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1. Instrumentation and Physical Methods.  

Preparation and handling of air-sensitive chemicals were done under dry nitrogen 

atmosphere by utilizing MBraun gloveboxes and/or standard Schlenk techniques. 1H, 13C{1H}, 

and 19F NMR spectra were obtained on a Varian 400 MHz spectrometer at room temperature 

(RT) unless otherwise noted. 31P NMR spectra were recorded on a Varian 300 MHz spectrometer 

at RT. 1H and 13C chemical shifts were reported as δ values downfield from the internal standard 

tetramethylsilane. 19F NMR spectra were recorded at 282.344 MHz using a reference of C6H5CF3 

(δ = -63.72 ppm).  31P chemical shifts were referenced relative to an external standard of bis(4-

fluorophenyl)phenylphosphine oxide (δ = 23.91 ppm). Elemental analyses were performed on a 

Perkin-Elmer PE2400 microanalyzer at Georgetown University. UV-vis spectra were recorded 

either on a Cary 50 dual beam or Agilent 8454 Diode Array spectrometer equipped with a stirrer 

and a Unisoku USP-203 cryostat for variable temperature (-70 °C to 45 °C) experiments. The 

molar extinction coefficients of different isolated complexes were determined from the Beer’s 

law plot (absorbance vs concentration) with at least four different concentrations.  

Cyclic voltammetry measurements were carried out at RT under dry nitrogen atmosphere 

using BASi Epsilon potentiostat. A three-electrode system was used and consisted of a glassy 

carbon working electrode, high surface area platinum coil counter electrode, and a BASI non-

aqueous reference electrode (MF-2062) containing a silver wire immersed in 0.01 M AgNO3 in 

THF. 

EPR measurements were performed in air-tight quartz tubes. EPR spectra were recorded 

on a JEOL continuous wave spectrometer JES-FA200 equipped with an X-band Gunn oscillator 

bridge, a cylindrical mode cavity, and a liquid nitrogen cryostat. EPR measurements were 

performed in sealed quartz tubes and the simulation of EPR spectra were carried out using the 

program QCMP 136 by Prof. Dr. Frank Neese from the Quantum Chemistry Program Exchange 

as described by Neese et al. in J. Am. Chem. Soc. 1996, 118, 8692-8699.  
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2. Materials.  

All chemicals were purchased from regular vendors (e.g. Sigma-Aldrich, Acros Organics, Strem 

Chemicals, TCI, Combi-Blocks) and used without further purification unless otherwise 

mentioned. Molecular sieves (4A, 4-8 mesh beads) were obtained from Fisher Scientific and 

activated in vacuo at 180 °C for 24 h. Extra dry solvents (≥99.5%) with Acroseal® and 

deuterated solvents were purchased from Acros Organics and Cambridge Isotope Laboratories, 

respectively. Both anhydrous and deuterated solvents were sparged with nitrogen and stored over 

activated molecular sieve under nitrogen atmosphere. 

 [Cl2NNF6]Cu(2-O2N) (1),1 {[Me2NNF6]Cu}2,
2 {[Cl2NN]Cu}2(benzene),3 and {[Me2NN]Cu}2,

4 

were synthesized according to previously published procedures.   

  



 

3. S

A mixtur

mmol) in

resultant 

fluoroben

analysis: 

N, 7.94. U

 

  

Figure S
mM in b
model: g

Fig
con

ynthesis an

re of {[Me2N

n anhydrous

dark green 

nzene/pentan

calculated f

UV-vis (ben

S2. Isotropic
benzene at 2
giso = 2.088, A

gure S1. A
ncentrations.

d Characte

NNF6]Cu}2 

s fluorobenz

reaction m

ne at -40 °C

for C21H19F6

nzene, 25 °C

c X-band EP
293 K). Freq
Aiso(

63/65Cu) 

A) UV-vis 
. B) Beer’s l

rization of [

(0.931 g, 0.

zene (~7 m

mixture was 

C, resulting

6N3O2Cu: C

): λmax = 598

PR spectrum 
quency = 9.4
= 196 MHz.

spectra of 
aw plot for 2

S4 

[Me2NNF6]C

.976 mmol) 

mL) was stir

filtered and 

in 0.365 g

, 48.23; H, 3

8 nm (ε = 50

and simulat
412571 GHz
.  

2 in benz
2 depicts λma

Cu(2-O2N) 

and 2.1 eq

rred at room

d crystallized

of crystals f

3.66; N, 8.0

02 M-1cm-1).

tion for [Me
z. Simulatio

zene at 25

ax/nm (ε/M-1

 (2). 

quiv. AgNO2

m temperatu

d from a lay

for a 36% y

04. Found: C

 

e2NNF6]Cu(
on was perfo

 

5 °C at di
cm-1) = 598 

2 (0.310 g, 2

ure for 6 h.

yered mixtu

yield.  Elem

C, 48.39; H, 

 

2-O2N)  (2)
ormed using

ifferent 
(502). 

2.010 

. The 

ure of 

mental 

3.62; 

) (2.0 
g 1Cu 



S5 
 

2700 2900 3100 3300 3500 3700

Magnetic Field (G)

exp

sim

4. Synthesis and Characterization of [Cl2NN]Cu(2-O2N) (3). 

A mixture of {[Cl2NN]Cu}2(m-benzene) (0.578 g, 0.590 mmol) and 3.5 equiv. AgNO2 (0.316 g, 

2.05 mmol) in anhydrous fluorobenzene (10 mL) was stirred at room temperature for 3 h. The 

resultant dark green reaction mixture was filtered and crystallized at -40 °C resulting in 0.206 g 

of crystals for a 35% yield. Anal. Calcd for C17H13Cl4CuN3O2: C, 41.11; H, 2.64; N, 8.46. 

Found: C, 41.16; H, 2.72; N, 8.39. UV-vis (toluene, 25 °C): λmax = 595 nm (ε = 212 M-1cm-1). 

    

Figure S4. Isotropic X-band EPR spectrum and simulation for [Cl2NN]Cu(2-O2N)  (3)  
(0.2 mM in toluene at 298 K). Frequency = 9.433876 GHz. Simulation was performed 
using 1Cu model: giso = 2.100, Aiso(

63/65Cu) = 208 MHz.  

Figure S3. A) UV-vis spectra of 3 in toluene at 25 °C at different concentrations. 
B) Beer’s law plot for 3 depicts λmax/nm (ε/M-1cm-1) = 595 (212). 
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5. Synthesis and Characterization of [Me2NN]Cu(2-O2N) (4). 

A mixture of {[Me2NN]Cu}2 (0.217 g, 0.485 mmol) and 1.2 equiv. AgNO2 (0.090 g, 0.582 

mmol) in anhydrous fluorobenzene (5 mL) was stirred at room temperature for 1 h. The resultant 

dark green reaction mixture was filtered, evaporated under reduced pressure to afford a green 

powder, dissolved in pentane and crystallized at -40 °C resulting in 0.113 g of crystals for a 56% 

yield.  Anal. Calcd for C21H25CuN3O2: C, 60.78; H, 6.07; N, 10.13. Found: C, 61.16; H, 6.19; N, 

9.79. UV-vis (toluene, 25 °C): λmax = 600 nm (ε = 294 M-1cm-1).  

 

  

Figure S6. Isotropic X-band EPR spectrum for [Me2NN]Cu(2-O2N)  (4) (4.0 mM in 
pentane at 298 K). Frequency = 9.1843980 GHz. .Simulation was performed using 1Cu 
model: giso = 2.093, Aiso(

63/65Cu) = 200 MHz. 
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Figure S5. A) UV-vis spectra of 4 in toluene at 25 °C at different concentrations. 
B) Beer’s law plot for 4 depicts λmax/nm (ε/M-1cm-1) = 600 (294). 
 

600 nm 

0

0.5

1

1.5

2

2.5

3

500 600 700 800

A
b
so
rb
an

ce

Wavelength (nm)

1.3 mM

2.1 mM

3.0 mM

3.9 mM

y = 0.2939x ‐ 0.0751
R² = 0.9714

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 2 3 4

A
b
so
rb
an

ce
 (
A
U
)

Concentration (mM)

• 600 nm 

A)  B)



S7 
 

6. Synthesis and Characterization of [Cl2NNF6]Cu(PPh3) (5).  

A mixture of {[Cl2NNF6]Cu}2(benzene) (0.140 g, 0.117 mmol) and 2.1 equiv. PPh3 (0.066 g, 

0.251 mmol) in anhydrous fluorobenzene (5 mL) was stirred at room temperature overnight. The 

resultant orange reaction mixture was filtered and crystallized with a layer of pentane at -40 °C 

for 0.149 g of crystals for a 78% yield.  1H NMR (400 MHz, 298 K, C6D6): δ 6.96 (m, 9H, p-Ar-

H, m-Ar-H), 6.83 (t, 6H, o-Ar-H), 6.69 (d, 4H, m-Ar-H), 6.40 (s, 1H, backbone-CH), 6.15 (t, 2H, 

p-Ar-H. 19F NMR (376 MHz, C6D6): δ -64.54 (s, -CF3). 13C{1H} NMR (100 MHz, C6D6): δ 

145.86, 133.57, 133.42, 132.23, 131.84, 130.00, 129.98, 129.82, 128.86, 128.76, 124.90. 31P 

NMR (300 MHz, C6D6): δ 3.70. Anal. Calcd for C21H25Cl4CuF6N2P: C, 51.21; H, 2.70; N, 3.41. 

Found: C, 51.41; H, 2.83; N, 3.39. 

  

Figure S7. 1H NMR spectrum (400 MHz, 298K, C6D6) of 5. (* denotes 
residual proteo solvent impurities.) 

* 



S8 
 

 

 

Figure S9. 19F NMR spectrum (376 MHz, 298K, C6D6) of 5. 

Figure S8. 13C {1H} NMR spectrum (100 MHz, 298K, C6D6) of 5. 
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Figure S10. 31P NMR spectrum (300 MHz, 298K, C6D6) of 5. 
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7. Synthesis and Characterization of [Cl2NNF6]Cu(P(ArCF3)3) (6). 

A mixture of {[Cl2NNF6]Cu}2(benzene) (0.080 g, 0.067 mmol) and 2.1 equiv. P(ArCF3)3 (0.067 g, 

0.1432 mmol) in anhydrous fluorobenzene (5 mL) was stirred at room temperature overnight. 

The resultant orange reaction mixture was filtered and crystallized at -40 °C for 0.058 g of 

orange crystals for an 84% yield.  1H NMR (400 MHz, 298 K, C6D6): δ 7.16 (solvent), 7.09 (d, 

6H, o-Ar-H), 6.76 (t, 6H, m-Ar-H), 6.62 (d, 4H, m-Ar-H), 6.40 (s, 1H, backbone-CH), 6.16 (d, 

2H, p-Ar-H). 19F NMR (376 MHz, C6D6): δ -63.72 (s, standard), -64.24 (s, phosphine-CF3), -

65.83 (s, backbone-CF3). 13C{1H} NMR (100 MHz, C6D6): δ 145.68, 134.93, 134.56, 133.78, 

133.62, 132.81, 132.49, 129.70, 125.91, 125.36. 31P NMR (300 MHz, C6D6): δ 78.76. Anal. 

Calcd for C42H37CuF9N2P: C, 44.53; H, 1.87; N, 2.73. Found: C, 43.90; H, 2.03; N, 2.77.  

  

* 

Figure S11. 1H NMR spectrum (400 MHz, 298K, C6D6) of 6. (* 
denotes residual proteo solvent impurities.) 



S11 
 

Figure S13. 19F NMR spectrum (376 MHz, 298K, C6D6) of 6. 

Figure S12. 13C {1H} NMR spectrum (100 MHz, 298K, C6D6) of 6. 
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Figure S14. 31P NMR spectrum (300 MHz, 298K, C6D6) of 6. 
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8. Electrochemistry 
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Figure S16. Cyclic voltammogram of [Cl2NN]Cu(κ2-O2N) (3) (1.0 mM in THF at 25 °C) in 

presence of n-tetrabutyl ammonium hexafluorophosphate (0.1 M).  Scan proceeds in the 

indicated direction with scan rate of 50 mV/s. 

‐0.90‐0.70‐0.50‐0.30‐0.100.100.300.500.70

Potential (vs. NHE) (V)

Figure S15. Cyclic voltammogram of [Me2NNF6]Cu(κ2-O2N) (2) (1.0 mM in THF at 25 °C) 

in presence of n-tetrabutyl ammonium hexafluorophosphate (0.1 M).  Scan proceeds in the 

indicated direction with scan rate of 50 mV/s. 

-313 mV 

119 mV 
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Table S1. Electrochemical data for 1-4 
Copper Complex Reduction Potential (V v. NHE) in THF 

[Cl2NNF6]Cu(2-O2N) (1) 0.3311

[Me2NNF6]Cu(2-O2N) (2) 0.303

[Cl2NN]Cu(2-O2N) (3) -0.021 

[Me2NN]Cu(2-O2N) (4) -0.113 

‐0.50‐0.30‐0.100.10

Potential (vs. NHE) (V)

-179 mV

-46 mV

Figure S17. Cyclic voltammogram of [Me2NN]Cu(κ2-O2N) (4) (1.0 mM in THF at 25 °C) in 

presence of n-tetrabutyl ammonium hexafluorophosphate (0.1 M).  Scan proceeds in the 

indicated direction with scan rate of 50 mV/s. 
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9. Reaction of [Cl2NNF6]CuII(κ2-O2N) (1) with  1 and 2 equiv. of P(ArCF3)3 

 

To a solution of 1 in C6D6 (0.5 mL of 33.0 mM solution, 0.0165 mmol) was added a C6D6 

solution containing 1 equiv. tris(4-(trifluoromethyl)phenyl)phosphine (P(ArCF3)3) (0.2 mL of 

82.6 mM solution, 0.0165 mmol). A trifluorotoluene standard was also added (8 equiv.)  The 

color of the solution changed from dark green to yellow.  After 1.5 h the resultant solution was 

analyzed by 19F NMR spectroscopy, which showed the formation of 6 in 46% yield as judged by 

the resonance at -65.85 ppm. O=P(ArCF3)3 was formed in 30% yield as judged by the resonance 

at -64.32 ppm.  The procedure was repeated with 2 equiv. tris(4-

(trifluoromethyl)phenyl)phosphine (0.4 mL of 82.6 mM solution, 0.0330 mmol) for a yield of 

72% of 6. O=P(ArCF3)3 was formed in 64% yield. 19F NMR (376 MHz, C6D6): δ -63.72 (s, 

standard), -64.24 (s, phosphine-CF3), -64.32 (s, O=P(ArCF3)3) -65.83 (s, backbone-CF3). 

  

Scheme S1. Reaction between 1 and phosphine generates nitric oxide and phosphine oxide. 

Figure S18. 19F NMR spectrum (376 MHz, 298K, C6D6) of crude reaction mixture obtained from the 
reaction of 1 and 1 equiv. P(ArCF3)3. 

standard 

[Cu]-P(ArCF3)3 

O=P(ArCF3)3 

[Cl2NNF6]Cu-P(ArCF3)3 
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Figure S19. 19F NMR spectrum (376 MHz, 298K, C6D6) of crude reaction mixture obtained from the 
reaction of 1 and 2 equiv. P(ArCF3)3. 

standard 

[Cu]-P(ArCF3)3 

O=P(ArCF3)3

[Cl2NNF6]Cu-P(ArCF3)3
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11. NO Capture from [Cl2NNF6]Cu(2-O2N) (1) and P(ArCF3)3 with Co[T(OMe)PP]  

Nitric oxide production was quantified similarly to previously published procedures.2,4 A vial 

within a vial set up was used with the outer vial sealed with a septum and the inner vial left open.  

In the small vial a solution of [Cl2NNF6]Cu(κ2-O2N) (1) in toluene (0.5 mL of 14 mM solution, 

0.0070 mmol) while in the outer vial [T(OMe)PP]CoII in CDCl3 (1.0 mL of 0.0084 M solution, 

0.0084 mmol) was readied to capture released NO from the reaction. One equiv. of P(ArCF3)3 in 

toluene (0.2 mL of 0.035 M solution, 0.0070 mmol) was injected through the septum into the 

inner vial to initiate the reaction and it was allowed to stir 2 h and quantified via 1H NMR for a 

51% yield.  The reaction was repeated with 2 equiv. P(ArCF3)3 (0.4 mL of 0.035 M solution, 

0.0140 mmol) for a 59% yield.  

 

 

  

O-Me peak 
with NO bound

Figure S22. 1H NMR spectrum of [T(OMe)PP]CoII(NO) from NO capture of 
reaction of 1 and 1 equiv. P(ArCF3)3 (400 MHz, 298K, CDCl3). 
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  Figure S23. 1H NMR spectrum of [T(OMe)PP]CoII(NO) from NO capture of 
reaction of 1 and 2 equiv. P(ArCF3)3 (400 MHz, 298K, CDCl3). 

O-Me peak 
with NO bound
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12. Kinetic Analysis of Reaction of 1-4 with P(Ar CF3
 )3. 

 

Establishing Rate Law with [Me2NNF6]Cu(2-O2N) (2) and P(ArCF3)3: 

The following stock solutions were prepared and stored at -40 °C between experiments: 2.0 mM 

[Me2NNF6]Cu(2-O2N) (2) in toluene, 0.80 M P(ArCF3)3 (ArCF3 = 4-CF3C6H4) in toluene. 

Reactions were conducted in a UV-Vis cuvette: 2 mL of the copper solution was transferred to a 

cuvette inside the glove box and sealed with a septum which maintained a steady green color.  

0.125 – 0.25 mL (25, 30, 40, or 50 eq.) of the phosphine solution was drawn into a syringe inside 

the glovebox as well.  The cuvette was placed in the UV-vis equipped with the cryostat set to 

maintain the temperature at -60°C.  The solution was allowed to stir for ~10 min to allow the 

temperature to be uniform.  After ~30 s collection the phosphine solution was injected.  The drop 

of the peak at 600 nm was followed after the injection of the phosphine solution. The final color 

of the solution was yellow.   

Figure S24. Typical full spectrum kinetics of [Me2NNF6]Cu(κ2-O2N) (2) (initial concentration 2.0 
mM) reaction with 20 equiv. P(ArCF3)3 in fluorobenzene at -40 °C with spectra collected every 1 
second for 250 seconds.  
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Figure S25. Kinetics of [Me2NNF6]Cu(κ2-O2N) (2) (initial concentration 2.0 mM) reaction with 
P(ArCF3)3 in toluene at -60 °C as monitored through plots of ln[(A∞-A)/(A∞-A0)] vs. time (A = 
absorbance at λ = 600 nm). 
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13. Eyring Analysis of 1 - 4 with P(ArCF3)3: 

The following stock solutions were prepared and stored at -40 °C between experiments: 2.0 mM 

1 - 4 in toluene, 0.8 M P(ArCF3)3 in toluene.  Reactions were conducted in a UV-Vis cuvette: 2 

mL of the copper solution was transferred to a cuvette inside the glove box and sealed with a 

septum which maintained a steady green color that varied slightly with the different complexes.  

0.1 mL (20 eq.) of the phosphine solution was drawn into a syringe inside the glove box as well.  

The cuvette was placed in the UV-vis equipped with the cryostat set to maintain the temperature.  

The solution was allowed to stir for ~10 min to allow the temperature to be uniform.  After ~30 s 

collection the phosphine was injected.  The drop of the peak at ~600 nm was followed after the 

injection of the phosphine solution. The final color of the solution was yellow. For 1 the 

temperatures used were -60 °C, -50 °C, -40 °C and -30 °C.    For 2 the temperatures used were  

-70 °C, -60 °C, -50 °C and -40 °C.  For 3 the temperatures were 10 °C, 20 °C, 30 °C and, 40 °C.  

For 4 the temperatures were 15 °C, 25 °C, 35 °C, and 45 °C.  Plotting the ln(k/T) as function of 

1/T according to the Eyring equation yielded activation enthalpy and activation entropy.   

Figure S26. Plot of the pseudo first-order rate constant kobs (s
-1) vs. [P(ArCF3)3] (M) 

in the reaction with [Me2NNF6]Cu(κ2-O2N) (initially 2.0 mM) in toluene at -60 °C. 
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Calculation of the Activation Parameters: 
 
The Eyring plot for each compound allows for the use of the Eyring equation: 

 

 

 

to calculate the activation parameters, where k is the rate constant (M-1s-1), T is the temperature 

(K), ΔH‡ is the enthalpy of activation (J/mol), R is the gas constant (J/K•mol), kB is the 

Boltzmann constant (J/K), h is the Planck constant (J•s), and ΔS‡ is the entropy of activation 

(J/mol•K).  The equation of the line from the Eyring plot fits the form of the equation such that 

the slope of the line is equal to -ΔH‡/R and the intercept of the line is equal to ΔS‡/R - ln



.  The 

values for ΔH‡ and ΔS‡ were then converted to kcal/mol and cal/mol•K respectively.  To 

calculate the Gibbs free energy of activation (-ΔG‡) at 298 K the equation: 

ࡳ∆
‡
ൌ ࡴ∆

‡
െࡿ∆ࢀ

‡ 

was used with T = 298 K.  The standard error in the slope and intercept were calculated using the 

Microsoft Excel linest function and carried through the calculations to arrive at the errors in the 

activation parameters.  

Figure S27.  Eyring plot of ln (k/T) vs. 1/T for the reaction of 1-4 with 20 eq 
P(ArCF3)3 in toluene using true second order rate constants. 
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Table S2. Activation Parameters for the Reaction of  1-4 with P(ArCF3)3. 

Copper Complex 

Reduction 
Potential (V 
v. NHE) in 

THF 

ΔH‡ 
(kcal/mol) 

ΔS‡ 
(cal/mol*K) 

ΔG‡ 298K 
(kcal/mol) 

[Cl2NNF6]Cu(2-O2N) (1) 0.3311 4.6 ± 0.72 -38.5 ± 3.09 16.0 ± 1.17 

[Me2NNF6]Cu(2-O2N) (2) 0.303 5.7 ± 0.52 -34.5 ± 2.41 16.0 ± 0.89 

[Cl2NN]Cu(2-O2N) (3) -0.021 13.9 ± 0.54 -13.3 ± 1.80 17.9 ± 0.76 

[Me2NN]Cu(2-O2N) (4) -0.113 13.1 ± 0.23 -18.5 ± 0.80 18.6 ± 0.33 

Figure S28. Trend in ΔG‡ (kcal/mol) vs the reduction potential of the [Cu](2-
O2N) complexes as calculated from the Eyring analysis. 
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Figure S30. Trend in ΔS‡ (cal/mol•K) vs the reduction potential of the 
[Cu](2-O2N) complexes as calculated from the Eyring analysis. 
 

 

  

Figure S29. Trend in ΔH‡ (kcal/mol) vs the reduction potential of the [Cu](2-
O2N) complexes as calculated from the Eyring analysis. 
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14. Hammett Plot for the reaction of  [Me2NN]Cu(k2-O2N) (4) with P(ArZ)3  (Z = CF3, F, 
Cl, H, OMe):  
 

The following stock solutions were prepared and stored at -40 °C between experiments: 2.0 mM 

4 in PhF, 0.80 M P(ArZ)3 in PhF.  Reactions were conducted in a UV-Vis cuvette: 2 mL of the 

copper solution was transferred to a cuvette inside the glove box and sealed with a septum which 

maintained a steady green color.  0.1 (20 eq.) of the phosphine solution was drawn into a syringe 

inside the glove box as well.  The cuvette was placed in the UV-vis equipped with the cryostat 

set to maintain the temperature at 0°C.  The solution was allowed to stir for ~10 min to allow the 

temperature to be uniform.  After ~30 s collection the phosphine was injected.  The drop of the 

peak at 600 nm was followed after the injection of the phosphine solution. The final color of the 

solution was yellow. 

  

 

 

  

  

Figure S31.  Hammett plot of log(k/ko) vs. σ (para Hammett 
parameter) for the reaction of [Me2NN]Cu(κ2-O2N) with 20 equiv. 
P(ArZ)3 in THF at 0°C using true second order rate constants. 
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17. Computational Study  

Gaussian 167 was used to optimize the structures, calculate single point geometries, and also find 

the vibrational frequencies and reaction free energies. Visualization and structural analyses were 

done using Chemcraft 1.8 and CCDC-Mercury.8 Seven complexes were studied for the ligand 

[Me2NN]: [Me2NN]CuII(κ2-O2N), [Me2NN]CuII(κ1-NO2), {[Me2NN]CuI(κ1-NO2)}
-, 

[Me2NN]Cu-NO, [Me2NN]Cu-ON, [Me2NN]CuI-P(ArCF3)3, and [Me2NN]CuI-SMe2 
 as well as 

six transition states [Me2NN]Cu(κ2-O2N)-P(ArCF3)3, [Me2NN]Cu(κ1-O2N)-P(ArCF3)3, 

[Me2NN]Cu(κ1-NO2)-P(ArCF3)3, [Me2NN]Cu(κ1-NO2-90°)-P(ArCF3)3, [Me2NN]Cu(κ1-ONO), a 

transition state for the isomerization from [Cu](κ2-O2N) to [Cu](κ1-NO2), and [Me2NN]Cu(κ1-

NO2)-SMe2. For the ligands [Cl2NNF6], [Me2NNF6] and [Cl2NN], the complexes [CuII](κ2-O2N), 

[CuII](κ1-NO2), [Cu]-NO, and [CuI]-SMe2 were studied along with the transition states [Cu]-

ONO and [Cu](κ1-NO2)-SMe2. Each transition state exhibits a single imaginary frequency along 

the transformation in question and the lowest energy for OAT for complex 4, [Me2NN]Cu(κ1-

NO2-90°)-P(ArCF3)3, was confirmed by an IRC calculation, but did not converge on the Max 

Displacement convergence criteria with a calcall calculation.  Five small molecules (NO, 

P(ArCF3)3, OP(ArCF3)3, SMe2, OSMe2) were also calculated to analyze the thermodynamics of the 

reactions between the complexes, and P(ArCF3)3, OP(ArCF3)3 also did not meet the Max 

Displacement or RMS Displacement convergence criteria with calcall calculations. It is likely 

that the aryl groups are able to occupy multiple equivalent energy conformations which leads to 

a flattening of the energy surfaces of these structures around the minima, which leads to 

difficulty meeting these convergence criteria but indicates that the energy of the true stable point 

is highly unlikely to be significantly different.  The BP869 functional in conjunction with the 6-

311+G(d) basis set (5d 7f spherical harmonics)10-13 was used for optimization of all geometries.  

At the BP86/6-311+G(d) stationary points, single point energies were calculated using BP86 

with the 6-311++G(d,p)14-21 basis set, in toluene using the implicit SMD22 solvent model and 

adding dispersion corrections with the keyword, empirical dispersion = GD3BJ.23 
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Table S3. Gibbs free energies (BP86/6-311+G(d)/gas//BP86+GD3BJ/6 
311++G(d,p)/SMDtoluene) at 298.15 K of the computed molecules. [Cu] = [Me2NN]Cu 
fragment.  

Compound Charge Multiplicity Gibbs Free Energy 
(Hartrees) 

NO 0 2 -129.9517649 
P(ArCF3)3

 0 1 -2047.864418 
OP(ArCF3)3

 0 1 -2123.142023 
SMe2 0 1 -478.0515799 
OSMe2 0 1 -553.2667054 
[CuII]-O2N 0 2 -2770.811019 
[CuII]-NO2 0 2 -2770.809528 
[CuI]-NO2 -1 1 -2770.940493 
[CuII]-ONO (TS) 0 2 -2770.798131 
[Cu]-NO  0 2 -2695.576779 
[Cu]-ON 0 2 -2695.544024 
[CuI]-P(ArCF3)3

 0 1 -4613.500029 
[CuI]-SMe2 0 1 -3043.664771 
TS1 [CuII]-NO2-90°-P(ArCF3)3

 0 2 -4818.645077 
TS2 [CuII]-NO2-P(ArCF3)3

 0 2 -4818.634946 
TS3 [CuII]-ONO-P(ArCF3)3

 0 2 -4818.631068 
TS4 [CuII]-O2N-P(ArCF3)3 0 2 -4818.625861 
[CuII]-NO2- SMe2 0 2 -3248.795438 
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Table S4. Gibbs free energies (BP86/6-311+G(d)/gas//BP86+GD3BJ/6 
311++G(d,p)/SMDtoluene) at 298.15 K of the computed molecules. [Cu] = [Cl2NN]Cu 
fragment.  

Compound Charge Multiplicity Gibbs Free Energy 
(Hartrees) 

[CuII]-O2N 0 2 -4452.270227 
[CuII]-NO2 0 2 -4452.268823 
[CuII]-ONO (TS) 0 2 -4452.25544 
[Cu]-NO  0 2 -4377.038639 
[CuI]-SMe2

 0 1 -4725.130883 
[CuII]-NO2- SMe2 0 2 -4930.259068 
 

Table S5. Gibbs free energies (BP86/6-311+G(d)/gas//BP86+GD3BJ/6 
311++G(d,p)/SMDtoluene) at 298.15 K of the computed molecules. [Cu] = [Me2NNF6]Cu 
fragment.  

Compound Charge Multiplicity Gibbs Free Energy 
(Hartrees) 

[CuII]-O2N 0 2 -3366.493183 
[CuII]-NO2 0 2 -3366.491698 
[CuII]-ONO (TS) 0 2 -3366.480306 
[Cu]-NO  0 2 -3291.261191 
[CuI]-SMe2

 0 1 -3639.357387 
[CuII]-NO2- SMe2 0 2 -3844.485937 
 

Table S6. Gibbs free energies (BP86/6-311+G(d)/gas//BP86+GD3BJ/6 
311++G(d,p)/SMDtoluene) at 298.15 K of the computed molecules. [Cu] = [Cl2NNF6]Cu 
fragment.  

Compound Charge Multiplicity Gibbs Free Energy 
(Hartrees) 

[CuII]-O2N 0 2 -5047.94652 
[CuII]-NO2 0 2 -5047.945673 
[CuII]-ONO (TS) 0 2 -5047.932335 
[Cu]-NO  0 2 -4972.717738 
[CuI]-SMe2

 0 1 -5320.817783 
[CuII]-NO2- SMe2 0 2 -5525.944646 
  



S35 
 

Nitrite Isomerization 

  

Figure S36.  Proposed mechanism for the overall reduction of 4 with 2 equiv. P(ArCF3)3.  Calculated 
Gibbs free energies in kcal/mol at 298.15 K. 

Figure S35.  Proposed mechanism for the nitrite isomerization of 1-4. Calculated Gibbs free energies in 
kcal/mol at 298.15 K. 
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Figure S37.  Gibbs Free Energy of four optimized transition states of oxygen atom transfer relative to 
starting materials.  The lowest energy transition state was confirmed by an IRC calculation.  
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Figure S38.  Proposed mechanism for the overall reduction of 1-4 with 2 equiv. SMe2.  Calculated 
Gibbs free energies in kcal/mol at 298.15 K. 

Scheme S3.  Copper nitrosyl to copper isonitrosyl reorganization energy in toluene with ligand from 4. 
Calculated Gibbs free energy in kcal/mol at 298.15 K.  
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Figure S74.  The calculated spin density plots of the κ2-O and κ1-N binding modes of 
copper(II) nitrite 4.  Isosurface value =  0.02. Spin densities [CuII](κ2-O2N): Cu 44%, O1 
7%, N3 0%, O2 7%; [CuII](κ1-NO2): Cu 34%, O1 14%, N3 11%, O2 5%. 

N1 
Cu 

N2 

O1 

N3 

O2 

N1 
Cu 

N2 

O2 

N3 

O1 

 [CuII](κ2-O2N)      [CuII](κ1-NO2) 

N 

N 
Cu O

N 
O

II

HOMO-1 LUMO+1 

N
Cu 

N

O2N3

O1

Figure S75.  The second highest occupied molecular orbital (HOMO-1) and second lowest 
unoccupied molecular orbital (LUMO+1) of  {[CuI](κ1-NO2)}

- indicating a  backbonding 
interaction between the copper(I) center ] and the nitrite. Isosurface value =  0.03 and 0.01 
respectively.  
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