Cell Reports, Volume 40

Supplemental information

Genome-wide fetalization of enhancer

architecture in heart disease

Cailyn H. Spurrell, Iros Barozzi, Michael Kosicki, Brandon J. Mannion, Matthew J. Blow, Yoko Fukuda-Yuzawa, Neil Slaven, Sarah Y. Afzal, Jennifer A. Akiyama, Veena Afzal, Stella Tran, Ingrid Plajzer-Frick, Catherine S. Novak, Momoe Kato, Elizabeth A. Lee, Tyler H. Garvin, Quan T. Pham, Anne N. Kronshage, Steven Lisgo, James Bristow, Thomas P. Cappola, Michael P. Morley, Kenneth B. Margulies, Len A. Pennacchio, Diane E. Dickel, and Axel Visel

Supplementary Figure 1: Summary of enhancer representation across all healthy left ventricle samples. Related to Figure 2A. (A) Across all 26 healthy samples, we identified 46,826 total predicted enhancers, with 33,317 present in at least two subjects. (B) Split violin plots showing the distribution of average ChIP-seq signal enrichments at enhancer (TSS-distal) regions with a significant H3K27ac enrichment in one or more adult control samples. Distribution of average enrichments at samples either showing or not showing a significant peak are indicated in red and grey, respectively.

Supplementary Figure 2: Transgenic validation of additional predicted human heart enhancers. Related to Figure 2C. Shown are representative transgenic embryonic day 11.5 (E11.5) mouse embryos showing *lacZ* expression (blue staining) driven by one of four different human heart enhancers. Additional examples are shown in Figure 2C. Red numbers indicate reproducibility of the heart expression over the total number of transgene-expressing embryos obtained, hs numbers indicate the unique identifier for the enhancer in the VISTA Enhancer Browser, and the coordinates below are for the tested enhancer in the hg38 assembly of the human genome. Embryos have an average crown-rump length of 6 mm.

Supplementary Figure 3: Chromatin and gene expression profiling of dilated cardiomyopathy. Related to Figure 3. (A) Top: number of predicted enhancers discovered in each DCM left ventricle sample. Middle: demographic information for each subject. Bottom: Heatmap showing the proportion of peaks shared between samples (red tones in top left), along with z-scores indicating how many standard deviations the observed number of shared peaks exceeded random expectation (blue tones in bottom right, see Methods). (B-C) Principal Components (PC1, x-axes; PC2, y-axes) for expressed genes (B) and distal enhancer peaks (C), as in Figure 3A. In this version, samples from males are colored blue and females pink. These data include only autosomal genes and peaks.

Enhancers up in fetal only (8,539)										
Motifs enriched	Name	Туре	Motifs enriched	Name	Туре	Rank in fetal only	Rank in DCM only	Motifs enriched	Name	Туре
ESCITATCIE	Gata2↓	Zf	SECATTCCA	TEAD1	TEA	24	32	EXAMPLE CAPETORS	Atoh1	bHLH
ŞAGATAAGS Ê	Gata1	Zf	JAACAGCTG	Tcf21	bHLH	- †	3	ACCATCTGIE	NeuroG2	bHLH
SEAGATAASE	Gata4	Zf	ESCATICCAS	TEAD3	TEA	23	31	JAACAGCTG	Tcf21	bHLH
JCTTATCIES	Gata6	Zf	SEAGGAATEP	TEAD4	TEA	27	46↓	SCAFETGEES	Twist2	bHLH
Ş<u>E</u>IG<u>E</u>TGA<u>C</u>A<u>S</u><u>E</u>	Tbx20↑	T-box	ÊÊCAGCTG	Ap4	bHLH	57 🕇	10	FECAISTGEE	TCF4	bHLH
<u><u>FCTATTTTTAGC</u></u>	Mef2d↓	MADS	EFAGGAAT FF	TEAD	TEA	32	47	EECAECTGE	BHLHA15	bHLH
<u><u><u>STICCCASE</u>STCCCASE</u></u>	NF1	CTF	SCAGSTGEES	Twist2	bHLH	-	4	ATTTCCALE	NFAT	RHD
AGATAASS	GATA3	Zf	<u><u>ÉCAGCTGE</u></u>	Tcf12	bHLH	48 🕇	11	SCCAICTGEE	NeuroD1	bHLH
<u><u><u>FTGGCAGESTGCC</u></u></u>	Tlx	NR		MyoG	bHLH	50 🕇	23	<u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u>	Olig2	bHLH
TGASAGAGESCAGES	Hand2	bHLH		Hand2	bHLH	10	-	£ \$ £ CAGCTG <u></u>	Ap4	bHLH

Supplementary Figure 4: Transcription factor binding motifs enriched in enhancers upregulated in fetal and DCM samples. Related to Figure 5. Shown are the top ten most significantly enriched transcription factor binding motifs identified by HOMER (see Methods) for enhancers upregulated in fetal samples only (left), enhancers upregulated in both fetal and DCM (middle), and enhancers upregulated in DCM only. The background set used for all comparisons was composed of all enhancers detected in at least two healthy adult, DCM or fetal samples. Arrows next to motif names or ranks indicate the direction of significant change in gene expression (see Methods) of corresponding transcription factor in relevant group compared to healthy adults. Venn diagram not drawn to scale.