burst size 50
φ, adsorption rate 3.4× 10−10 ml/h

m, virion decay rate 1/24 h−1

Table 2: Parameters of model (A.2), source from (Stewart and Levin (1984), Weitz et al. (2019))

Parameters Value Unit

e, conversion efficiency 5× 10−7 µg

dR, decay rate of resources 0.5 h−1

µmax, maximum growth rate of cells 1.2 h−1

Rin, half-saturation constant 5.0 µg/ml

dE , cellular death rate of exposed infected cells 0.2 h−1

dL, cellular death rate of lysogens (with direct benefits) 0.08 h−1

dL, cellular death rate of lysogens (with indirect benefits) 0.5 h−1

dI , cellular death rate of lytic infected cells 0.2 h−1

λ, transition rate from exposed state to fated determined states 2 h−1

η, lysis rate 1 h−1

β, burst size 50
φ, adsorption rate 3.4× 10−10 ml/h

m, virion decay rate 1/24 h−1

αS , selection coefficient −1 ∼ 0.5

J , influx rate of resources 0.23 ∼ 11.25 (µg/ ml) h−1

Table 3: Parameters of model (A.3), source from (Berngruber et al. (2013))

Parameters Value Unit

rL, growth rate of infected cells (with direct benefits) 3.0 h−1

rL, growth rate of infected cells (with indirect benefits) 0.2 h−1

rS , growth rate of susceptible cells 0.75 + 10−4 ∼ 2.25 h−1

K, carrying capacity of bacteria 109 cells/ml
δ, fidelity of vertical transmission 1

β, burst size 200 phage/cell

m, dilution rate 0.75 h−1

b, probability of fusion after adsorption 10−2

φ, adsorption constant 10−8 h−1cell−1
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Table 4: Parameters of model (A.4), source from (Stewart and Levin (1984))

Parameters Value Unit

e, conversion efficiency 5× 10−7 µg/ cell

ρ, flow rate 0.2 h−1

b, maximum growth rate of cells 0.7 h−1

Rin, half-saturation constant 4.0 µg/ml

ν, prophage loss rate (with direct benefits) 10−3 (1/cell) h−1

ν, prophage loss rate (with indirect benefits) 1 (1/cell) h−1

β, burst size 100 phage/cell

φ, phage adsorption rate 10−9 (ml/phage) h−1

αS , selection coefficient 0.1 ∼ 0.61
C, resource concentration in the reservoir 0.21 ∼ 56.68 µg/ ml
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