

### Supporting Information

for Adv. Sci., DOI 10.1002/advs.202201889

APAF1-Binding Long Noncoding RNA Promotes Tumor Growth and Multidrug Resistance in Gastric Cancer by Blocking Apoptosome Assembly

Qiang Wang, Chen Chen, Xiao Xu, Chuanjun Shu, Changchang Cao, Zhangding Wang, Yao Fu, Lei Xu, Kaiyue Xu, Jiawen Xu, Anliang Xia, Bo Wang, Guifang Xu, Xiaoping Zou, Ruibao Su, Wei Kang, Yuanchao Xue\*, Ran Mo\*, Beicheng Sun\* and Shouyu Wang\*

#### Supporting Information

# APAF1-binding long non-coding RNA promotes tumor growth and multidrug resistance in gastric cancer by blocking apoptosome assembly

*Qiang Wang*,<sup>1,2</sup>, *Chen Chen*<sup>3</sup>, *Xiao Xu*<sup>4</sup>, *Chuanjun Shu*<sup>5</sup>, *Changchang Cao*<sup>6</sup>, *Zhangding Wang*<sup>7</sup>, *Yao Fu*<sup>8</sup>, *Lei Xu*<sup>7</sup>, *Kaiyue Xu*<sup>1</sup>, *Jiawen Xu*<sup>3</sup>, *Anliang Xia*<sup>1</sup>, *Bo Wang*<sup>1</sup>, *Guifang Xu*<sup>7</sup>, *Xiaoping Zou*<sup>7</sup>, *Ruibao Su*<sup>6</sup>, *Wei Kang*<sup>9</sup>, *Yuanchao Xue*<sup>6</sup>\*, *Ran Mo*<sup>4</sup>\*, *Beicheng Sun*<sup>1,2</sup>\*, *Shouyu Wang*<sup>1,3,10</sup>\*

#### This PDF file includes:

Figure S1. ABL expression is elevated in GC.

Figure S2. Identification of the ABL-binding protein.

Figure S3. ABL promotes GC cell survival and multidrug resistance in vitro.

**Figure S4.** Knockdown of ABL promotes GC cell apoptosis by competitively blocking the APAF1 interaction with Cyt c.

**Figure S5.** IGF2BP1 binds and recognizes the METTL3-mediated m<sup>6</sup>A modification on ABL, maintaining ABL stability.

Figure S6. Identification of the effect of ABL-specific siRNA-loaded PEG-CLs.

Figure S7. ABL-specific siRNA-loaded PEG-CLs have no obvious systemic toxicity.

Table S1. Representative up or down-regulated lncRNAs from RNA-seq.

Table S2. Biotinylated ABL sense pull-down followed by MS.

**Table S3.** Particle size and potential of siRNA/protamine complex.

Table S4. Particle size and potential of siRNA/CLs.

**Table S5.** Particle size and potential of siRNA/PEG-CLs.

**Table S6.** The sequences of siRNAs.

Table S7. Antibodies for WB, RIP, IF, IP, and IHC.

Table S8. The oligonucleotides were used in this study.

#### **Supporting Figures**



Fig. S1

**Figure S1.** ABL expression is elevated in GC. A-B) Kaplan-Meier disease-free survival curves based on ABL (A) or LOC730102 (B) expression using the online bioinformatics tool GEPIA (<u>http://gepia.cancer-pku.cn/</u>). C) Representative image of PCR products from the 5'- and 3'-RACE assay. D) The coding capacity of ABL, HOTAIR, METTL3, and GAPDH was determined by the CPAT webserver (<u>http://lilab.research.bcm.edu/cpat/</u>). E) HEK293T cells were transfected with the pcDNA3.1-Flag vector, ABL-Flag (full-length ABL sequence inserted

into the pcDNA3.1 vector), GFP-Flag, or METTL3-Flag. Total cell lysates were resolved in SDS-PAGE gel, and Western blotting for Flag and GAPDH was performed; GFP-Flag and METTL3-Flag were the coding proteins, which were used as positive controls. F) ABL expression was detected in human gastric mucosa tissue (hGT) and different GC cell lines by qRT-PCR. G-H) Univariate analyses were performed for GC cohort 1 (G) and cohort 2 (H). All the bars correspond to 95% confidence intervals (CIs); AUC, area under the curve; CI, confidence interval; GC, gastric cancer; HR, hazard ratio; TNM, tumor, node, metastasis. The probability of differences in DFS was ascertained by the Kaplan-Meier method with the log-rank test (A and B). The data were analyzed by a two-tailed unpaired Student's t-test (F). The data are represented as the means  $\pm$  SEM. \* p<0.05; \*\* p<0.01; \*\*\* p<0.001, NS, no significance.



Fig. S2

**Figure S2.** Identification of the ABL-binding protein. A) Sense and antisense ABL transcripts were prepared *in vitro* and identified. B) Schematic diagram of ABL probes used in dot blot assay. C) Transcripts for full-length sense ABL, ABL with deletion of nt 481-540, and ABL with deletion of nt 121-160 were prepared *in vitro* and identified. D) Predicted structure of APAF1. E)

Predicted structure of ABL (nt 481-540). F) The number of reads for the APAF1 LACE-seq library. rm\_Adapter, after trimming adapters; rm\_rRNA\_tRNA, after removing rRNA and tRNA-derived reads; Mapped\_to\_genome, reads mapped to the reference genome. (G) RIP-qPCR analysis was employed to detect the interaction between APAF1 and indicated mRNAs or lncRNAs upon overexpression of ABL. The data were analyzed by a two-tailed unpaired Student's t-test (G). The data are represented as the means  $\pm$  SEM. \* p<0.05; \*\* p<0.01; \*\*\* p<0.001, NS, no significance.



**Figure S3.** ABL promotes GC cell survival and multidrug resistance *in vitro*. A) The expression of ABL was examined in ABL-overexpressing BGC823 cells by qRT-PCR. B-C) CCK-8 assays were used to determine the viability of ABL-deficient MKN45 cells (B) and ABL-overexpressing BGC823 cells (C). D) Suspension growth assays were used to determine the cell survival of ABL-overexpressing BGC823 cells (scale bars=100  $\mu$ m). E) Quantification of the GFP<sup>+</sup> cells in (D). F) Overexpression of ABL increased the colony-forming ability of

BGC823 cells and antagonized 5-Fu-induced apoptosis in these cells. G) Quantification of the colony formation assay results in (F). H) Overexpression of ABL increased the colony-forming ability of BGC823 cells and antagonized PTX-induced apoptosis in these cells. I) Quantification of the colony formation assay results in (H). J) Western blotting was applied to determine the expression of ABCB1, ABCC1 and ABCG2 in ABL-overexpressing BGC823 cells or ABL-deficient MKN45 cells after DDP (1  $\mu$ g/ml) or PTX treatment (0.05  $\mu$ g/ml) for 24 h. The data were analyzed by a two-tailed unpaired Student's t-test (A-C, E, G, and I). The data are represented as the means  $\pm$  SEM. \* p<0.05; \*\* p<0.01; \*\*\* p<0.001, NS, no significance.



Figure S4. Knockdown of ABL promotes GC cell apoptosis by competitively blocking the APAF1 interaction with Cyt c. A) Western blotting was applied to determine the expression of the indicated proteins in ABL-deficient MKN45 cells after DDP treatment at 0 or 1 µg/ml for 24 h. B) Docking analysis of protein-protein and RNA-protein interaction models for APAF1 and ABL (nt 481-540) and APAF1-Cyt c. C) An annexin-V-FITC/PI assay was used to detect apoptotic ABL-deficient MKN45 cells after DDP treatment at 0 or 1 µg/ml for 24 h. D) Quantification of the apoptotic cells in (C). E) A TUNEL assay was used to detect apoptotic ABL-deficient MKN45 cells after DDP treatment at 0 or 1 µg/ml for 24 h. F) Quantification of the apoptotic cells in (E). G) The protein levels of APAF1 in BGC823 cells with APAF1 knockout were measured by western blotting. H) Knockout of APAF1 increased the colony-forming ability of BGC823 cells and antagonized DDP-induced apoptosis in these cells. I) Quantification of the colony formation assay results in (H). J) The colony-forming ability was detected in APAF1 knockout BGC823 cells transfected with ABL-overexpressing WT, Mut plasmids, or their corresponding controls after DDP treatment at 0, 0.2, 0.4 µg/ml for 24 h. K) Quantification of the colony formation assay results in (J). L) Representative images of GC organoids transfected with ABL overexpression vectors or a control lentivirus at 0 or 7 days (scale bars=100  $\mu$ m, left panel, n=3) and the quantification of organoid diameters (right panel). M) Sections of organoids from different groups underwent TUNEL staining (scale bars=100 um). The data were analyzed by a two-tailed unpaired Student's t-test (D, F, I, K, and L). The data are represented as the means ± SEM. \* p<0.05; \*\* p<0.01; \*\*\* p<0.001, NS, no significance.



#### Fig.S5

**Figure S5.** IGF2BP1 binds and recognizes the METTL3-mediated m6A modification on ABL, maintaining ABL stability. A) Data from the UCSC genome bioinformatics site

(http://genome.ucsc.edu/) showed enrichment of H3K27ac in the promoter of ABL. B) P300 knockdown efficiency was verified in BGC823 cells by qRT-PCR. C) The ABL levels in BGC823 cells with P300 deficiency were determined by qRT-PCR. D) Coomassie brilliant blue staining of proteins pulled down by biotinylated ABL. E-F) IGF2BP1 and IGF2BP3 knockdown efficiencies in BGC823 cells were verified by qRT-PCR. G) The ABL levels in BGC823 cells with IGF2BP3 deficiency were determined by qRT-PCR. H) IGF2BP1 expression was positively correlated with ABL expression in GC (linear regression) using the online bioinformatics tool GEPIA (http://gepia.cancer-pku.cn/). TPM, transcripts per million. I) The protein levels of Flag-METTL3 in BGC823 cells with wild-type or catalytic mutant (Mut) METTL3 overexpression were measured by western blotting (upper panel). The mRNAs isolated from wild-type or catalytic mutant METTL3-overexpressing GC cells were used in dot blot analyses with an m<sup>6</sup>A antibody (bottom panel). MB (methylene blue) staining served as a loading control. J) The knockdown efficiencies of METTL3 were verified in MKN45 GC cells by qRT-PCR. K) METTL3 expression was positively correlated with ABL expression in GC (linear regression) using the online bioinformatics tool GEPIA (http://gepia.cancer-pku.cn/). L) Knockdown of ABL decreased the colony-forming ability of BGC823 cells and promoted DDP-induced apoptosis in these cells. M) Quantification of the colony formation assay results in (L). N) The knockdown efficiency of ABL using specific siRNAs in IGF2BP1-overexpressing BGC823 cells was detected by qRT-PCR (upper panel); The protein levels of IGF2BP1 in BGC823 cells with IGF2BP1 overexpression were measured by western blotting (bottom panel). O) Representative images of the cell colony formation abilities of IGF2BP1-overexpressing BGC823 cells transfected with ABL-specific siRNAs or corresponding controls and then treated with DDP at the indicated doses for 24 h. P) Quantification of the colony formation assay results in (O). Q) The knockdown efficiency of ABL using specific siRNAs in METTL3-overexpressing BGC823 cells was detected by qRT-PCR (upper panel); The protein levels of METTL3 in BGC823 cells with METTL3 overexpression were measured by western blotting (bottom panel). The data were analyzed by a two-tailed unpaired Student's t-test (B, C, E-G, J, M, N, P, and Q). The data are represented as the means ± SEM. \* p<0.05; \*\* p<0.01; \*\*\* p<0.001, NS, no significance.



Figure S6. Identification of the effect of ABL-specific siRNA-loaded PEG-CLs. A) Agarose gel electrophoresis of the siRNA/protamine complex at different N:P ratios. B) Agarose gel electrophoresis of si-ABL. si-ABL/protamine complex. si-ABL+PTX/CLs, and si-ABL+PTX/PEG-CLs. C) The postinsertion group showed no obvious effect on transfection efficiency, indicating that the postinsertion method is better for preparing PEG-CLs. D) Intracellular delivery of siRNA PEG-CLs or free siRNA was detected at the indicated times by IF (scale bars=20 µm). E) Zeta potential of ABL-specific siRNA-loaded PEG-CLs. F-G) The cellular uptake of free siRNA, PTX, and siRNA+PTX/PEG-CLs was detected. H) A colony formation assay was used to assess the in vitro antitumor capability of si-ABL+PTX/PEG-CLs. I) Quantification of the colony formation assay results in (H). The data were analyzed by a

two-tailed unpaired Student's t-test (C, F, G, and I). The data are represented as the means  $\pm$  SEM. \* p<0.05; \*\* p<0.01; \*\*\* p<0.001, NS, no significance.





**Figure S7.** ABL-specific siRNA-loaded PEG-CLs have no obvious systemic toxicity. A) Mouse weight was monitored every other day in each group (n=6). B) Representative H&E staining of major organs, including the heart, liver, spleen, lungs, and kidneys, from mice in each group at the end of the experiment. The data were analyzed by one-way ANOVA test followed by Turkey's multiple comparisons (A). The data are represented as the means  $\pm$  SEM. \* p<0.05; \*\* p<0.01; \*\*\* p<0.001, NS, no significance.

#### **Supporting Tables**

| LncRNA Annotatio | 0 <b>n</b> | Differential E |             |             |          |
|------------------|------------|----------------|-------------|-------------|----------|
| GeneSymbol       | source     | log2FC         | Fold_Change | p_value     | q_value  |
| RP3-512B11.3     | GENCODE    | 2.348886063    | 5.094307562 | 1.40887E-05 | 0.039354 |
|                  |            |                |             |             | 458      |
| LOC730102        | RefSeq     | 1.990616039    | 3.974066569 | 1.8763E-05  | 0.043010 |
|                  |            |                |             |             | 915      |
| RP11-37B2.1      | GENCODE    | 1.305542559    | 2.471766665 | 0.001497517 | 0.158735 |
|                  |            |                |             |             | 494      |
| LOC100288637     | RefSeq     | 1.162140427    | 2.23789202  | 0.001645347 | 0.162808 |
|                  |            |                |             |             | 241      |
| RP11-1275H24.3   | GENCODE    | 1.167614434    | 2.246399367 | 0.001821883 | 0.165664 |
|                  |            |                |             |             | 29       |
| DUXAP10          | RefSeq     | 2.675223575    | 6.387376868 | 0.002724512 | 0.185397 |
|                  |            |                |             |             | 161      |
| LINC00543        | GENCODE    | 1.282344685    | 2.432339625 | 0.004594469 | 0.203758 |
|                  |            |                |             |             | 381      |
| RP11-803D5.4     | GENCODE    | 1.358719515    | 2.56457456  | 0.004865512 | 0.207919 |
|                  |            |                |             |             | 361      |
| RP11-649A18.4    | GENCODE    | 1.570332954    | 2.969732436 | 0.008310237 | 0.236849 |
|                  |            |                |             |             | 722      |
| LINC01296        | RefSeq     | 1.725211187    | 3.306285223 | 0.01347973  | 0.267398 |
|                  |            |                |             |             | 003      |
| MIR4435-2HG      | RefSeq     | 1.038804638    | 2.054524648 | 0.015748694 | 0.277687 |
|                  |            |                |             |             | 696      |
| RP11-589N15.2    | GENCODE    | 1.217501639    | 2.325436652 | 0.016904124 | 0.281968 |
|                  |            |                |             |             | 239      |
| CTA-384D8.34     | GENCODE    | 1.17969342     | 2.265286334 | 0.017907056 | 0.286048 |
|                  |            |                |             |             | 666      |
| LOC401585        | RefSeq     | 2.345952443    | 5.083959168 | 0.019422357 | 0.291005 |

#### Table S1. Representative up or down-regulated lncRNAs from RNA-seq

|               |             |             |             |             | 463      |
|---------------|-------------|-------------|-------------|-------------|----------|
| LINC01572     | RefSeq      | 1.048726356 | 2.068702744 | 0.026202525 | 0.310253 |
|               |             |             |             |             | 643      |
| RP11-649A18.5 | GENCODE     | 1.081856016 | 2.116757523 | 0.027562718 | 0.313953 |
|               |             |             |             |             | 485      |
| ABHD11-AS1    | RefSeq      | 1.83811065  | 3.57541486  | 0.02943696  | 0.317886 |
|               |             |             |             |             | 269      |
| LINC00152     | RefSeq      | 1.366649814 | 2.578710494 | 0.030982672 | 0.320545 |
|               |             |             |             |             | 784      |
| RP11-79H23.3  | GENCODE     | 1.324402887 | 2.504292168 | 0.033006479 | 0.324641 |
|               |             |             |             |             | 191      |
| LL22NC03-N14H | GENCODE     | 1.672258134 | 3.187130592 | 0.036003641 | 0.332974 |
| 11.1          |             |             |             |             | 077      |
| RP11-797A18.6 | GENCODE     | 1.428063306 | 2.69085249  | 0.037935589 | 0.337272 |
|               |             |             |             |             | 614      |
| AC017002.2    | GENCODE     | 1.281113686 | 2.430265083 | 0.038046265 | 0.337272 |
|               |             |             |             |             | 614      |
| MIR4435-2HG   | RefSeq      | 1.232520427 | 2.349771429 | 0.040180489 | 0.342033 |
|               |             |             |             |             | 401      |
| GSE61474_XLOC | RNA-seq:    | 1.210444469 | 2.314089188 | 0.040458719 | 0.343015 |
| _058624       | Clark et al |             |             |             | 034      |
|               | 2015        |             |             |             |          |
| LINC00857     | RefSeq      | 1.058650108 | 2.082981619 | 0.04302053  | 0.348952 |
|               |             |             |             |             | 716      |
| RP11-37B2.1   | GENCODE     | 1.492443998 | 2.813652186 | 0.043948088 | 0.350914 |
|               |             |             |             |             | 696      |
| RP11-626H12.1 | GENCODE     | 2.317480806 | 4.984610605 | 0.0443468   | 0.352218 |
|               |             |             |             |             | 925      |
| LOC400043     | RefSeq      | -2.21287222 | 0.21570444  | 0.043595338 | 0.349999 |
|               |             |             |             |             | 719      |
| PWAR5         | RefSeq      | -2.03395636 | 0.244184518 | 0.024637721 | 0.308751 |

| 746 |
|-----|
|     |
| 374 |
|     |
|     |
| 302 |
|     |
| 135 |
|     |
| 317 |
|     |
|     |

 Table S2. Biotinylated ABL sense pull-down followed by MS

| Band | 1 for peptides identification              |    |    |    |      |    |   |   |     |    |
|------|--------------------------------------------|----|----|----|------|----|---|---|-----|----|
| Acc  | Description                                | S  | С  | Р  | Uni  | Р  | Р | A | Μ   | c  |
| essi |                                            | c  | ov | ro | que  | ep | S | A | W   | al |
| on   |                                            | 0  | er | te | Pept | ti | M | S | [k  | c. |
|      |                                            | r  | ag | in | ides | de | S |   | Da  | р  |
|      |                                            | e  | e  | S  |      | S  |   |   | ]   | Ι  |
| 014  | Isoform 3 of Apoptotic protease-activating | 6  | 65 | 8  | 70   | 70 | 2 | 1 | 13  | 6. |
| 727- | factor 1 OS=Homo sapiens OX=9606           | 1  | .4 |    |      |    | 1 | 1 | 5.9 | 4  |
| 3    | GN=APAF1 - [APAF_HUMAN]                    | 3. | 9  |    |      |    | 6 | 9 |     | 4  |
|      |                                            | 4  |    |    |      |    |   | 4 |     |    |
|      |                                            | 6  |    |    |      |    |   |   |     |    |
| Q02  | Desmoglein-1 OS=Homo sapiens OX=9606       | 2. | 1. | 1  | 1    | 1  | 1 | 1 | 11  | 5. |
| 413  | GN=DSG1 PE=1 SV=2 - [DSG1_HUMAN]           | 8  | 53 |    |      |    |   | 0 | 3.7 | 0  |
|      |                                            | 3  |    |    |      |    |   | 4 |     | 3  |
|      |                                            |    |    |    |      |    |   | 9 |     |    |
| Q14  | Desmoglein-2 OS=Homo sapiens OX=9606       | 2. | 5. | 1  | 4    | 4  | 5 | 1 | 12  | 5. |

| 126  | GN=DSG2 PE=1 SV=2 - [DSG2_HUMAN]               | 8  | 19 |   |   |   |   | 1 | 2.2 | 2  |
|------|------------------------------------------------|----|----|---|---|---|---|---|-----|----|
|      |                                                | 4  |    |   |   |   |   | 1 |     | 4  |
|      |                                                |    |    |   |   |   |   | 8 |     |    |
| P42  | Lamina-associated polypeptide 2, isoform       | 1. | 1. | 1 | 1 | 1 | 1 | 6 | 75. | 7. |
| 166  | alpha OS=Homo sapiens OX=9606                  | 7  | 59 |   |   |   |   | 9 | 4   | 6  |
|      | GN=TMPO PE=1 SV=2 -                            | 0  |    |   |   |   |   | 4 |     | 6  |
|      | [LAP2A_HUMAN]                                  |    |    |   |   |   |   |   |     |    |
| P08  | Heat shock protein HSP 90-beta OS=Homo         | 1. | 4. | 7 | 2 | 2 | 2 | 7 | 83. | 5. |
| 238  | sapiens OX=9606 GN=HSP90AB1 PE=1               | 6  | 01 |   |   |   |   | 2 | 2   | 0  |
|      | SV=4 - [HS90B_HUMAN]                           | 9  |    |   |   |   |   | 4 |     | 3  |
| Q9   | Thyroid hormone receptor-associated protein    | 1. | 1. | 1 | 1 | 1 | 1 | 9 | 10  | 1  |
| Y2   | 3 OS=Homo sapiens OX=9606 GN=THRAP3            | 6  | 15 |   |   |   |   | 5 | 8.6 | 0. |
| W1   | PE=1 SV=2 - [TR150_HUMAN]                      | 3  |    |   |   |   |   | 5 |     | 1  |
|      |                                                |    |    |   |   |   |   |   |     | 5  |
| P02  | Isoform 5 of Prelamin-A/C OS=Homo              | 1. | 5. | 9 | 2 | 2 | 2 | 5 | 62. | 6. |
| 545- | sapiens OX=9606 GN=LMNA -                      | 6  | 31 |   |   |   |   | 6 | 8   | 1  |
| 5    | [LMNA_HUMAN]                                   | 1  |    |   |   |   |   | 5 |     | 8  |
| Q13  | Isoform 2 of Protein flightless-1 homolog      | 1. | 0. | 3 | 1 | 1 | 1 | 1 | 13  | 6. |
| 045- | OS=Homo sapiens OX=9606 GN=FLII -              | 6  | 74 |   |   |   |   | 2 | 8.4 | 0  |
| 2    | [FLII_HUMAN]                                   | 1  |    |   |   |   |   | 1 |     | 7  |
|      |                                                |    |    |   |   |   |   | 4 |     |    |
| P78  | Isoform 2 of General transcription factor II-I | 0. | 0. | 4 | 1 | 1 | 1 | 9 | 10  | 7. |
| 347- | OS=Homo sapiens OX=9606 GN=GTF2I -             | 0  | 94 |   |   |   |   | 5 | 7.9 | 9  |
| 2    | [GTF2I_HUMAN]                                  | 0  |    |   |   |   |   | 7 |     | 4  |
| P27  | Inositol-trisphosphate 3-kinase B OS=Homo      | 0. | 2. | 1 | 1 | 1 | 3 | 9 | 10  | 8. |
| 987  | sapiens OX=9606 GN=ITPKB PE=1 SV=5 -           | 0  | 22 |   |   |   |   | 4 | 2.3 | 4  |
|      | [IP3KB_HUMAN]                                  | 0  |    |   |   |   |   | 6 |     | 3  |
| Q96  | Isoform 2 of Histone-lysine                    | 0. | 0. | 3 | 1 | 1 | 1 | 2 | 26  | 8. |
| L73  | N-methyltransferase, H3 lysine-36 and H4       | 0  | 58 |   |   |   |   | 4 | 7.2 | 5  |
| -2   | lysine-20 specific OS=Homo sapiens             | 0  |    |   |   |   |   | 2 |     | 1  |
|      | OX=9606 GN=NSD1 - [NSD1_HUMAN]                 |    |    |   |   |   |   | 7 |     |    |

| Band | 2 for peptides identification               |    |    |   |   |   |   |   |     |    |
|------|---------------------------------------------|----|----|---|---|---|---|---|-----|----|
| Q9   | Insulin-like growth factor 2 mRNA-binding   | 1  | 7. | 9 | 2 | 3 | 7 | 5 | 63. | 9. |
| NZI  | protein 1 OS=Homo sapiens OX=9606           | 4. | 80 |   |   |   |   | 7 | 4   | 2  |
| 8    | GN=IGF2BP1 PE=1 SV=2 -                      | 1  |    |   |   |   |   | 7 |     | 0  |
|      | [IF2B1_HUMAN]                               | 5  |    |   |   |   |   |   |     |    |
| A0   | Serum albumin OS=Homo sapiens OX=9606       | 4. | 3. | 9 | 1 | 1 | 1 | 3 | 45. | 6. |
| A08  | GN=ALB PE=1 SV=1 -                          | 4  | 79 |   |   |   |   | 9 | 1   | 1  |
| 7W   | [A0A087WWT3_HUMAN]                          | 0  |    |   |   |   |   | 6 |     | 0  |
| WT   |                                             |    |    |   |   |   |   |   |     |    |
| 3    |                                             |    |    |   |   |   |   |   |     |    |
| F5G  | Retinoic acid-induced protein 3 (Fragment)  | 2. | 4. | 2 | 1 | 1 | 1 | 2 | 30. | 9. |
| WG   | OS=Homo sapiens OX=9606 GN=GPRC5A           | 4  | 76 |   |   |   |   | 7 | 5   | 0  |
| 3    | PE=1 SV=8 - [F5GWG3_HUMAN]                  | 1  |    |   |   |   |   | 3 |     | 3  |
| Q07  | Isoform 3 of KH domain-containing,          | 2. | 3. | 3 | 1 | 1 | 1 | 4 | 44. | 7. |
| 666- | RNA-binding, signal transduction-associated | 2  | 47 |   |   |   |   | 0 | 0   | 2  |
| 3    | protein 1 OS=Homo sapiens OX=9606           | 7  |    |   |   |   |   | 4 |     | 8  |
|      | GN=KHDRBS1 - [KHDR1_HUMAN]                  |    |    |   |   |   |   |   |     |    |
| H0   | Polyadenylate-binding protein 2 (Fragment)  | 2. | 11 | 6 | 1 | 1 | 1 | 9 | 11. | 1  |
| YJH  | OS=Homo sapiens OX=9606 GN=PABPN1           | 2  | .4 |   |   |   |   | 6 | 1   | 1. |
| 9    | PE=1 SV=1 - [H0YJH9_HUMAN]                  | 2  | 6  |   |   |   |   |   |     | 2  |
|      |                                             |    |    |   |   |   |   |   |     | 7  |
| P50  | Isoform 3 of T-complex protein 1 subunit    | 2. | 2. | 3 | 1 | 1 | 1 | 4 | 51. | 5. |
| 990- | theta OS=Homo sapiens OX=9606               | 1  | 11 |   |   |   |   | 7 | 6   | 2  |
| 3    | GN=CCT8 - [TCPQ_HUMAN]                      | 8  |    |   |   |   |   | 5 |     | 4  |
| B4   | Pyruvate kinase OS=Homo sapiens OX=9606     | 2. | 23 | 9 | 7 | 7 | 7 | 4 | 49. | 7. |
| DN   | GN=PKM PE=1 SV=1 -                          | 1  | .1 |   |   |   |   | 5 | 9   | 8  |
| K4   | [B4DNK4_HUMAN]                              | 4  | 9  |   |   |   |   | 7 |     | 3  |
| Q8I  | Mitotic interactor and substrate of PLK1    | 2. | 2. | 1 | 1 | 1 | 1 | 6 | 75. | 6. |
| VT2  | OS=Homo sapiens OX=9606 GN=MISP             | 0  | 36 |   |   |   |   | 7 | 3   | 8  |
|      | PE=1 SV=1 - [MISP_HUMAN]                    | 7  |    |   |   |   |   | 9 |     | 3  |
| P06  | Isoform 3 of Tyrosine-protein kinase Fyn    | 2. | 2. | 7 | 1 | 1 | 2 | 4 | 54. | 6. |

| 241- | OS=Homo sapiens OX=9606 GN=FYN -           | 0  | 28 |    |   |   |   | 8 | 5   | 2  |
|------|--------------------------------------------|----|----|----|---|---|---|---|-----|----|
| 3    | [FYN_HUMAN]                                | 4  |    |    |   |   |   | 2 |     | 3  |
| Q15  | 2'-5'-oligoadenylate synthase-like protein | 2. | 6. | 3  | 2 | 2 | 2 | 5 | 59. | 7. |
| 646  | OS=Homo sapiens OX=9606 GN=OASL            | 0  | 03 |    |   |   |   | 1 | 2   | 8  |
|      | PE=1 SV=2 - [OASL_HUMAN]                   | 3  |    |    |   |   |   | 4 |     | 7  |
| D6   | Drebrin (Fragment) OS=Homo sapiens         | 2. | 6. | 5  | 1 | 1 | 1 | 3 | 36. | 5. |
| R9   | OX=9606 GN=DBN1 PE=1 SV=1 -                | 0  | 62 |    |   |   |   | 1 | 4   | 1  |
| W4   | [D6R9W4_HUMAN]                             | 1  |    |    |   |   |   | 7 |     | 4  |
| P38  | Stress-70 protein, mitochondrial OS=Homo   | 1. | 1. | 1  | 1 | 1 | 1 | 6 | 73. | 6. |
| 646  | sapiens OX=9606 GN=HSPA9 PE=1 SV=2 -       | 9  | 62 |    |   |   |   | 7 | 6   | 1  |
|      | [GRP75_HUMAN]                              | 5  |    |    |   |   |   | 9 |     | 6  |
| A0   | Flotillin-1 (Fragment) OS=Homo sapiens     | 1. | 12 | 17 | 3 | 3 | 3 | 3 | 39. | 6. |
| A14  | OX=9606 GN=FLOT1 PE=1 SV=1 -               | 8  | .3 |    |   |   |   | 5 | 8   | 3  |
| 0T9  | [A0A140T9R1_HUMAN]                         | 7  | 2  |    |   |   |   | 7 |     | 7  |
| R1   |                                            |    |    |    |   |   |   |   |     |    |
| Q8   | G2/mitotic-specific cyclin-B3 OS=Homo      | 1. | 0. | 1  | 1 | 1 | 1 | 1 | 15  | 6. |
| W    | sapiens OX=9606 GN=CCNB3 PE=1 SV=2 -       | 7  | 93 |    |   |   |   | 3 | 7.8 | 6  |
| WL   | [CCNB3_HUMAN]                              | 0  |    |    |   |   |   | 9 |     | 8  |
| 7    |                                            |    |    |    |   |   |   | 5 |     |    |
| P61  | Actin-related protein 3 OS=Homo sapiens    | 1. | 6. | 4  | 2 | 2 | 2 | 4 | 47. | 5. |
| 158  | OX=9606 GN=ACTR3 PE=1 SV=3 -               | 6  | 22 |    |   |   |   | 1 | 3   | 8  |
|      | [ARP3_HUMAN]                               | 3  |    |    |   |   |   | 8 |     | 8  |
| Q9   | Probable ATP-dependent RNA helicase        | 0. | 5. | 1  | 1 | 1 | 1 | 5 | 59. | 1  |
| NU   | DDX28 OS=Homo sapiens OX=9606              | 0  | 19 |    |   |   |   | 4 | 5   | 0. |
| L7   | GN=DDX28 PE=1 SV=2 -                       | 0  |    |    |   |   |   | 0 |     | 4  |
|      | [DDX28_HUMAN]                              |    |    |    |   |   |   |   |     | 2  |
| P35  | Isoform 2 of Protein DEK OS=Homo sapiens   | 0. | 7. | 6  | 2 | 2 | 2 | 3 | 38. | 8. |
| 659- | OX=9606 GN=DEK - [DEK_HUMAN]               | 0  | 33 |    |   |   |   | 4 | 7   | 1  |
| 2    |                                            | 0  |    |    |   |   |   | 1 |     | 5  |
| P06  | Isoform MBP-1 of Alpha-enolase OS=Homo     | 0. | 3. | 2  | 1 | 1 | 1 | 3 | 36. | 6. |
| 733- | sapiens OX=9606 GN=ENO1 -                  | 0  | 52 |    |   |   |   | 4 | 9   | 2  |

| 2 | [ENOA_HUMAN] | 0 | 1 | 8 |
|---|--------------|---|---|---|

| N:P<br>(mol:mol) | 2         | 4         | 6          | 8          | 10        |
|------------------|-----------|-----------|------------|------------|-----------|
| Size (nm)        | 267.9±8.4 | 246.4±6.1 | 226.1±22.9 | 187.5±13.7 | 167.4±7.8 |
| Zeta (mV)        | -27.0±2.1 | -18.6±0.6 | -1.7±1.2   | 9.7±2.3    | 16.8±4.8  |

**Table S3.** Particle size and potential of siRNA/protamine complex

#### Table S4. Particle size and potential of siRNA/CLs

| Lipid (nmol/µg siRNA) | 50        | 100      |
|-----------------------|-----------|----------|
| Size (nm)             | 146.5±5.8 | 68.5±1.7 |
| Zeta (mV)             | 27.2±10.7 | 34.3±3.1 |

| Table S5. Particle size and | potential of siRNA/PEG-CLs |
|-----------------------------|----------------------------|
|-----------------------------|----------------------------|

| $n_{PEG}/n_{total \ lipids}$ | 1%       | 3%       | 5%        |
|------------------------------|----------|----------|-----------|
| Size (nm)                    | 68.9±2.1 | 71.0±1.0 | 73.1±1.9  |
| Zeta (mV)                    | 27.7±4.6 | 10.0±0.3 | 0.17±0.61 |

Table S6. The sequences of siRNAs

| siRNAs          | Sequences (5'-3')     |
|-----------------|-----------------------|
| ABLsiRNA#1      | GCGAAGAACCCTAGGCAGA   |
| ABLsiRNA#2      | ACCCTCTCCGGAACTCAGA   |
| P300 siRNA#1    | CGACTTACCAGATGAATTA   |
| P300 siRNA#2    | GCACAAATGTCTAGTTCTT   |
| METTL3 siRNA#1  | CGACTACAGTAGCTGCCTT   |
| METTL3 siRNA#2  | CTGCAAGTATGTTCACTATGA |
| IGF2BP1 siRNA#1 | GGCTCAGTATGGTACAGTA   |
| IGF2BP1 siRNA#2 | TGAAGATCCTGGCCCATAA   |
| IGF2BP3 siRNA#1 | GCTGAGAAGTCGATTACTA   |
| IGF2BP3 siRNA#2 | TAAGGAAGCTCAAGATATA   |

Table S7. Antibodies for WB, RIP, IF, IP, and IHC

| Antibodies                         | Source         | Identifier      |
|------------------------------------|----------------|-----------------|
| anti-GAPDH (for WB)                | Beyotime       | Cat#AG019       |
| anti-APAF1 (for WB, RIP and LACE)  | Abcam          | Cat#ab234436    |
| anti-APAF1 (for IF and IP)         | Santa          | Cat#sc-135836   |
| anti-IGF2BP1 (for WB, RIP and IF)  | Proteintech    | Cat#22803-1-AP  |
| anti-METTL3 (for WB)               | Proteintech    | Cat# 15073-1-AP |
| anti-Rabbit IgG (for RIP and LACE) | Beyotime       | Cat#A7016       |
| anti-Mouse IgG (for RIP)           | Beyotime       | Cat#A7028       |
| anti-HRP mouse (for WB)            | Beyotime       | Cat#A0216       |
| anti-HRP rabbit (for WB)           | Beyotime       | Cat#A0208       |
| anti-IHC rabbit (for IHC)          | Servicebio     | Cat#G1215       |
| anti-β-actin (for WB)              | Beyotime       | Cat#AA128       |
| anti-caspase-9 (for WB)            | CST            | Cat#9509        |
| anti-caspase-3 (for WB)            | CST            | Cat#9662        |
| anti-cleaved caspase-3 (for IF)    | CST            | Cat#9664        |
| anti-Cyt c (for WB and IF)         | Abcam          | Cat#ab133504    |
| anti-Ki-67 (for IHC)               | Servicebio     | Cat#GB111499    |
| anti-HA (for WB)                   | Beyotime       | Cat#AF5057      |
| anti-His (for WB)                  | Beyotime       | Cat#P2233       |
| anti-FLAG (for WB)                 | Sigma -Aldrich | Cat#F1804       |
| anti-m6A (for RIP and Dot blot)    | Abcam          | Cat#ab208577    |
| anti-GST (for WB)                  | Abmart         | Cat#MY1901      |
| anti-His (for WB)                  | SMART          | Cat# SLAB28     |

| Names                                                                        | Sequences (5'-3')                       |  |
|------------------------------------------------------------------------------|-----------------------------------------|--|
| qPCR primers                                                                 | for gene expression                     |  |
| ABL F <sup>a</sup>                                                           | TGAGGATGCTTGTCTCGC                      |  |
| ABL R <sup>b</sup>                                                           | GAATGTTCAAGCTCCGCGTC                    |  |
| GAPDH F                                                                      | CATGTGGGCCATGAGGTCCACCAC                |  |
| GAPDH R                                                                      | GGGAAGCTCACTGGCATGGCCTTCC               |  |
| METTL3 F                                                                     | ATCCCCAAGGCTTCAACCAG                    |  |
| METTL3 R                                                                     | AGGGTGATCCAGTTGGGTTG                    |  |
| P300 F                                                                       | GCAGTGTGCCAAACCAGATG                    |  |
| P300 R                                                                       | CATAGCCCATAGGCGGGTTG                    |  |
| IGF2BP1 F                                                                    | AGCTCCTTTATGCAGGCTCC                    |  |
| IGF2BP1 R                                                                    | CCGGGAGAGCTGTTTGATGT                    |  |
| IGF2BP3 F                                                                    | ACTGCACGGGAAACCCATAG                    |  |
| IGF2BP3 R                                                                    | CCAGCACCTCCCACTGTAAAT                   |  |
| WDR74 F                                                                      | CCTGGGGTGTGTAGGATGC                     |  |
| WDR74 R                                                                      | CAAGTCCAGCCAGTCATTCCG                   |  |
| LAMA5 F                                                                      | GACTGCCAACAGTGCCAAC                     |  |
| LAMA5 R                                                                      | CCACCCTGATAGGTGCCAT                     |  |
| MAD1L1 F                                                                     | TGGACTGGATATTTCTACCTCGG                 |  |
| MAD1L1 R                                                                     | CCTCACGCTCGTAGTTCCTG                    |  |
| MALAT1 F                                                                     | AAAGCAAGGTCTCCCCACAAG                   |  |
| MALAT1 R                                                                     | GGTCTGTGCTAGATCAAAAGGCA                 |  |
| NEAT1 F                                                                      | CCAGTTTTCCGAGAACCAAA                    |  |
| NEAT1 R                                                                      | ATGCTGATCTGCTGCGTATG                    |  |
| SCARNA2 F                                                                    | GATCTTATTTGATCGGATCGTG                  |  |
| SCARNA2 R                                                                    | CAATTCATCACTTCTGAGCGC                   |  |
| ABL probes used in <i>in vitro</i> RNA pull-down coupled with dot-blot assay |                                         |  |
|                                                                              | CTATTTCCGCCCGGGGACCGAGGAAATCCTCAAAAGCCG |  |
| Probe-1                                                                      | GGCCACGCATTCCCAGCCCGA                   |  |

Table S8. The oligonucleotides were used in this study

|          | GATCAACAAAAGTAAATATTTGACCAGTAAGTCTCCAAT  |
|----------|------------------------------------------|
| Probe-2  | CGAGAGGCCCCTCCATTCCAG                    |
|          | TCTAAAGCGTTCCCTCCTCACTGTGGTCCTAGTCAATGCG |
| Probe-3  | TGGTAGGTAGCGTTTCCAGT                     |
|          | ATTTCCTGAATTCCTGGAATAAAAAAAAAAAAAAAAAAA  |
| Probe-4  | CCCCCAAACAAAACTCTATCA                    |
|          | GGAAGTCGTGGTTTTCTGTAAAAAAGGTTTTACACATC   |
| Probe-5  | AGAAATCGGACTTCTGGGGGCA                   |
|          | AGCTGCAGTGTTTTCCTCTTCATGCCAAAGAGATTAATAT |
| Probe-6  | TTACGGTGAAGACTTTTCCA                     |
|          | ATCGAAAGGGAAAAAATAAAAGAAATTGCAGTTTATATT  |
| Probe-7  | TTTGTTATCCCATGAAAAATT                    |
|          | GGTACAAAATTTGGAAAATGGACCTGGCGTTGAAATCTT  |
| Probe-8  | TACTCCTCGTTTAAAAAGACC                    |
|          | GTTCCGGAGAGGGTTCGGTCTGCGGAGAAGCGCGCGAGA  |
| Probe-9  | GACAAGCATCCTCAAGGTTCT                    |
|          | GCCACCCTCAGGCTCAAGTCCCAGGAGGCCTCCTCCGCT  |
| Probe-10 | GACTTGGGTGAACAGCTCTGA                    |
|          | ATGTTCAAGCTCCGCGTCACTCATCGGTACCAAGTTGATG |
| Probe-11 | ATCTCTGCCTAGGGTTCTTC                     |
|          | GCCTCTTGCAGTTAACACTCAGCCTCTTAACTGGGAGTGG |
| Probe-12 | CCCTGGAGCAAGTCGCTGGA                     |
|          | GACTGGGTCTGTATCCAAACCCGGTTCGGTTCCTGGAGC  |
| Probe-13 | CAACGGCGTAGTTAACACTCA                    |
|          | TTACTAAAGCGTCATTTAACAATTTTTCATATTATAGAAA |
| Probe-14 | CAGCTTTTCATGGATGGTGT                     |
|          | TTGTTTGGAAAGATGAAAAATTTATTAGAAAAGATCTTT  |
| Probe-15 | AAATGGCTT                                |

a: F, Forward; b: R, Reverse.