Supplementary Information:

BNC1 deficiency-triggered ferroptosis through the NF2-YAP

pathway induces primary ovarian insufficiency

Feixia Wang^{1, #}, Yifeng Liu^{1, #}, Feida Ni^{1, #}, Jiani Jin¹, Yiqing Wu¹, Yun Huang¹, Xiaohang Ye¹, Xilin Shen², Yue Ying¹, Jianhua Chen³, Ruixue Chen¹, Yanye Zhang¹, Xiao Sun¹, Siwen Wang^{1,4}, Xiao Xu¹, Chuan Chen¹, Jiansheng Guo⁵, Dan Zhang^{1,6*}

¹Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China.

²College of Computer Science and Technology, Zhejiang University, Zhejiang, 310027, PR China.

³Department of Pathology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, People's Republic of China.

⁴Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA, 02215

⁵Center of Cryo-Electron Microscopy, Zhejiang University, Hangzhou, Zhejiang, China.

⁶Clinical Research Center on Birth Defect Prevention and Intervention of Zhejiang Province, Hangzhou, 310006, China.

[#]These authors contributed equally: Feixia Wang, Yifeng Liu, Feida Ni.

*email: zhangdan@zju.edu.cn

Supplementary figures

Supplementary Figure 1. Oocyte-specific Bnc1 knockout induces follicular atresia through nonapoptotic cell death.

a Ovaries from $Bnc1^{u/t}$ and $Bnc1^{u/t}$ mice at 3 weeks old were subjected to WB analysis. The expression levels of BNC1 and β -Actin are shown (3 independently experiments). **b** Ovaries from 36-week-old $Bnc1^{+/+}$ (n=3) and $Bnc1^{u/tr}$ (n=3) mice were subjected to WB analysis. The expression levels of P53, PARP, Caspase3, cleaved- Caspase3, BAX and BCL2are shown (the error bars indicate the mean values \pm SDs, unpaired t test, two-tailed, p value=0.0470 for P53, p value=0.3133 for PARP, p value=0.5635 for Caspase3, p value=0.8399 for cleaved-Caspase3, p value=0.3482 for BAX, p value=0.1716 for BCL2 and p value=0.5513 for BAX/BCL2). **c** GV oocytes from $Bnc1^{ioxP/loxP}$, Gdf9-Cre (-) (n=3) and $Bnc1^{ioxP/loxP}$, Gdf9-Cre (+) (n=3) mice at 4 weeks old were used for RT–PCR. The mRNA expression of Bax and Bcl2 is shown (the error bars indicate the mean values \pm SDs, unpaired t test, two-tailed, p value=0.0081 for Bax/Bcl2). **d** GV oocytes obtained from $Bnc1^{ioxP/loxP}$, Gdf9-Cre (-) and $Bnc1^{ioxP/loxP}$, Gdf9-Cre (+) mice at 4 weeks old were used for detection of caspase3 (CAS3) and the DNA damage marker γ -H2AX (3 independent experiments with total oocyte numbers > 30 oocytes), *p value < 0.05, **p value < 0.01 and ***p value < 0.001. Source data are provided as a Source Data file.

Supplementary Figure 2. Oocytes affected by Bnc1 mutation are more sensitive to ferroptosis.

a Nile red of of $Bnc1^{+/+}$ (n=3) and $Bnc1^{w/tr}$ (n=3) mouse ovaries. **b** WB of GPX4 in mouse ovaries of $Bnc1^{+/+}$ (n=5) and $Bnc1^{w/tr}$ (n=5) mouse ovaries. **c** Lipid ROS of GV oocytes after RSL3 treatment (for oxidized lipids p value<0.0001 for $Bnc1^{+/+}$ RSL3, p value=0.0315 for $Bnc1^{w/tr}$ Con, p value<0.0001 for $Bnc1^{w/tr}$ RSL3, for reduced lipids p value=0.8256 for of $Bnc1^{+/+}$ RSL3, p value=0.0004 for $Bnc1^{w/tr}$ Con, p value=0.4840 $Bnc1^{w/tr}$ RSL3, for oxidized/reduced lipids p value=0.0013 for $Bnc1^{+/+}$ RSL3, p value=0.0004 for $Bnc1^{w/tr}$ Con and p value=0.0009 for $Bnc1^{w/tr}$ RSL3). The error bars indicate the mean values \pm SDs, unpaired t test, two-tailed, 3 independent experiments with total oocyte numbers > 30 oocytes, *p value < 0.05, **p value < 0.01 and ***p value < 0.001. Source data are provided as a Source Data file.

Supplementary Figure 3. Oocyte-specific Bnc1-knockout oocytes are more sensitive to ferroptosis.

a Nile red of Bnc1^{loxP/loxP}, Gdf9-Cre (-) and Bnc1^{loxP/loxP}, Gdf9-Cre (+) mouse ovaries (n=3). b Nile red of GV oocytes (p value<0.0001). c ROS of GV oocytes (p value<0.0001). d MitoSOX and MitoTracker in GV oocytes (p value<0.0001). e JC-1 of GV oocytes (p value=0.0374 for JC-1 green, p value=0.0004 for JC-1 red and p value<0.0001 for JC-1 red/green). f Lipid ROS of GV oocytes (p value<0.0001 for oxidized lipids, p value<0.0001 for reduced lipids and p value=0.0413 for oxidized/reduced lipids). g GPX4 in GV oocytes (p value<0.0001). h WB of GPX4 in GV oocytes (3 independently experiments). i RT-PCR of ferroptosis-associated markers in GV oocytes (n=3) (p value=0.0226 for Alox5, p value=0.0132 for Alox12, p value=0.0578 for Aloxe15, p value= 0.0144 for Aloxe3, p value=0.0028 for Fth1, p value=0.2300 for Lpcat3, p value=0.0691 for Slc3a2 and p value=0.9711 for Slc7a11, p value=0.0267 for Cox2 and p value=0.0133 for Nox1).j Lipids ROS in GV oocytes after RSL3 treatment (for oxidized lipids p value=0.0159 for Bnc1^{loxP/loxP}, Gdf9-Cre (-) RSL3, p value<0.0001 for Bnc1^{loxP/loxP}, Gdf9-Cre (+) Con, p value=0.0001 for Bnc1^{loxP/loxP}, Gdf9-Cre (+) RSL3, for reduced lipids p value<0.0001 for Bnc1^{loxP/loxP}, Gdf9-Cre (-) RSL3, p value<0.0001 for Bnc1^{loxP/loxP}, Gdf9-Cre (+) Con, p value=0.0005 for Bnc1^{loxP/loxP}, Gdf9-Cre (+) RSL3, for oxidized/reduced lipids p value=0.0072 for Bnc1^{loxP/loxP}, Gdf9-Cre (-) RSL3, p value=0.0005 for Bnc1^{loxP/loxP}, Gdf9-Cre (+) Con and p value=0.4531 for Bnc1^{loxP/loxP}, Gdf9-Cre (+) RSL3). k Lipid ROS in GV oocytes after Fer-1 treatment (for oxidized lipids p value=0.0207 for Bnc1^{loxP/loxP}, Gdf9-Cre (+) Con, p value=0.0989 for Bnc1^{loxP/loxP}, Gdf9-Cre (+) Fer-1, for reduced lipids p value=0.8595 for Bnc1^{loxP/loxP}, Gdf9-Cre (+) Con, p value<0.0001 for Bnc1^{loxP/loxP}, Gdf9-Cre (+) Fer-1, for oxidized/reduced lipids p value=0.1353 for $Bnc1^{loxP/loxP}$, Gdf9-Cre (+) Con and p value<0.0001 for $Bnc1^{loxP/loxP}$, Gdf9-Cre (+) Fer-1). The error bars indicate the mean values \pm SDs, unpaired t test, two-tailed, 3 independent experiments with total oocyte numbers > 30 oocytes, *p value < 0.05, **p value < 0.01 and ***p value value < 0.001. Source data are provided as a Source Data file.

Supplementary Figure 4. ChIP-seq of mouse ovary.

a-b ChIP-seq for BNC1 of mouse ovary and showing the peaks of BNC1 on Nf2(n=3).

Supplementary Figure 5. Oocyte-specific *Bnc1* knockout sensitizes oocytes to ferroptosis by regulating NF2-YAP signaling. **a** NF2 and active YAP of *Bnc1*^{loxP/loxP}, *Gdf9*-Cre (-) and *Bnc1*^{loxP/loxP}, *Gdf9*-Cre (+) mouse GV oocytes at 4 weeks old (the error bars indicate the mean values \pm SDs, unpaired t test, two-tailed, p value<0.0001 for NF2, p value<0.0001 for nuclear/cytoplasmic YAP, 3 independent experiments with total oocyte numbers > 30 oocytes). **b** TFRC staining of *Bnc1*^{loxP/loxP}, *Gdf9*-Cre (-) and *Bnc1*^{loxP/loxP}, *Gdf9*-Cre (+) mouse GV oocytes at 4 weeks old (the error bars indicate the mean values \pm SDs, unpaired t test, two-tailed, p value=0.0213, 3 independent experiments with total oocyte numbers > 30 oocytes). **c** RT–PCR analysis of *Bnc1*, *Nf2*, *Tfrc* and *Acsl4* in *Bnc1*^{loxP/loxP}, *Gdf9*-Cre (-) (n=3) and *Bnc1*^{loxP/loxP}, *Gdf9*-Cre (+) (n=3) mouse GV oocytes at 4 weeks old (p value=0.0009 for *Bnc1*, p value=0.9150 for *Nf2*, p value<0.0001 for *Tfrc* and p value<0.0001 for *Acsl4*, the error bars indicate the mean values \pm SDs, unpaired t test, two-tailed). **d** WB analysis of NF2, p-YAP, active YAP, YAP, ACSL4, TFRC and β-actin in GV oocytes at 4 weeks old (3 independently experiments). *p value < 0.05, **p value < 0.01 and ***p value < 0.001. Source data are provided as a Source Data file.

Supplementary Figure 6. Targeted lipidomics of Bnc1^{+/+} and Bnc1^{tr/tr} GV oocytes.

a Targeted lipidomics showed increased PE (18:1/18:2) (P=0.0084). **b** Targeted lipidomics showed increased PE (16:0/20:4) (P=0.0173). **c** Targeted lipidomics showed increased PE (18:1/20:4) (P=0.0173). **e** Targeted lipidomics showed increased PE (18:1/20:4) (P=0.0283). **e** Targeted lipidomics showed increased PS (14:0/20:4) (P=0.1404). **f** Targeted lipidomics showed increased PI (18:0/18:2) (P=0.0005). **g** Targeted lipidomics showed increased LPE (20:4) levels (P=0.1481). **h** Targeted lipidomics showed decreased PA (20:0/18:1) levels (P<0.0001) in *Bnc1^{w/r}* mice (n=6) compared to WT mice (n=6). the error bars indicate the mean values \pm SDs, unpaired t test, two-tailed, *p value < 0.05, **p value < 0.01 and ***p value < 0.001. Source data are provided as a Source Data file.

Supplementary Figure 7. BNC1 regulates NF2-YAP-ferroptosis axis in ES-2 cell line.

a RT–PCR of *BNC1* and *NF2* after *BNC1* siRNA interference 24 hours in ES-2 cells (the error bars indicate the mean values \pm SDs, unpaired t test, two-tailed, p value<0.0001 for *BNC1* and p value=0.0387 for *NF2*, n=3 with 3 independently experiments). b WB of BNC1, NF2, p-YAP, active YAP, YAP, TFRC and ACSL4 after *BNC1* siRNA interference 48 hours in ES-2 cells (3 independently experiments). *p value < 0.05, **p value < 0.01 and ***p value < 0.001. Source data are provided as a Source Data file.

Supplementary Tables

	RT–PCR primers and siRNA targeting sequences		
Gene	Species	Forward primer (5'–3')	Reverse primer (5'–3')
Bax	Mouse	TTGCCCTCTTCTACTTTGCTAG	CCATGATGGTTCTGATCAGCTC
Bcl2	Mouse	GAACTCAAAGAAGGCCACAATC	GATGACTTCTCTCGTCGCTAC
Cox2	Mouse	CATGAGCCGTCCCCTCACTAGG	TGGTCGGTTTGATGCTACTGTTGC
Nox1	Mouse	GTGCCTTTGCCTGGTTCAACAAC	AGCCAGTGAGGAAGAGACGGTAG
Bncl	Mouse	GTCCTCAGTCACACAGAGTATC	CTCAGTCTCCCTCTCTGAATTG
Nf2	Mouse	GAGGAGAGAATTACTGCTTGGT	CCCTTTTTATTCCGGATTGCAA
Tfrc	Mouse	TCACACTCTCTCAGCTTTAGTG	TGGTTTCTGAAGAGGGTTTCAT
Acsl4	Mouse	CAATAGAGCAGAGTACCCTGAG	TAGAACCACTGGTGTACATGAC
Alox5	Mouse	GGCGAGATCTACCTAGTCAAAA	GATGTGAATTTGGTCATCTCGG
Alox12	Mouse	CAAGGAGGAGGAGTTTGACTTC	GAACTGTGATGAGGTTGCAGAA
Alox15	Mouse	GGAAGAAAGGAGGAGTCTGTAC	GTCTTTTGTCCTCTCGAAATCG
Aloxe3	Mouse	AATCATCTTTAATTGCTCCGCC	GTAACTCTTCATTGTCGTGTCG
Lpcat3	Mouse	CATGAAAGTGTGGCTCTTTGAA	GTTTGAAGATGTAACGGGCTAC
Slc3a2	Mouse	AGGGACTCCTGTTTTTAGCTAC	GTGAAAGATGCTGGACTCATTC
Slc7a11	Mouse	CTATTTTACCACCATCAGTGCG	ATCGGGACTGCTAATGAGAATT
Fth1	Mouse	TAAAGAAACCAGACCGTGATGA	ATTCACACTCTTTTCCAAGTGC
Gapdh	Mouse	CAGGAGGCATTGCTGATGAT	GAAGGCTGGGGGCTCATTT
Nf2(ChIP)	Mouse	ACCAGTCTTGCTAGAGTAGG	AGGCCTACTCCACCAATTGA
BNC1	Human	GTCCTCAGTCACACAGAGTATC	CTCAGTCTCCCTCTCTGAATTG
NF2	Human	GAGGAGAGAATTACTGCTTGGT	CCCTTTTTATTCCGGATTGCAA
GAPDH	Human	GGAGCGAGATCCCTCCAAAAT	GGCTGTTGTCATACTTCTCATGG
siRNA		Sense	Antisense
BNC1	Human	GGACACUUCAGGAUUAUAUTT	AUAUAAUCCUGAAGUGUCCTT
Negative control	Human	UUCUUCGAACGUGUCACGUTT	ACGUGACACGUUCGGAGAATT

Supplement Table 1 RT–PCR Primers and siRNA targeting sequences

Uncropped scans of all blots and gels in Supplementary Figures

Supplementary Figure 1a Ovaries from $Bnc l^{+/+}$ and $Bnc l^{tr/tr}$ mice at 3 weeks old were subjected to WB analysis.

Supplementary Figure 1b Ovaries from 36-week-old $BncI^{+/+}$ and $BncI^{tr/tr}$ mice were subjected to WB analysis.

β-Actin

70 55

15

40 35 ------25

kD 170 130 100 70 55 40 35 25 1 -15

P53

PARP

β-Actin

β-Actin kD 170 130 100 70 55 40 35 25 15

β-Actin

BCL2

Supplementary Figure 2b WB of GPX4 in mouse ovaries of $Bnc1^{+/+}$ and $Bnc1^{tr/tr}$ mouse ovaries.

β-Actin

GPX4

Supplementary Figure 3h WB of GPX4 in GV oocytes.

Supplementary Figure 5d WB analysis of NF2, p-YAP, active YAP, YAP, ACSL4, TFRC and β-actin in GV oocytes at 4 weeks old.

	YAP
kD 170 130	11
100	
70	
55	
40	
35	-
25	- 101 101
15	

active YAP

ACSL4

NF2

β-Actin

TFRC

β-Actin

β-Actin

kD

170

130

Supplementary Figure 7b WB of BNC1, NF2, p-YAP, active YAP, YAP, TFRC and ACSL4 after BNC1 siRNA interference 48 hours in

ES-2 cells.

