

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

BMJ Open

Predicting asthma attacks using connected mobile devices and machine learning; the AAMOS-00 observational study protocol

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-064166
Article Type:	Protocol
Date Submitted by the Author:	26-Apr-2022
Complete List of Authors:	Tsang, Kevin; University of Edinburgh, Usher Institute Pinnock, Hilary; University of Edinburgh, Usher Institute Wilson, Andrew; University of East Anglia, Norwich Medical School Salvi, Dario; Malmo University Shah, Syed Ahmar; The University of Edinburgh Usher Institute of Population Health Sciences and Informatics
Keywords:	Asthma < THORACIC MEDICINE, Health informatics < BIOTECHNOLOGY & BIOINFORMATICS, Information technology < BIOTECHNOLOGY & BIOINFORMATICS, World Wide Web technology < BIOTECHNOLOGY & BIOINFORMATICS

Predicting asthma attacks using connected mobile devices and machine learning; the AAMOS-00 observational study protocol

- Kevin C.H. Tsang^{1,2}, Hilary Pinnock¹, Andrew M. Wilson^{1,3}, Dario Salvi⁴, Syed Ahmar Shah^{1,2}
- 1. Asthma UK Centre for Applied Research, Usher Institute, University of Edinburgh, Edinburgh, UK
- 2. Medical Informatics, Usher Institute, University of Edinburgh, Edinburgh, UK
- 3. Norwich Medical School, University of East Anglia, Norwich, UK
- 4. Internet of Things and People Research Centre, Malmö University, Malmö, Sweden

- Correspondence:
- Mr Kevin Cheuk Him Tsang
- Usher Institute,
- NINE BioQuarter, Little France Road,
- Edinburgh, United Kingdom.
 - EH16 4UX

- Email: k.c.h.tsang@sms.ed.ac.uk
- Word count: 3155

Page 1 of 15 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1		
2 3	20	
4	20	
5 6 7	21	ABSTRACT
8	22	Introduction:
9 10	23	Supported self-management empowering people with asthma to detect early deterioration and take
11	24	timely action reduces the risk of asthma attacks. Smartphones and smart monitoring devices
12	25	coupled with machine learning could enhance self-management by predicting asthma attacks and
13 14	26	providing tailored feedback.
15	27	We aim to develop and assess the feasibility of an asthma attack predictor system based on data
16 17	28	collected from a range of smart devices.
18 19	29	Methods and Analysis:
20	30	A 2-phase, 7-month observational study to collect data about asthma status using three smart
21	31	monitoring devices, and daily symptom questionnaires. We will recruit up to 100 people via social
22 23	32	media and from a severe asthma clinic, who are at risk of attacks and who use a pressurised metered
24	33	dose relief inhaler (that fits the smart inhaler device).
25 26	34	Following a preliminary month of daily symptom questionnaires, 30 participants able to comply with
20	35	regular monitoring will complete six months of using smart devices (smart peak flow meter, smart
28	36	inhaler, smartwatch) and daily questionnaires to monitor asthma status. The occurrence of asthma
29	37	attacks (definition: ATS/ERS Task Force 2009) will be detected by self-reported use (or increased use)
30 31	38	of oral corticosteroids. Monitoring data will be analysed to identify predictors of asthma attacks. At
32	39	the end of the monitoring, we will assess users' perspectives on acceptability and utility of the
33	40	system with an exit questionnaire.
34 35	41	Ethics and Dissemination:
36 37	42	Ethics approval was provided by the East of England - Cambridge Central Research Ethics Committee.
38	43	IRAS project ID: 285505 with governance approval from ACCORD (Academic and Clinical Central
39	44	Office for Research and Development), project number: AC20145. The study sponsor is ACCORD, the
40 41	45	University of Edinburgh.
42	46	Results will be reported through peer-reviewed publications, abstracts, and conference posters.
43	47	Public dissemination will be centred around blogs and social media from the Asthma UK network
44 45	48	and shared with study participants.
46		
47	49	Key Words
48 49	50	Asthma Attacks, Machine Learning, mHealth, Smart Monitoring Devices, Prediction
50	51	
51	01	
52 53		
54	52	ARTICLE SUMMARY
55	53	Strengths and limitations of this study
56 57		
58	54	• This study combines objective data collected from multiple smart monitoring devices
59	55	available on the market.
60		

1 2 3 4 5 6 7 8 9 10	56 57 58 59	 Stratified analysis and individualised asthma attack prediction models are not expected, due to the limited number of participants and study period. Participants are limited to patients with severe asthma at risk of acute attacks, and to those using a pressurised metered dose relief inhaler that fits our smart device.
11 12 13 14 15 16 17 18 19 20 21		
22 23 24 25 26 27 28 29 30 31 32		
 33 34 35 36 37 38 39 40 41 42 43 		
44 45 46 47 48 49 50 51 52 53 54 55 56		
57 58 59 60		

62 INTRODUCTION

Asthma is a variable condition, affecting around 5.4 million people in the UK.[1] Every 10 seconds in the UK alone, someone has an asthma attack. Some of these attacks are life-threatening with over 1400 annual deaths estimated in the UK.[1,2] Since there is no known cure for asthma, selfmanagement is a key part of patient care; this involves detecting deterioration and taking appropriate action to maintain control and prevent the threatened attack.[3] The most common symptoms of asthma are wheezing, cough, chest tightness and shortness of breath.

69 Traditional self-management action plans use symptom scores, sometimes supplemented by peak 70 flow measurements, to determine a patient's asthma condition.[4–6] Keeping track of relief inhaler 71 usage can also help measure asthma control.[7] However, patients may regard this level of 72 monitoring as tedious as it involves high levels of active engagement on their part.

Increasingly, smart monitoring devices and "mobile-health" (mHealth) technologies are being developed to support asthma self-management.[8] Some notable examples include myAsthma [9] and Asthma MD.[10] myAsthma stores personalised action plans, includes instructional videos about inhaler techniques, tracks symptoms and peak flow, and provides local weather forecasts. AsthmaMD [10] has similar features to support self-management and can provide customised notifications. However, these tools still require a high level to active engagement to monitor one's asthma.

There has been an increasing number of mHealth studies to predict asthma attacks and develop passive monitoring to support asthma self-management, including the use of smart peak flow meters,[11] activity tracking,[12,13] smartphone administrated questionnaires,[6,14] and weather data.[15,16] However, the combined use of the monitoring devices available to asthma patients to develop asthma attack prediction models is largely unexplored. In addition, whilst there have been some studies that explored the use of machine learning algorithms for chronic disease management with home-monitoring data, [17] there is still no mHealth system that is widely used by asthma patients. One of the key bottlenecks for the limited progress is the difficulty of collecting asthma monitoring data and the lack of availability of such datasets from existing studies. Apart from the Asthma Mobile Health Study, [18] no other asthma mHealth dataset is publicly available to be able to investigate the development and validation of asthma attack prediction algorithm.

In this study, we will collect novel asthma monitoring data that will facilitate the development of an asthma attack prediction algorithm leveraging available, approved asthma monitoring devices in the market. This study will also enable us to test whether unobtrusive, passive monitoring and machine learning could help minimise the need for active patient data collection whilst maintaining accuracy for predicting attacks. We envisage that an mHealth system that leverages machine learning to predict asthma attacks with passive monitoring will enhance patient adherence and improve patient self-management.

54
 55
 56
 57
 100
 54
 54
 55
 56
 57
 56
 57
 56
 57
 56
 57
 56
 57
 56
 57
 56
 57
 57
 56
 57
 57
 56
 57
 57
 57
 57
 57
 57
 57
 57
 57
 57
 57
 57
 57
 57
 57
 57
 57
 57
 57
 57
 57
 57
 57
 57
 57
 57
 57
 57
 57
 57
 57
 57
 57
 57
 57
 57
 57
 57
 57
 57
 57
 57
 57
 57
 57
 57
 57
 57
 57
 57
 57
 57
 57
 57
 57
 57
 57
 57
 57
 57
 57
 57
 57
 57
 57
 57
 57
 57
 57
 57
 57
 57
 57
 57
 57
 57
 57
 57
 57
 57
 57
 57
 57
 57
 57
 57
 57
 57
 57
 57
 57
 57
 57
 57
 57
 57
 57
 57
 57
 57

METHODS AND ANALYSIS

Study population

To maximise the chances of collecting data related to attacks in a short time-span, we will focus on patients with moderate to severe risk of attacks. Two key predictors are a recent history of attacks and people with severe asthma. [19,20] We will thus focus on adult asthma patients who have had at least one course of oral corticosteroid for an acute asthma attack in the past 12 months, and people attending a secondary care severe asthma clinic. See Table 1 for inclusion and exclusion criteria.

Social media recruitment consists of sending tweets on Twitter and posting on Facebook via the Asthma + Lung UK and Asthma UK Centre for Applied Research (AUKCAR) accounts, which total around 175,000 followers. The Norfolk and Norwich University Hospital will help identify potentially eligible patients for the study and direct them to the online information and expression of interest.

Table 1: Inclusion and exclusion criteria

Inclusion criteria:	Aged 18 and above
	 Self-reported or doctor-diagnosed asthma
	 Possession of a smartphone (from 2016 onwards) that can support the Mobistudy and FindAir mobile apps (Android 4.4+, iOS 10+) and has Bluetooth capabilities
	Has had at least one course of oral corticosteroids for an acute asthma attack in the past 12 months
	 Prescribed with pressurised metered dose relief inhaler that is compatible with FindAir ONE (e.g. Ventolin and other versions o salbutamol if the inhaler is a compatible shape inhaler as Ventolin Salamol; Airomir; Fostair; Budiair)[21]
Exclusion criteria:	 Comorbidities that have overlapping symptoms (e.g. wheezing cough, chest tightness and shortness of breath)
	Aged under 18
	 Unable to provide valid consent (e.g. cognitive impairment, learning disabilities)
	 Unable to use an app and respond to questions in English

Sample size calculation

To achieve the objectives of this study, we need to collect sufficient data need to train an asthma attack prediction model.

In the study population of UK Optimum Patient Care Research Database (OPCRD) and Clinical Practice Research Datalink (CPRD), 41% of the patients who had multiple (2 or more) attacks in the baseline year also had multiple attacks in the following year. [20]

Based on 30 participants with daily monitoring, 3,470 recordings (= 30 people \times 30 days \times (89%) adherence at baseline, 58% adherence at 3 months, 52% adherence at 6 months [22])) for each of the daily measurements can be expected in phase 2. Also, 12 recorded asthma attacks are expected, assuming an average of one attack observed per participant in 41% of phase 2 participants during the study period.[20] To use the novelty detection algorithm iForest (which can be trained even if the data collected does not include any attacks), a sample of 256 recordings or data points would suffice.[23] Other machine learning classification algorithms will also obtain high accuracy on this sample size.

Recruitment strategy

Using a similar recruitment method, Hui et al. recruited 87 participants using social media alone, the majority within the first month after the initial invitational message, although the number of those who continued to use the app dropped to 15 (17% of the total initially recruited participants) after 30 days. [24] Moreover, only 5% of identified participants through practices agreed to join their study, which totalled 28 participants from five practices.[24] However, the attrition rate for participants recruited through practices was lower, 63% vs 83% reduction in social media participants; only 25% of users were still using the app after 30 days.[24] The eligibility criteria (≥16 years, an asthma prescription in the previous year, registered with a UK general practitioner) is more relaxed than the proposed criteria. However, this study incentivises entry of data in the first 28 days by giving adherent participants access to phase 2 which is likely to result in much more than 25% passing 30 days of participation.

Following the previous research, which recruited participants through Asthma UK's social media (at the time of writing had 175,000 followers), around 87 participants are expected to be eligible and join this study. In addition, around six participants identified and invited via are expected to be eligible and join from Norfolk and Norwich University Hospital. Of which, 47 people (50% of 93 respondents) are expected to complete phase 1. Thus, including 30 participants is achievable using the outlined recruitment method.

Outcomes

Primary endpoints

The primary endpoints of this study are severe asthma attacks, as defined in the American Thoracic Society (ATS)/European Respiratory Society (ERS) Task Force 2009 statement.[25] The definition is as follows:

Severe asthma attacks are events that require urgent action on the part of the patient and physician to prevent a serious outcome. Such attacks are defined as a deterioration requiring use of systemic corticosteroids (or an increase from a stable maintenance dose).[25] Severe asthma attacks will be identified using the use of systemic corticosteroids question on the weekly self-reported questionnaire. Courses of corticosteroids separated by 1 week or more will be treated as separate severe attacks. Secondary endpoints The secondary endpoints of this study are moderate asthma attacks, as defined in the ATS/ERS Task Force 2009 statement.[25] The definition is as follows: A moderate asthma attack is an event that, when recognised, should result in a temporary change in treatment to prevent the attack from becoming severe. Such attacks are defined as a deterioration that does not require use of systemic corticosteroids.[25] Moderate asthma attacks include a deterioration in symptoms, lung function, and/or increased rescue bronchodilator use that lasts for 2 days or more but are not severe enough to warrant systemic corticosteroid use. Moderate asthma attacks will be identified using the questions about relief inhaler usage, symptoms (day symptoms, nocturnal symptoms, interference with usual activities, shortness of breath, wheezing), and unscheduled care (GP, emergency room, and hospitalisations) in the daily and weekly self-reported questionnaires. Data collection The data collection period is split into two phases: 1. *Questionnaire monitoring, daily for one month.* 2. Smart device and questionnaire monitoring, daily for six months. 30 participants who keep a regular diary in phase 1 will be given three smart devices (smart inhaler, smart peak flow meter, smartwatch) to collect data automatically as they use the devices, in addition to completing daily and weekly questionnaires. We will choose participants for this phase with a range of ages, gender, and smoking status, and with different types of asthma triggers. At the end of phase 2, we will send a questionnaire asking for feedback about using the smart devices and whether participants think they could be useful to help them look after their asthma. We will be using Mobistudy to centralise most of the data collection, only the smart inhaler usage and exit questionnaire will not be collected via Mobistudy (see Figure 1). Data collection mobile app (Mobistudy) Mobistudy [26] is an open-source platform facilitating mHealth studies available on Android and iOS managed by Malmö University, Sweden. The platform has three key components: a mobile app for participants, a REST API server, and a web portal for researchers (see Figure 2). The platform

- supports multiple studies and participants of the AAMOS-00 study will be given a study invite code to join the AAMOS-00 study within Mobistudy.
- Each daily and weekly assessment, such as questionnaires and peak flow measurement, will appear as an individual task of the home page on the participant's app (see Figure 3). Once the task is completed, it will be removed from today's to-do list and the data is sent directly to the server via the phone Internet connection. In real-time, the research team will be able to view the collected data via the online web portal for researchers.

Phase 1

There will be a total of four questionnaires:

- A daily questionnaire that asks six questions about daily symptoms experienced, medication usage, and the triggers encountered. This will take around 2 minutes to complete.
- A weekly questionnaire that asks 10 questions about asthma symptoms in more detail, medication usage, and healthcare engagement. This will take around 5 minutes to complete.
 - A questionnaire that asks 11 questions at the start of phase 1 about current asthma condition and history.
 - A questionnaire that asks five questions about race and smoking status. Additionally, some demographic information will be collected from the Mobistudy profile of participants, such as height, weight, and age.

The completion rate (50%) of the daily and weekly questionnaire will be used to determine the eligibility of a participant to join phase 2.

Phase 2

In addition to the daily and weekly questionnaires (see Figure 4), in phase 2 participants will be asked to collect data using three smart monitoring devices: Smart Peak Flow Meter (by Smart Asthma [27]), FindAir ONE (by FindAir [21]) smart inhaler, and MiBand3 (by Xiaomi [28]) smartwatch.

Participants will be given the smart peak flow meter to take a peak expiratory flow measurement twice a day, once in the morning and once at night; each measurement takes the best of three tries (see Figure 5). They will also be provided in-app written instructions before each set of measurements on using the peak flow meter. Furthermore, participants recruited through the Norfolk and Norwich University Hospital have been trained to use a peak flow meter by the practice. To connect the smart peak flow meter to the smartphone, participants can either use the audio-jack connection or a Bluetooth adapter.

The FindAir ONE smart inhaler attaches to the top of pressurised metered dose relief inhalers, it records the time at which the inhaler is used. The device can be moved to a new inhaler if participants change medication. The device will be connected to participants' smartphone by Bluetooth to the FindAir mobile app. The data will be transferred from the FindAir server and thence to the research team using FindAir's Application Programming Interface (API). The data collection will happen in the background once the participant has set up the connection between their mobile app and the AAMOS-00 study.

3 4 5 6 7	238 239 240 241	Using the MiBand3, we will collect minute-by-minute data on heart rate, step count, activity intensity, and activity type. The watch will connect to the participant's smartphone via Bluetooth and to the Mobistudy app. Participants will be asked to upload the data from the watch at least once every three days. This also gives a chance for users to review their activity (see Figure 6).
8 9 10 11 12	242 243 244 245	Local daily weather reports will be obtained using the phone's location combined with the data from Open Weather Maps' [29] and Ambee's [30] API. The weather data will include the temperature, humidity, clouds, wind, air quality index, and pollen levels of grass, tree, and weeds measured at a one-kilometre resolution (see Figure 7).

12 245 one-kilometre resolution (see Figure 7).

14 246

¹⁶₁₇ 247 Exit questionnaire at the end of Phase 2

18248At the end of phase 2, a survey will gather data regarding users' perspective of the acceptability and19249utility of the monitoring system. The survey combines validated questionnaires on usability and20250acceptance (SUS [31] and uMARS [32]) with questions about motivations to use technology (mTEI22251[33]) and desired features in an asthma management system.

- 23
 24
 252 See Table 2 for a summary of the study's activities.
- 25 253

254 Table 2. Summary of data collection

Assessment	Screening	Day 1 baseline	Phase 1	Day 31 baseline	Phase 2	Study Exit
Assessment of Eligibility Criteria	Once		2	Once		
Written informed consent	Once		0	2		
Demographic data, contact details		Once		0		
Weight/height		Once				
Known triggers		Once				
Peak flow				-	Twice daily	
Heart rate					Automated	
Activity					Automated	
Location, air quality and allergens					Daily	
Inhaler Usage			Daily & Weekly		Automated	
Symptoms			Daily & Weekly		Daily	
Triggers encountered			Daily		Daily	
Healthcare Usage			Weekly		Weekly	

	Feedback	Once at
255		the end
256	Data analysis plan	
257	Feasibility (from usage data)	
258	Combining the usage data from phase 1 and 2 of questionnaire comp	letion and device usage
259	compute compliance to the monitoring regime to assess if it is feas	ible for patients to use
260	monitoring devices in their daily lives.	
261 262	We will also use activity logs on the server, and communication over en major technical issues and shortcomings of the technology.	nail with patients, to iden
	major technical issues and shortcomings of the technology.	
263		
264	Acceptability (from survey data)	
265	The data from the final questionnaire will be mostly ordinal data, with s	some free text answers. F
266	text will be processed for thematic text analysis, identifying overall acce	ptability and recurring top
267	present in the feedback. The ordinal data from answers on a Likert sc	ale will provide measures
268	acceptability.	
269		
270	Prediction of asthma attacks (using monitoring data)	
271	Severe asthma attacks will be identified by the reports of oral corticost	eroid usage (or an increa
272	dose from normal). Moderate and severe asthma attacks will be identifi	ed from the daily and wee
273	data, to observe a change in control from the norm lasting two days or	more. Sensitivity analysis
274	be conducted using different features to define an asthma attack, s	such as hospitalisations a
275	changes in peak flow.	
276	The methods of linear fit and bin-algorithms will be used to collate and	l produce summary variat
277	over irregular time-series and to handle missing data;[6] though, the l	ongitudinal data collected
278	this study are likely to be more complete than the Asthma Mobile Hea	Ith Study.[34] Data collec
279	from participants who have withdrawn from the study will be used up	o to the last recording. At
280	processing the data, machine learning classifiers will be trained to predic	ct asthma attacks.
281	The primary classifiers that will be used in the study include Bayesia	an networks, decision tre
282	iForest, logistic regression, and support vector machines.[35,36] Fro	•
283	asthma attack predictor will be built on the device and questionnaire	
284	population-level. Also, feature selection will be used to identify the	•
285	prediction models.	
286	Furthermore, retrospective analysis will simulate the effects of limiting	the use of active monitor
280 287	data, to simulate patients only taking active measurements (e.g., pea	
287	when prompted. In other words, the training set will be considered as a	
289	in the study period and the test set everything after. Moreover, the	
	general population using samples of the data, where adherence to mo	
290		

k-fold cross validation.[35] The performance metrics will include the common machine learning
metrics such as area under the receiver operating characteristic curve (AUC-ROC), sensitivity, and
specificity.

¹⁰ 296 **PATIENT AND PUBLIC INVOLVEMENT**

Patient and public involvement (PPI) is part of the project from the beginning. This study is nested
within the Asthma UK Centre for Applied Research and has been reviewed by their AUKCAR PPI
members.

All the participant and public-facing documents and study objectives have been reviewed by AUKCAR PPI members before the start of the study and edited accordingly. Such a close PPI involvement ensures that the participant and public facing material is accessible. As an example, we attempted to explain several technical terms (such as "pMDI") in more detail in the participant documents and added pictures of pressured metered dose inhalers after feedback from PPI members.

24 306

DISSEMINATION

We will be reporting the results in peer-reviewed journal publications and conference presentations.
Dissemination of the results will also include the AUKCAR network with blogs and social media to
reach an audience who is interested in the used of smart monitoring devices for asthma.

- 311 We will also be sharing links to publications and summaries with study participants.
- 35 312

313 ETHICS

This study has received ethics approval by the East of England - Cambridge Central Research Ethics Committee. IRAS Project ID: 285505.

317 DATA AVAILABILITY

318 At the end of the study, the anonymised research data will be stored at Edinburgh DataShare (a 319 digital repository of research data produced at the University of Edinburgh) in perpetuity.

321 CONCLUSIONS

The present study will collect an important and novel dataset, where asthma patients use a combination of multiple market-available mHealth monitoring devices in the real world. We plan to use the rich dataset to improve existing asthma attack prediction algorithms and use the feedback from participants to design a patient-centred asthma self-management system. This study is the first step in developing the Asthma Attack Management Online System (AAMOS) which will support
 asthma patients with real-time tailored feedback based on machine learning driven by mHealth data.

329 ACKNOWLEDGEMENTS

We thank the AUKCAR PPI for their comments on the study. We thank Malmö University for their support with data collection. We thank Smart Respiratory Products Ltd for providing the Smart Peak Flow Meter and associated software. We thank FindAir for providing the FindAir ONE devices and FindAir's API. We thank Ambee for providing the pollen data. We thank Dr Sarah Brown (Edinburgh Innovations, University of Edinburgh, UK) for organising the contracts required for the study.

18 335

336 AUTHOR CONTRIBUTIONS

KCHT, HP, AMW, and SAS designed the study. SAS is the study guarantor. KCHT and DS set up the
data collection system. KCHT drafted the manuscript which was critically revised by HP, AMW, DS,
and SAS. All authors approved the final version of the manuscript.

341 FUNDING

This work was supported by Asthma + Lung UK as part of the Asthma UK Centre for Applied Research
grant number AUK-AC-2018-01. Support from Malmö University is co-funded by the Knowledge
Foundation KK-stiftelsen.

346 COMPETING INTEREST STATEMENT

347 None declared.

REFERENCES

- 3501Asthma UK. Asthma facts and statistics. https://www.asthma.org.uk/about/media/facts-and-351statistics/ (accessed 1 Mar 2021).
- 49
 50
 352
 2
 Iacobucci
 G. Asthma
 deaths
 rise
 33%
 in
 past
 decade
 in
 England
 and
 Wales.
 BMJ

 51
 353
 2019;**366**:I5108. doi:10.1136/BMJ.L5108
 2019;**366**:I5108
 2019;**36**:I5108
 2019;**36**:I5108
 2019;
- 52
533543Pinnock H, Parke HL, Panagioti M, et al. Systematic meta-review of supported self-
management for asthma: A healthcare perspective. BMC Med 2017;15:64.
doi:10.1186/s12916-017-0823-7
- 56
573574Scottish Intercollegiate Guidelines Network/ British Thoracic Society. SIGN 158 British
guideline on the management of asthma. London/Edinburgh: : BTS/SIGN 2019.58359https://www.brit-thoracic.org.uk/document-library/guidelines/asthma/btssign-guideline-for-60360the-management-of-asthma-2019/

1 2			
3 4 5	361 362	5	Juniper EF, O'Byrne PM, Guyatt GH, <i>et al</i> . Development and validation of a questionnaire to measure asthma control. <i>Eur Respir J</i> 1999; 14 :902–7. doi:10.1034/j.1399-3003.1999.14d29.x
6 7 8 9 10	363 364 365 366	6	Tsang KCH, Pinnock H, Wilson AM, et al. Application of Machine Learning to Support Self- Management of Asthma with mHealth. In: 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). IEEE 2020. 5673–7. doi:10.1109/EMBC44109.2020.9175679
11 12 13 14	367 368 369	7	Su JG, Barrett MA, Henderson K, <i>et al.</i> Feasibility of Deploying Inhaler Sensors to Identify the Impacts of Environmental Triggers and Built Environment Factors on Asthma Short-Acting Bronchodilator Use. <i>Environ Health Perspect</i> 2017; 125 :254–61. doi:10.1289/EHP266
15 16 17 18	370 371 372	8	Tinschert P, Jakob R, Barata F, <i>et al</i> . The Potential of Mobile Apps for Improving Asthma Self- Management: A Review of Publicly Available and Well-Adopted Asthma Apps. <i>JMIR mHealth</i> <i>uHealth</i> 2017; 5 :e113. doi:10.2196/mhealth.7177
19 20 21	373 374	9	MyAsthma. myAsthma: The asthma app for managing your symptoms. https://mymhealth.com/myasthma (accessed 10 Mar 2021).
22 23 24	375 376	10	AsthmaMD. Asthma Control iPhone App AsthmaMD. https://www.asthmamd.org/ (accessed 10 Mar 2021).
25 26 27	377 378	11	Finkelstein J, Jeong I cheol. Machine Learning Approaches to Personalize Early Prediction of Asthma Exacerbations. Ann N Y Acad Sci 2017; 1387 :153–65. doi:10.1111/nyas.13218
28 29 30 31	379 380 381	12	Castner J, Jungquist CR, Mammen MJ, <i>et al.</i> Prediction Model Development of Women's Daily Asthma Control Using Fitness Tracker Sleep Disruption. <i>Hear Lung</i> 2020; 49 :548–55. doi:10.1016/j.hrtlng.2020.01.013
32 33 34 35	382 383 384	13	Huffaker MF, Carchia M, Harris BU, et al. Passive Nocturnal Physiologic Monitoring Enables Early Detection of Exacerbations in Children with Asthma. A Proof-of-Concept Study. Am J Respir Crit Care Med 2018; 198 :320–8. doi:10.1164/rccm.201712-2606OC
36 37 38	385 386	14	Tinschert P, Rassouli F, Barata F, <i>et al.</i> Nocturnal Cough and Sleep Quality to Assess Asthma Control and Predict Attacks. <i>J Asthma Allergy</i> 2020; 13 :669–78. doi:10.2147/JAA.S278155
39 40 41 42	387 388 389	15	Khasha R, Sepehri MM, Mahdaviani SA. An Ensemble Learning Method for Asthma Control Level Detection with Leveraging Medical Knowledge-Based Classifier and Supervised Learning. J Med Syst 2019;43:158. doi:10.1007/s10916-019-1259-8
43 44 45	390 391	16	Alharbi E, Abdullah M. Asthma Attack Prediction Based on Weather Factors. <i>Period Eng Nat Sci</i> 2019; 7 :408–19. doi:10.21533/PEN.V7I1.422
46 47 48 49	392 393 394	17	Exarchos KP, Beltsiou M, Votti CA, <i>et al.</i> Artificial intelligence techniques in asthma: a systematic review and critical appraisal of the existing literature. <i>Eur Respir J</i> 2020; 56 . doi:10.1183/13993003.00521-2020
50 51	395 396	18	Chan Y-FY, Wang P, Rogers L, <i>et al.</i> The Asthma Mobile Health Study, a large-scale clinical observational study using ResearchKit. <i>Nat Biotechnol</i> 2017; 35 :354–62. doi:10.1038/nbt.3826
52 53 54 55	397 398 399	19	Blakey JD, Price DB, Pizzichini E, <i>et al.</i> Identifying Risk of Future Asthma Attacks Using UK Medical Record Data: A Respiratory Effectiveness Group Initiative. <i>J Allergy Clin Immunol</i> <i>Pract</i> 2017; 5 :1015-1024.e8. doi:10.1016/j.jaip.2016.11.007
56 57 58 59 60	400 401 402	20	Price D, Wilson AM, Chisholm A, et al. Predicting Frequent Asthma Exacerbations Using Blood Eosinophil Count and Other Patient Data Routinely Available in Clinical Practice. J Asthma Allergy 2016; 9 :1–12. doi:10.2147/JAA.S97973

403 21 FindAir. FindAir. https://findair.eu/ (accessed 9 Mar 2022).

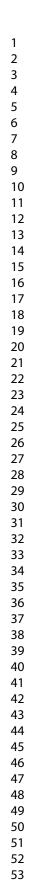
- 404 22 Pathiravasan CH, Zhang Y, Trinquart L, *et al.* Adherence of Mobile App-Based Surveys and
 405 Comparison With Traditional Surveys: eCohort Study. *J Med Internet Res* 2021;23:e24773.
 406 doi:10.2196/24773
- 407 23 Liu FT, Ting KM, Zhou Z-H. Isolation Forest. In: 2008 Eighth IEEE International Conference on
 408 Data Mining. IEEE 2008. 413–22. doi:10.1109/ICDM.2008.17
- 409 24 Hui CY, McKinstry B, Walton R, *et al.* A Mixed Method Observational Study of Strategies to
 410 Promote Adoption and Usage of an Application to Support Asthma Self-Management. *J Innov* 411 *Heal Informatics* 2019;25:243–53. doi:10.14236/jhi.v25i4.1056
- 1641225Reddel HK, Taylor DR, Bateman ED, et al. An official American Thoracic Society/European17413Respiratory Society statement: Asthma control and exacerbations Standardizing endpoints18414for clinical asthma trials and clinical practice. Am J Respir Crit Care Med 2009;180:59–99.19415doi:10.1164/rccm.200801-060ST
- 21 416 26 Salvi D, Magnus Olsson C, Ymeri G, et al. Mobistudy: mobile-based, platform-independent, 22 417 multi-dimensional data collection for clinical studies; Mobistudy: mobile-based, platform-23 418 independent, multi-dimensional data collection for clinical studies. In: 11th International 24 419 Conference on the Internet of Things. St.Gallen, Switzerland: : ACM 2021. 219-22. 25 doi:10.1145/3494322 420 26
- 27
2842127Smart Asthma. Smart Asthma. https://smartasthma.com/ (accessed 9 Mar 2022).
- 422 28 Xiaomi. Xiaomi UK. https://www.mi.com/uk/ (accessed 9 Mar 2022).
 30
- 423 29 OpenWeatherMaps. OpenWeatherMap. https://openweathermap.org/ (accessed 14 Jun
 424 2021).
 33
- 34 425 30 Ambee. Ambee. https://www.getambee.com/ (accessed 14 Jun 2021).
- 35
 36
 426
 31
 Brooke J. SUS: A 'Quick and Dirty' Usability Scale. In: Usability Evaluation In Industry. CRC

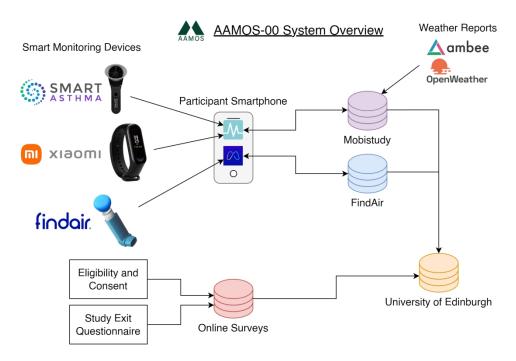
 37
 427
 Press 1996. 207–12. doi:10.1201/9781498710411-35
- 38 39
 428
 32
 429
 429
 430
 430
 500 Stoyanov SR, Hides L, Kavanagh DJ, et al. Development and Validation of the User Version of the Mobile Application Rating Scale (uMARS). JMIR mHealth uHealth 2016;4:e72. doi:10.2196/mhealth.5849
- 42
 431
 431
 432
 432
 433
 434
 432
 434
 432
 435
 433
 435
 433
 434
 435
 433
 435
 433
 434
 435
 435
 435
 436
 436
 437
 437
 438
 438
 439
 439
 439
 430
 430
 430
 431
 431
 432
 433
 433
 434
 434
 435
 435
 435
 436
 436
 437
 437
 438
 438
 439
 439
 439
 430
 430
 431
 431
 432
 432
 433
 433
 434
 434
 435
 435
 435
 436
 436
 437
 437
 438
 438
 438
 439
 439
 439
 439
 430
 430
 430
 431
 431
 431
 432
 432
 433
 434
 435
 435
 435
 436
 436
 437
 437
 438
 438
 438
 439
 439
 439
 439
 439
 430
 430
 431
 431
 431
 432
 431
 432
 432
 432
 433
 434
 435
 434
 435
 435
 436
 436
 437
 437
 438
 438
 438
 439
 439
 439
 439
 439
 430
 430
 431
 431
 431
 432
 431
 432
 432
 433
 434
 434
 435
 434
 435
 435
 436
 436
 436
 436
 436
 436
 436
 436
 437
 438
 <
- 46
4743434Chan Y-FY, Bot BM, Zweig M, et al. The asthma mobile health study, smartphone data
collected using ResearchKit. Sci Data 2018;5:180096. doi:10.1038/sdata.2018.96
- 49
5043635Hastie T, Tibshirani R, Friedman J. The Elements of Statistical Learning. 2nd ed. New York, NY: :51437Springer 2009. doi:10.1007/978-0-387-84858-7
- 52
5343836Bishop CM. Pattern Recoginiton and Machine Learning. Berlin, Heidelberg: Springer 2006.

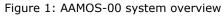
54 55

60

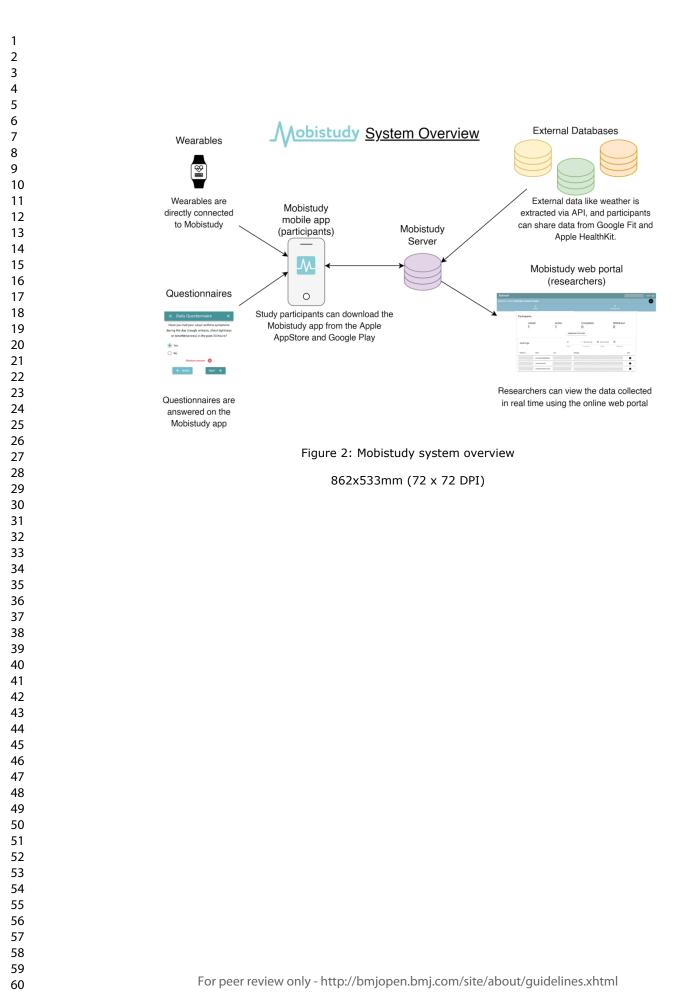
439


1 2 3


4


56 57 440 FIGURE LEGENDS 58

59 441 Figure 1. AAMOS-00 system overview


2		
3 4	442	Figure 2. Mobistudy system overview
5 6	443	Figure 3. Participant's app home page
7	444	Figure 4. Questionnaire delivered by Mobistudy
8 9	445	Figure 5. Smart peak flow meter task
10 11	446	Figure 6. Smartwatch data
12 13	447	Figure 7. Local weather data
$\begin{array}{c} 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 39\\ 40\\ 41\\ 42\\ 43\\ 44\\ 56\\ 57\\ 58\\ 56\\ 57\\ 58\\ 59\\ 60\\ \end{array}$	448	

817x542mm (72 x 72 DPI)

Mobistudy

Today's pending tasks

AAMO	S-00 Phase 2
	Daily Questionnaire Answer a few questions
:	Weekly Questionnaire Answer a few questions
Ō	Activity tracker Extract data from your activity tracker
ဂျို	Peak Flow Record peak flow with the smart peak flow meter
•	Position Send your current location

Missed tasks

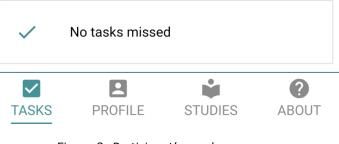
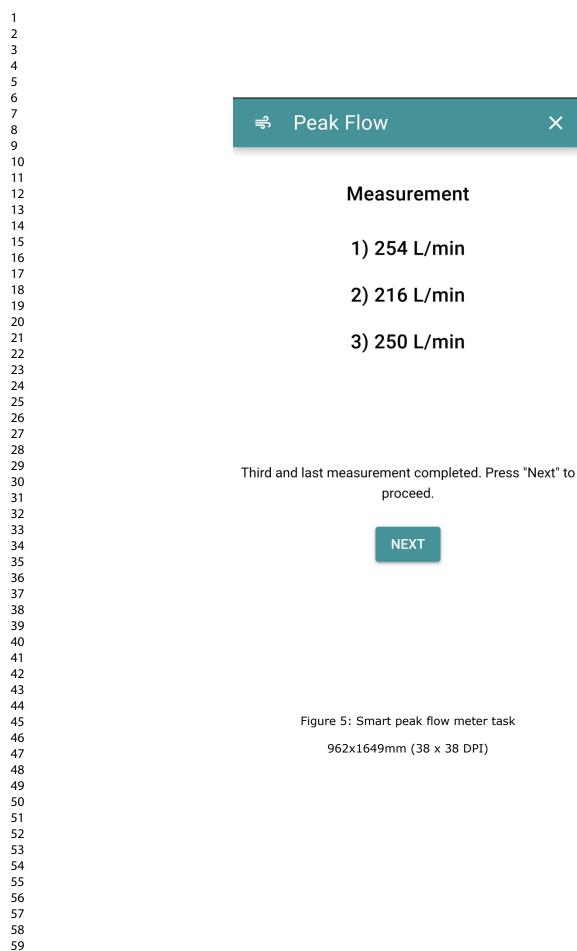
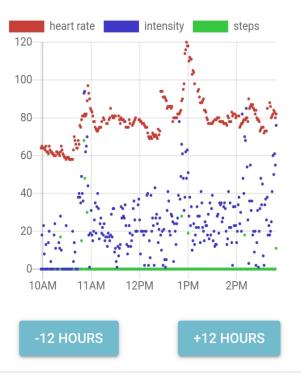



Figure 3: Participant's app home page

962x1649mm (38 x 38 DPI)

\equiv Daily Questionnaire $ imes$
Have you had your usual asthma symptoms
during the day (cough, wheeze, chest tightness
or breathlessness) in the past 24 hours?
of breathessness) in the past 24 hours:
Yes
O No
Remove answer 🛛 🗙
Figure 4: Questionnaire delivered by Mobistudy
(20 x 20 x
962x1647mm (38 x 38 DPI)
For peer review only - http://bmjopen.bmj.com/site/about/guidelines.>

X

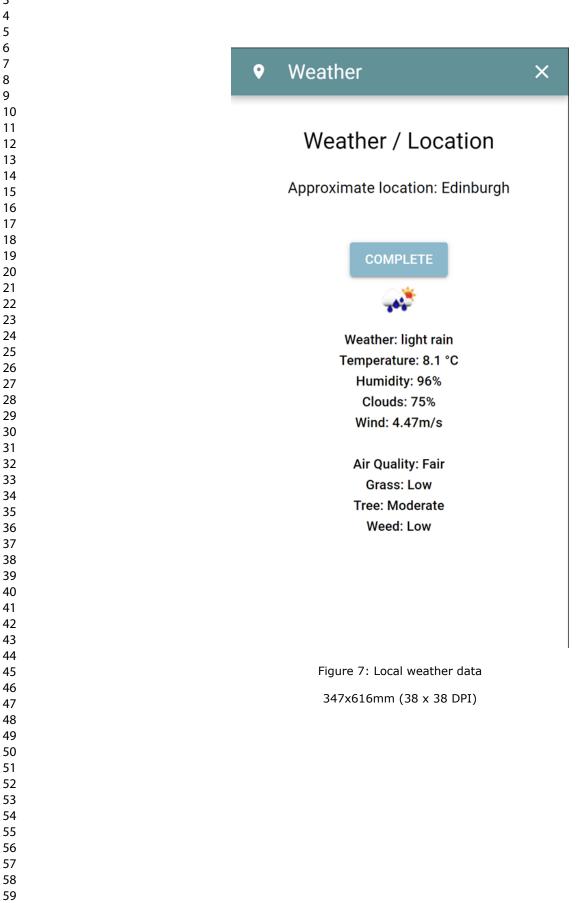

60

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Activity tracker

The following charts summarize the data that have been retrieved from the band. Tap on "Send" to share these data with the research team or tap on "Discard" to avoid sending these data.

×


Activity over time

Time count in each activity

Figure 6: Smartwatch data

957x1637mm (38 x 38 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

STROBE Statement—checklist of items that should be included in reports of observational studies

	Item No	Recommendation	Pag No
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the abstract	1
		(b) Provide in the abstract an informative and balanced summary of what	2
		was done and what was found	
Introduction		was done and what was found	
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	4
Objectives	3	State specific objectives, including any prespecified hypotheses	4
Methods	5	Sale specifie objectives, meruanig any prespective hypotheses	· ·
Study design	4	Present key elements of study design early in the paper	7
Setting	5	Describe the setting, locations, and relevant dates, including periods of	5
0		recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Cohort study—Give the eligibility criteria, and the sources and	5
Ŧ		methods of selection of participants. Describe methods of follow-up	
		<i>Case-control study</i> —Give the eligibility criteria, and the sources and	
		methods of case ascertainment and control selection. Give the rationale	
		for the choice of cases and controls	
		<i>Cross-sectional study</i> —Give the eligibility criteria, and the sources and	
		methods of selection of participants	
		(b) Cohort study—For matched studies, give matching criteria and	
		number of exposed and unexposed	
		<i>Case-control study</i> —For matched studies, give matching criteria and the	
		number of controls per case	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders,	6
, and the	,	and effect modifiers. Give diagnostic criteria, if applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of methods	7
measurement	0	of assessment (measurement). Describe comparability of assessment	´
measurement		methods if there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	NA
Study size	10	Explain how the study size was arrived at	6
Quantitative variables	10	Explain how quantitative variables were handled in the analyses. If	8
Qualititative variables	11	applicable, describe which groupings were chosen and why	0
Statistical methods	12		10
Statistical methods	12	(<i>a</i>) Describe all statistical methods, including those used to control for confounding	10
		(b) Describe any methods used to examine subgroups and interactions	10
		(c) Explain how missing data were addressed	10
		(d) Cohort study—If applicable, explain how loss to follow-up was	NA
		addressed	
		<i>Case-control study</i> —If applicable, explain how matching of cases and	
		controls was addressed	
		<i>Cross-sectional study</i> —If applicable, describe analytical methods taking	
		Cross-sectional stady—II applicable, describe analytical methods taking	1
		account of sampling strategy	

Continued on next page

2
3
4
5
7
8
9
10
11
12
14
15
16
17
18
19 20
20
22
23
24
25
20 27
27
29
2 3 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 24 25 26 27 28 9 30 1 32 33 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 24 5 6 7 8 9 21 22 23 24 5 26 27 28 9 20 21 22 23 24 5 26 27 28 9 20 21 22 23 24 25 26 27 28 29 20 21 22 23 24 25 26 27 28 29 30 31 22 33 33 33 34 35 36 37 37 37 37 37 37 37 37 37 37 37 37 37
31
32
33 24
35
36
37
38
39 40
40 41
42
43
44
45
46 47
47 48
49
50
51
52
53
54 55
56
57
58
59
60

Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially	NA
		eligible, examined for eligibility, confirmed eligible, included in the study,	
		completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	NA
		(c) Consider use of a flow diagram	NA
Descriptive	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and	NA
data		information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of interest	NA
		(c) Cohort study—Summarise follow-up time (eg, average and total amount)	NA
Outcome data	15*	Cohort study-Report numbers of outcome events or summary measures over time	NA
		Case-control study—Report numbers in each exposure category, or summary	NA
		measures of exposure	
		Cross-sectional study—Report numbers of outcome events or summary measures	NA
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and	NA
		their precision (eg, 95% confidence interval). Make clear which confounders were	
		adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	NA
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a	NA
		meaningful time period	
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and	NA
		sensitivity analyses	
Discussion			
Key results	18	Summarise key results with reference to study objectives	NA
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or	NA
		imprecision. Discuss both direction and magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,	NA
		multiplicity of analyses, results from similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	10
Other informati	on		
Funding	22	Give the source of funding and the role of the funders for the present study and, if	12
-		applicable, for the original study on which the present article is based	

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

BMJ Open

Predicting asthma attacks using connected mobile devices and machine learning; the AAMOS-00 observational study protocol

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-064166.R1
Article Type:	Protocol
Date Submitted by the Author:	01-Sep-2022
Complete List of Authors:	Tsang, Kevin; The University of Edinburgh Usher Institute of Population Health Sciences and Informatics, Usher Institute Pinnock, Hilary; University of Edinburgh, Usher Institute Wilson, Andrew; University of East Anglia, Norwich Medical School Salvi, Dario; Malmo University Shah, Syed Ahmar; The University of Edinburgh Usher Institute of Population Health Sciences and Informatics
Primary Subject Heading :	Health informatics
Secondary Subject Heading:	Respiratory medicine, Public health
Keywords:	Asthma < THORACIC MEDICINE, Health informatics < BIOTECHNOLOGY & BIOINFORMATICS, Information technology < BIOTECHNOLOGY & BIOINFORMATICS, World Wide Web technology < BIOTECHNOLOGY & BIOINFORMATICS

SCHOLARONE[™] Manuscripts

2

3

10

11

12

13

14

15

16

17

18

19

Correspondence:

Usher Institute,

EH16 4UX

Word count: 3544

Mr Kevin Cheuk Him Tsang

Edinburgh, United Kingdom.

Email: k.c.h.tsang@sms.ed.ac.uk

NINE BioQuarter, Little France Road,

1 2

2	
4	
т 5	
5	
7	
, 8	
0	
9 10	
10	
17	
12	
17	
14	
15	
10	
12	
10	
20	
20 21	
4 5 6 7 8 9 10 11 23 14 15 16 7 8 9 10 11 23 24 25 26 27 28 20 31 23 34 35 36 37 80	
22	
23	
25	
25	
20	
28	
20	
30	
30	
37	
32	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
<u> </u>	

60

Predicting asthma attacks using connected mobile devices and machine learning; the AAMOS-00 observational study protocol

- 4 Kevin C.H. Tsang^{1,2}, Hilary Pinnock¹, Andrew M. Wilson^{1,3,4}, Dario Salvi⁵, Syed Ahmar Shah^{1,2}
 - 5 1. Asthma UK Centre for Applied Research, Usher Institute, University of Edinburgh, Edinburgh, UK
- 6 2. Medical Informatics, Usher Institute, University of Edinburgh, Edinburgh, UK
- 7 3. Norwich Medical School, University of East Anglia, Norwich, UK
- 8 4. Norwich University Hospital Foundation Trust, Colney Lane, Norwich, UK
- 9 5. Internet of Things and People Research Centre, Malmö University, Malmö, Sweden

Page 1 of 17 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

22 ABSTRACT

23 Introduction:

Supported self-management empowering people with asthma to detect early deterioration and take timely action reduces the risk of asthma attacks. Smartphones and smart monitoring devices coupled with machine learning could enhance self-management by predicting asthma attacks and providing tailored feedback.

15 28 We aim to develop and assess the feasibility of an asthma attack predictor system based on data
 29 collected from a range of smart devices.

30 Methods and Analysis:

A 2-phase, 7-month observational study to collect data about asthma status using three smart
monitoring devices, and daily symptom questionnaires. We will recruit up to 100 people via social
media and from a severe asthma clinic, who are at risk of attacks and who use a pressurised metered
dose relief inhaler (that fits the smart inhaler device).

Following a preliminary month of daily symptom questionnaires, 30 participants able to comply with regular monitoring will complete six months of using smart devices (smart peak flow meter, smart inhaler, smartwatch) and daily questionnaires to monitor asthma status. The feasibility of this monitoring will be measured by the percentage of task completion. The occurrence of asthma attacks (definition: ATS/ERS Task Force 2009) will be detected by self-reported use (or increased use) of oral corticosteroids. Monitoring data will be analysed to identify predictors of asthma attacks. At the end of the monitoring, we will assess users' perspectives on acceptability and utility of the system with an exit questionnaire.

43 <u>Ethics and Dissemination:</u> 37

44 Ethics approval was provided by the East of England - Cambridge Central Research Ethics Committee.
45 IRAS project ID: 285505 with governance approval from ACCORD (Academic and Clinical Central
46 Office for Research and Development), project number: AC20145. The study sponsor is ACCORD, the
47 University of Edinburgh.

48 Results will be reported through peer-reviewed publications, abstracts, and conference posters.
49 Public dissemination will be centred around blogs and social media from the Asthma UK network
46 50 and shared with study participants.

51 Key Words

52 Asthma Attacks, Machine Learning, mHealth, Smart Monitoring Devices, Prediction

54 ARTICLE SUMMARY

55 Strengths and limitations of this study

This study combines objective data collected from multiple smart monitoring devices
 available on the market.

1 2 3 4 5 6 7 8 9	58 59 60 61	 Stratified analysis and individualised asthma attack prediction models are not expected, due to the limited number of participants and study period. Participants are limited to patients with severe asthma at risk of acute attacks, and to those using a pressurised metered dose relief inhaler that fits our smart device.
10 11 12 13 14 15 16 17 18 19		
20 21 22 23 24 25 26 27 28 29		
30 31 32 33 34 35 36 37 38 39		
40 41 42 43 44 45 46 47 48 49		
50 51 52 53 54 55 56 57 58 59 60		

64 INTRODUCTION

Asthma is a variable condition, affecting around 5.4 million people in the UK.[1] Every 10 seconds in the UK alone, someone has an asthma attack. Some of these attacks are life-threatening with over 1400 annual deaths estimated in the UK.[1,2] Since there is no known cure for asthma, selfmanagement is a key part of patient care; this involves detecting deterioration and taking appropriate action to maintain control and prevent the threatened attack.[3] The most common symptoms of asthma are wheezing, cough, chest tightness and shortness of breath.

71 Traditional self-management action plans use symptom scores, sometimes supplemented by peak 72 flow measurements, to determine a patient's asthma condition.[4–6] Keeping track of relief inhaler 73 usage can also help measure asthma control.[7] However, patients may regard this level of 74 monitoring as tedious as it involves high levels of active engagement on their part.

Increasingly, smart monitoring devices and "mobile-health" (mHealth) technologies are being developed to support asthma self-management.[8] Some notable examples include myAsthma [9] and Asthma MD.[10] myAsthma stores personalised action plans, includes instructional videos about inhaler techniques, tracks symptoms and peak flow, and provides local weather forecasts. AsthmaMD [10] has similar features to support self-management and can provide customised notifications. However, these tools still require a high level to active engagement to monitor one's asthma.

There has been an increasing number of mHealth studies to predict asthma attacks and develop passive monitoring to support asthma self-management,[11] including the use of smart peak flow meters,[12] night-time activity tracking,[13,14] smart inhalers,[15] smartphone administrated questionnaires, [6,16,17] and weather data. [18,19] However, the combined use of the monitoring devices available to asthma patients to develop asthma attack prediction models is largely unexplored. In addition, whilst there have been some studies that explored the use of machine learning algorithms for chronic disease management with home-monitoring data, [20] there is still no mHealth system that is widely used by asthma patients. One of the key bottlenecks for the limited progress is the difficulty of collecting asthma monitoring data and the lack of availability of such datasets from existing studies. Apart from the Asthma Mobile Health Study, [21] no other asthma mHealth dataset is publicly available to be able to investigate the development and validation of asthma attack prediction algorithm.

A related study is the myAirCoach study, [22] which investigated asthma home-monitoring using connected devices. However, their participants conducted daily monitoring for the first month with an additional randomly allocated two weeks, compared to seven months in total proposed in this study. To our knowledge, the dataset from myAirCoach is not publicly available and it has not yet been used to test any machine learning-based algorithms for asthma attack prediction.[23,24]

In this study, we will collect novel asthma monitoring data that will facilitate the development of an asthma attack prediction algorithm leveraging available, approved asthma monitoring devices in the market. This study will also enable us to test whether unobtrusive, passive monitoring and machine learning could help minimise the need for active patient data collection whilst maintaining accuracy for predicting attacks. We envisage that an mHealth system that leverages machine learning to predict asthma attacks with passive monitoring will enhance patient adherence and improve patient self-management.

106 The overarching aim of this study is to develop and assess the feasibility and acceptability of an 107 asthma self-management system using existing smart devices, collect novel monitoring data and 108 leverage machine learning to explore the feasibility of an asthma attack prediction algorithm based 109 on passive monitoring.

111 METHODS AND ANALYSIS

112 Study population

To maximise the chances of collecting data related to attacks in a short time-span, we will focus on patients with moderate to severe risk of attacks. Two key predictors are a recent history of attacks and people with severe asthma.[25,26] We will thus focus on adult asthma patients who have had at least one course of oral corticosteroid for an acute asthma attack in the past 12 months, and people attending a secondary care severe asthma clinic. See Table 1 for inclusion and exclusion criteria.

Social media recruitment consists of sending tweets on Twitter and posting on Facebook via the Asthma + Lung UK and Asthma UK Centre for Applied Research (AUKCAR) accounts, which total around 175,000 followers. The Norfolk and Norwich University Hospital will help identify potentially eligible patients for the study and direct them to the online information and expression of interest.

, 8 122

123 Table 1: Inclusion and exclusion criteria

21			
31		Inclusion criteria:	Aged 18 and above
32			
33			 Self-reported or doctor-diagnosed asthma
34 25			
35			• Possession of a smartphone (from 2016 onwards) that can support
36			the Mobistudy and FindAir mobile apps (Android 4.4+, iOS 10+) and
37			has Bluetooth capabilities
38			
39 40			• Has had at least one course of oral corticosteroids for an acute
40 41			
41			asthma attack in the past 12 months
42 43			• Prescribed with pressurised metered dose relief inhaler that is
43 44			compatible with FindAir ONE (e.g. Ventolin and other versions of
44			
46			salbutamol if the inhaler is a compatible shape inhaler as Ventolin;
47			Salamol; Airomir; Fostair; Budiair)[27]
48			
49			
50		Exclusion criteria:	Comorbidities that have overlapping symptoms (e.g. wheezing,
51			cough, chest tightness and shortness of breath)
52			
53			Aged under 18
54			
55			Unable to provide valid consent (e.g. cognitive impairment, learning
56			disabilities)
57			
58			 Unable to use an app and respond to questions in English
59			
60	124		

BMJ Open

Potential participants will complete an online questionnaire to identify whether they are eligible to participate. Informed consent will be collected via Online Surveys, a secure online platform for collecting questionnaire data. Potential participants will be given time to read the participant information sheet before deciding whether to participate.

11 130 Sample size calculation12

131 To achieve the objectives of this study, we need to collect sufficient data need to train an asthma 132 attack prediction model.

16 133 In the study population of UK Optimum Patient Care Research Database (OPCRD) and Clinical
 17 134 Practice Research Datalink (CPRD), 41% of the patients who had multiple (2 or more) attacks in the
 135 baseline year also had multiple attacks in the following year.[26]

Based on 30 participants with daily monitoring, 3,098 recordings (= 30 people × 30 days × (85% retention at baseline, [28–30] 50% retention at 6 months [28, 29, 31, 32]) × 85% adherence [30, 31]) for each of the daily measurements can be expected in phase 2. Also, 12 recorded asthma attacks are expected, assuming an average of one attack observed per participant in 41% of phase 2 participants during the study period.[26] To use the novelty detection algorithm iForest (which can be trained even if the data collected does not include any attacks), a sample of 256 recordings or data points would suffice.[33] Other machine learning classification algorithms will also obtain high accuracy on this sample size.

33 145 Recruitment strategy

Using a similar recruitment method, Hui et al. recruited 87 participants using social media alone, the majority within the first month after the initial invitational message, although the number of those who continued to use the app dropped to 15 (17% of the total initially recruited participants) after 30 days. [28] Moreover, only 5% of identified participants through practices agreed to join their study, which totalled 28 participants from five practices.[28] However, the attrition rate for participants recruited through practices was lower, 63% vs 83% reduction in social media participants; only 25% of users were still using the app after 30 days.[28] The eligibility criteria (≥16 years, an asthma prescription in the previous year, registered with a UK general practitioner) is more relaxed than the proposed criteria. However, this study incentivises entry of data in the first 28 days by giving adherent participants access to phase 2 (where participants are sent smart devices) which is likely to result in much more than 25% passing 30 days of participation. The adherence to four weeks of monitoring with daily questionnaires and activity monitors has seen values upwards of 95%.[30]

Following the previous research, which recruited participants through Asthma UK's social media (at the time of writing had 175,000 followers), around 87 participants are expected to be eligible and join this study. In addition, around six participants identified and invited via are expected to be eligible and join from Norfolk and Norwich University Hospital. Of which, 47 people (50% of 93 respondents) are expected to complete phase 1. Thus, including 30 participants is achievable using the outlined recruitment method.

1 2		
3 4	165	Outcomes
5 6	166	Primary endpoints
7 8	167	The primary endpoints of this study are adherence to monitoring, which are defined by the
9	168	collection of data using different devices. For each task, we will measure the percentage of total
10 11	169	days completed.
12	170	Secondary endpoints
13 14	171	The secondary endpoints of this study are asthma attacks. Primarily, we use severe asthma attacks
15	172	as defined in the American Thoracic Society (ATS)/European Respiratory Society (ERS) Task Force
16 17	173	2009 statement.[34] The definition is as follows:
18	174	• <u>Severe asthma attacks</u> are events that require urgent action on the part of the patient and
19 20	175	physician to prevent a serious outcome. Such attacks are defined as a deterioration
21	176 177	requiring use of systemic corticosteroids (or an increase from a stable maintenance dose).[34]
22 23		
24	178 179	Severe asthma attacks will be identified using the use of systemic corticosteroids question on the weekly self-reported questionnaire. Courses of corticosteroids separated by 1 week or more will be
25 26	180	treated as separate severe attacks.
20		
28 29	181 182	We will also explore the use of moderate asthma attacks, as defined in the ATS/ERS Task Force 2009 statement.[34] The definition is as follows:
29 30		
31	183	• A <u>moderate asthma attack</u> is an event that, when recognised, should result in a temporary
32 33	184 185	change in treatment to prevent the attack from becoming severe. Such attacks are defined as a deterioration that does not require use of systemic corticosteroids.[34] Moderate
34	185	asthma attacks include a deterioration in symptoms, lung function, and/or increased rescue
35 36	187	bronchodilator use that lasts for 2 days or more but are not severe enough to warrant
37	188	systemic corticosteroid use.
38 39	189	Moderate asthma attacks will be identified using the questions about relief inhaler usage, symptoms
40	190	(day symptoms, nocturnal symptoms, interference with usual activities, shortness of breath,
41 42	191	wheezing), and unscheduled care (GP, emergency room, and hospitalisations) in the daily and
43	192	weekly self-reported questionnaires.
44 45	193	
46 47	194	Data collection
48 49	195	The data collection period is split into two phases:
50 51	196	1. Questionnaire monitoring, daily for one month.
52	197	2. Smart device and questionnaire monitoring, daily for six months. 30 participants who keep a
53	198	regular diary in phase 1 will be given three smart devices (smart inhaler, smart peak flow
54 55	199	meter, smartwatch) to collect data automatically as they use the devices, in addition to
56	200 201	completing daily and weekly questionnaires. We will choose participants for this phase with a range of ages, gender, and smoking status, and with different types of asthma triggers.
57 58		
59	202 203	At the end of phase 2, we will send a questionnaire asking for feedback about using the smart
60	203	devices and whether participants think they could be useful to help them look after their asthma.

We will be using Mobistudy to centralise most of the data collection, only the smart inhaler usage and exit questionnaire will not be collected via Mobistudy (see Figure 1).

6 206

207 Data collection mobile app (Mobistudy)

Mobistudy [35] is an open-source platform facilitating mHealth studies available on Android and iOS managed by Malmö University, Sweden. The platform has three key components: a mobile app for participants, a REST API server, and a web portal for researchers (see Figure 2). The platform supports multiple studies and participants of the AAMOS-00 study will be given a study invite code to join the AAMOS-00 study within Mobistudy.

Each daily and weekly assessment, such as questionnaires and peak flow measurement, will appear as an individual task of the home page on the participant's app (see Figure 3). Once the task is completed, it will be removed from today's to-do list and the data is sent directly to the server via the phone Internet connection. In real-time, the research team will be able to view the collected data via the online web portal for researchers.

24 218

- 26 219 Phase 1
- 27 220 There will be a total of four questionnaires:
 28
 - A daily questionnaire that asks six questions about daily symptoms experienced, medication usage, and the triggers encountered. This will take around 2 minutes to complete.
 - A weekly questionnaire that asks 10 questions about asthma symptoms in more detail,
 medication usage, and healthcare engagement. This will take around 5 minutes to complete.
- A questionnaire that asks 11 questions at the start of phase 1 about current asthma condition and history.
- A questionnaire that asks five questions about race and smoking status. Additionally, some demographic information will be collected from the Mobistudy profile of participants, such as height, weight, and age.

42
43 230 The completion rate (50%) of the daily and weekly questionnaire will be used to determine the
44 231 eligibility of a participant to join phase 2.

46 232

⁴⁸ 233 Phase 2

In addition to the daily and weekly questionnaires (see Figure 4), in phase 2 participants will be
asked to collect data using three smart monitoring devices: Smart Peak Flow Meter (by Smart
Asthma [36]), FindAir ONE (by FindAir [27]) smart inhaler, and MiBand3 (by Xiaomi [37]) smartwatch.

Participants will be given the smart peak flow meter to take a peak expiratory flow measurement twice a day, once in the morning and once at night; each measurement takes the best of three tries (see Figure 5). They will also be provided in-app written instructions before each set of measurements on using the peak flow meter. Furthermore, participants recruited through the Norfolk and Norwich University Hospital have been trained to use a peak flow meter by the practice.

To connect the smart peak flow meter to the smartphone, participants can either use the audio-jackconnection or a Bluetooth adapter.

The FindAir ONE smart inhaler attaches to the top of pressurised metered dose relief inhalers, it records the time at which the inhaler is used. The device can be moved to a new inhaler if participants change medication. The device will be connected to participants' smartphone by Bluetooth to the FindAir mobile app. The data will be transferred from the FindAir server and thence to the research team using FindAir's Application Programming Interface (API). The data collection will happen in the background once the participant has set up the connection between their mobile app and the AAMOS-00 study.

Using the MiBand3, we will collect minute-by-minute data on heart rate, step count, activity
Using the MiBand3, we will collect minute-by-minute data on heart rate, step count, activity
intensity, and activity type. The watch will connect to the participant's smartphone via Bluetooth
and to the Mobistudy app. Participants will be asked to upload the data from the watch at least once
every three days. This also gives a chance for users to review their activity (see Figure 6).

Local daily weather reports will be obtained using the phone's location combined with the data from
 Local daily weather reports will be obtained using the phone's location combined with the data from
 Open Weather Maps' [38] and Ambee's [39] API. The weather data will include the temperature,
 humidity, clouds, wind, air quality index, and pollen levels of grass, tree, and weeds measured at a
 one-kilometre resolution (see Figure 7).

29 260 Exit questionnaire at the end of Phase 2

At the end of phase 2, a survey will gather data regarding users' perspective of the acceptability and
 At the end of phase 2, a survey will gather data regarding users' perspective of the acceptability and
 utility of the monitoring system. The survey combines validated questionnaires on usability and
 acceptance (SUS [40] and uMARS [41]) with questions about motivations to use technology (mTEI
 acceptance (SUS [40] and acceptance in an asthma management system.

 $\frac{35}{36}$ 265 See Table 2 for a summary of the study's activities.

267 Table 2. Summary of data collection

Assessment	Screening	Day 1 baseline	Phase 1	Day 31 baseline	Phase 2	Study Exit
Assessment of	Once			Once		
Eligibility						
Criteria						
Written	Once					
informed						
consent						
Demographic		Once				
data, contact						
details						
Weight/height		Once				
Known		Once				
triggers						
Peak flow		6			Twice daily	
Heart rate					Automated	
Activity					Automated	
Location, air					Daily	
quality and						
allergens		\sim				
Inhaler Usage			🔨 Daily &		Automated	
			Weekly			
Symptoms			Daily &		Daily	
			Weekly			
Triggers			Daily		Daily	
encountered				-		
Healthcare			Weekly		Weekly	
Usage						
Feedback						Once at
						the end

At the end of the study, participants will be compensated for mobile data charges that may have incurred from participating in the study, £5 per month. Participants are also able to continue using the smart devices beyond the study.

Following ethics approval in December 2020, we aim to complete the study by June 2023.

47 273

⁴⁹ ₅₀ 274 **Data analysis plan**

52 275 Feasibility (from usage data)

Combining the usage data from phase 1 and 2 of questionnaire completion and device usage will
 compute compliance to the monitoring regime to assess if it is feasible for patients to use the
 monitoring devices in their daily lives.

We will also use activity logs on the server, and communication over email with patients, to identify
 major technical issues and shortcomings of the technology.

1		
2		
3	281	
4		
5 6	282	Acceptability (from survey data)
7	202	The data for which find a contraction of the constitution of the basis of the constitution of the constitu
8	283	The data from the final questionnaire will be mostly ordinal data, with some free text answers. Free
9	284	text will be processed for thematic text analysis, identifying overall acceptability and recurring topics
10 11	285	present in the feedback. The ordinal data from answers on a Likert scale will provide measures of
12	286	acceptability.
13	287	
14		
15	288	Exploring asthma attack prediction (using monitoring data)
16 17		
18	289	Severe asthma attacks will be identified by the reports of oral corticosteroid usage (or an increased
19	290	dose from normal). Moderate and severe asthma attacks will be identified from the daily and weekly
20	291	data, to observe a change in control from the norm lasting two days or more. Sensitivity analysis will
21	292	be conducted using different features to define an asthma attack, such as hospitalisations and
22 23	293	changes in peak flow. Data collected from participants who have withdrawn from the study will be
24	294	used up to the last recording.
25	295	The methods of linear fit and bin-algorithms will be used to collate and produce summary variables
26	296	over irregular time-series and to handle missing data.[6] After processing the data, machine learning
27	297	classifiers will be trained to predict asthma attacks. Evaluation of these classifiers will allow
28 29	298	comparison with the benchmarks set using daily questionnaires alone.[6] However, due to the
30	299	selection of participants with higher adherence to monitoring in phase 2 of this AAMOS-00 study,
31	300	the longitudinal data collected in this study are likely to be more complete than the data collected by
32	301	the wide range of participants in the Asthma Mobile Health Study.[43]
33	501	the wide runge of participants in the Astrinia Wobile freditions (add).[45]
34 35	302	Using different subsets of the data and features, we will test the performance of predictions made
36	303	using different modes of monitoring, such as self-reported data alone, self-reported and objective
37	304	data (active and passive monitoring), and passive monitoring data only (see Figure 8). Our previous
38	305	analysis using only self-reported data achieved AUC > 0.87 and we expect the performance to
39	306	increase with the addition of objective data.[6]
40 41	307	There is no consensus on the optimal algorithm for classification as previous studies are not
42	308	comparable.[11] Therefore, we have taken a broad approach to use five state-of-the-art algorithm
43	309	classes including Bayesian networks, decision trees, iForest, logistic regression, and support vector
44	310	machines.[44,45] From the classifiers, a severe asthma attack predictor will be built on the device
45 46	310	and questionnaire data, at a patient-level and population-level. Also, feature selection will be used
46 47	312	to identify the most useful features in the prediction models.
48	712	to recently the most useral reatines in the prediction models.
49	313	Furthermore, if there are sufficient data, retrospective analysis will simulate the effects of limiting
50	314	the use of active monitoring data, to simulate patients only taking active measurements (e.g., peak
51 52	315	flow and symptom diary) when prompted. Moreover, there will be simulation of the general
52	316	population using samples of the data, where adherence to monitoring is lower than the select
54	317	population. For assessing the performance of the models built in this study, we will use k-fold cross
55	318	validation.[44] The performance metrics will include the common machine learning metrics such as
56	319	area under the receiver operating characteristic curve (AUC-ROC), sensitivity, and specificity.
57 58	320	
59	520	
60		

³ 4 321 Strengths and limitations

This study combines objective data collected from multiple smart monitoring devices available on the market. Not only will this independently test the monitoring devices in the real-world, but also patients will be able to continue using the devices they have found useful beyond the study. It also allows other researchers to reproduce the study with the current or latest versions of the devices.

11 326 Due to the limited number of participants and study period, stratified analysis and individualised
 327 asthma attack prediction models are not expected. However, seven months of daily monitoring per
 328 participant will provide insightful data.

This study is limited to patients with severe asthma at risk of acute attacks, and the findings may not generalise to the wider asthma population. Furthermore, only participants using a pressurised metered dose relief inhaler that fits our smart device are able to join the study, which is around 80% of the UK's asthma population.[46] If there are sufficient data, we will explore the generalisability of the results through simulating different adherence to monitoring.

The anonymised research data will be stored at Edinburgh DataShare (a digital repository of research data produced at the University of Edinburgh),[47] which researchers can access for their own research.

338 PATIENT AND PUBLIC INVOLVEMENT

Patient and public involvement (PPI) is part of the project from the beginning. This study is nested within the Asthma UK Centre for Applied Research and has been reviewed by their AUKCAR PPI members.

All the participant and public-facing documents and study objectives have been reviewed by AUKCAR PPI members before the start of the study and edited accordingly. Such a close PPI involvement ensures that the participant and public facing material is accessible. As an example, we attempted to explain several technical terms (such as "pMDI") in more detail in the participant documents and added pictures of pressured metered dose inhalers after feedback from PPI members.

43
44
44
45
46
350
46
47
48
49
49
49
40
40
40
41
41
42
43
44
45
46
46
46
46
46
47
47
48
49
49
49
40
40
40
41
41
41
42
43
44
45
46
46
46
47
47
48
49
49
49
40
40
41
41
42
43
44
44
45
46
46
46
47
47
48
49
49
49
40
40
41
41
42
43
44
44
44
45
46
46
47
47
48
49
49
49
40
40
41
41
41
42
44
44
45
46
47
47
48
48
49
49
49
49
49
49
49
49
49
49
49
49
49
40
40
40
41
41
41
42
43
44
44
44
44
44
44
44
44
44
45
46
47
47
48
49
49
49
49
49
49
49
49
49
49
49
49
40
40
40
40
40
40
40
41
41
41
42
44
44
44
44
44
44
44
44
44
44
44

48 351

DISSEMINATION

We will be reporting the results in peer-reviewed journal publications and conference presentations.
Dissemination of the results will also include the AUKCAR network with blogs and social media to
reach an audience who is interested in the used of smart monitoring devices for asthma.

356 We will also be sharing links to publications and summaries with study participants.

358 ETHICS

This study has received ethics approval by the East of England - Cambridge Central Research Ethics Committee. IRAS Project ID: 285505.

362 DATA AVAILABILITY

At the end of the study, the anonymised research data will be stored at Edinburgh DataShare (a
digital repository of research data produced at the University of Edinburgh) in perpetuity.
Researchers will be able to access and download the data from the website for their own research.

367 CONCLUSIONS

The present study will collect an important and novel dataset, where asthma patients use a combination of multiple market-available mHealth monitoring devices in the real world. We plan to use the rich dataset to improve existing asthma attack prediction algorithms and use the feedback from participants to design a patient-centred asthma self-management system. This study is the first step in developing the Asthma Attack Management Online System (AAMOS) which will support asthma patients with real-time tailored feedback based on machine learning driven by mHealth data.

375 ACKNOWLEDGEMENTS

We thank the AUKCAR PPI for their comments on the study. We thank Malmö University for their support with data collection. We thank Smart Respiratory Products Ltd for providing the Smart Peak Flow Meter and associated software. We thank FindAir for providing the FindAir ONE devices and FindAir's API. We thank Ambee for providing the pollen data. We thank Dr Sarah Brown (Edinburgh Innovations, University of Edinburgh, UK) for organising the contracts required for the study.

382 AUTHOR CONTRIBUTIONS

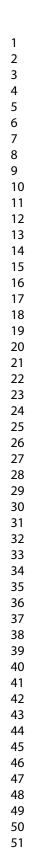
KCHT, HP, AMW, and SAS designed the study. SAS is the study guarantor. KCHT and DS set up the data collection system. KCHT drafted the manuscript which was critically revised by HP, AMW, DS, and SAS. All authors approved the final version of the manuscript.

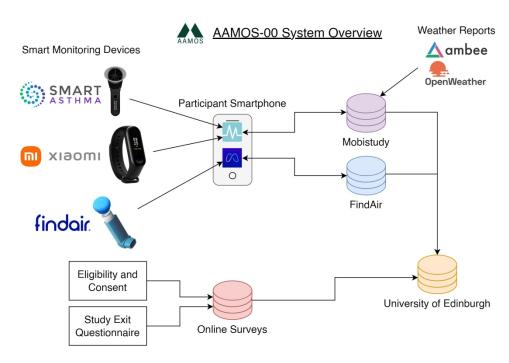
387 FUNDING

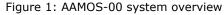
This work was supported by Asthma + Lung UK as part of the Asthma UK Centre for Applied Research
grant number AUK-AC-2018-01. Support from Malmö University is co-funded by the Knowledge
Foundation KK-stiftelsen.

COMPETING INTEREST STATEMENT None declared. REFERENCES Asthma UK. Asthma facts and statistics. https://www.asthma.org.uk/about/media/facts-and-statistics/ (accessed 1 Mar 2021). lacobucci G. Asthma deaths rise 33% in past decade in England and Wales. BMJ 2019;366:I5108. doi:10.1136/BMJ.L5108 Pinnock H, Parke HL, Panagioti M, et al. Systematic meta-review of supported self-management for asthma: A healthcare perspective. BMC Med 2017:15:64. doi:10.1186/s12916-017-0823-7 Scottish Intercollegiate Guidelines Network/ British Thoracic Society. SIGN 158 British guideline on the management of asthma. London/Edinburgh: : BTS/SIGN 2019. Juniper EF, O'Byrne PM, Guyatt GH, et al. Development and validation of a questionnaire to measure asthma control. Eur Respir J 1999;14:902–7. doi:10.1034/j.1399-3003.1999.14d29.x Tsang KCH, Pinnock H, Wilson AM, et al. Application of Machine Learning to Support Self-Management of Asthma with mHealth. In: 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). IEEE 2020. 5673–7. doi:10.1109/EMBC44109.2020.9175679 Su JG, Barrett MA, Henderson K, et al. Feasibility of Deploying Inhaler Sensors to Identify the Impacts of Environmental Triggers and Built Environment Factors on Asthma Short-Acting Bronchodilator Use. Environ Health Perspect 2017;125:254-61. doi:10.1289/EHP266 Tinschert P, Jakob R, Barata F, et al. The Potential of Mobile Apps for Improving Asthma Self-Management: A Review of Publicly Available and Well-Adopted Asthma Apps. JMIR mHealth uHealth 2017;5:e113. doi:10.2196/mhealth.7177 MyAsthma. myAsthma: The for asthma app managing vour symptoms. https://mymhealth.com/myasthma (accessed 10 Mar 2021). AsthmaMD. Asthma Control iPhone App | AsthmaMD. https://www.asthmamd.org/ (accessed 10 Mar 2021). Tsang KCH, Pinnock H, Wilson AM, et al. Application of machine learning algorithms for asthma management with mHealth: a clinical review. J Asthma Allergy 2022;15:855-73. doi:10.2147/JAA.S285742 Finkelstein J, Jeong I cheol. Machine Learning Approaches to Personalize Early Prediction of Asthma Exacerbations. Ann N Y Acad Sci 2017;1387:153-65. doi:10.1111/nyas.13218 Castner J, Jungquist CR, Mammen MJ, et al. Prediction Model Development of Women's Daily Asthma Control Using Fitness Tracker Sleep Disruption. Hear Lung 2020;49:548-55. doi:10.1016/j.hrtlng.2020.01.013 Huffaker MF, Carchia M, Harris BU, et al. Passive Nocturnal Physiologic Monitoring Enables Early Detection of Exacerbations in Children with Asthma. A Proof-of-Concept Study. Am J Respir Crit Care Med 2018;198:320-8. doi:10.1164/rccm.201712-2606OC

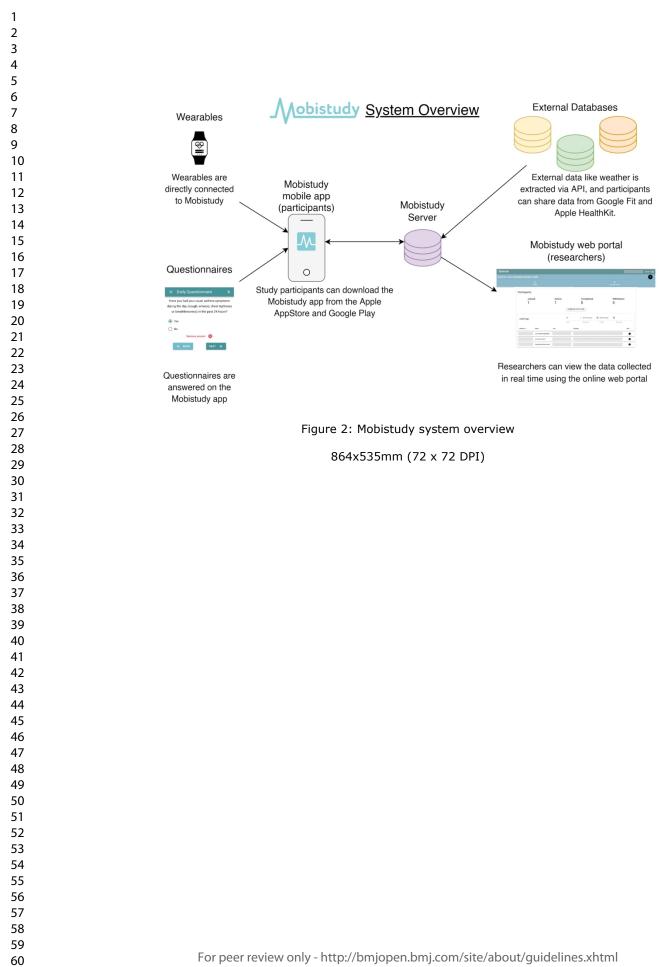
2			
3 4 5	432 433	15	Tibble H, Chan A, Mitchell EA, <i>et al.</i> A Data-Driven Typology of Asthma Medication Adherence Using Cluster Analysis. <i>Sci Rep</i> 2020; 10 :14999. doi:10.1038/s41598-020-72060-0
6 7 8	434 435	16	Tinschert P, Rassouli F, Barata F, et al. Nocturnal Cough and Sleep Quality to Assess Asthma Control and Predict Attacks. J Asthma Allergy 2020;13:669–78. doi:10.2147/JAA.S278155
9 10 11	436 437	17	Zhang O, Minku LL, Gonem S. Detecting Asthma Exacerbations Using Daily Home Monitoring and Machine Learning. <i>J Asthma</i> 2021; 58 :1518–27. doi:10.1080/02770903.2020.1802746
12 13 14 15	438 439 440	18	Khasha R, Sepehri MM, Mahdaviani SA. An Ensemble Learning Method for Asthma Control Level Detection with Leveraging Medical Knowledge-Based Classifier and Supervised Learning. J Med Syst 2019; 43 :158. doi:10.1007/s10916-019-1259-8
16 17	441 442	19	Alharbi E, Abdullah M. Asthma Attack Prediction Based on Weather Factors. <i>Period Eng Nat Sci</i> 2019; 7 :408–19. doi:10.21533/PEN.V7I1.422
18 19 20 21 22	443 444 445	20	Exarchos KP, Beltsiou M, Votti CA, <i>et al.</i> Artificial intelligence techniques in asthma: a systematic review and critical appraisal of the existing literature. <i>Eur Respir J</i> 2020; 56 . doi:10.1183/13993003.00521-2020
23 24 25	446 447	21	Chan Y-FY, Wang P, Rogers L, et al. The Asthma Mobile Health Study, a large-scale clinical observational study using ResearchKit. Nat Biotechnol 2017; 35 :354–62. doi:10.1038/nbt.3826
25 26 27 28 29 30	448 449 450 451	22	Honkoop PJ, Simpson A, Bonini M, <i>et al.</i> MyAirCoach: The Use of Home-Monitoring and mHealth Systems to Predict Deterioration in Asthma Control and the Occurrence of Asthma Exacerbations; Study Protocol of an Observational Study. <i>BMJ Open</i> 2017; 7 :e013935. doi:10.1136/bmjopen-2016-013935
30 31 32 33 34	452 453 454	23	Khusial RJ, Honkoop PJ, Usmani O, <i>et al.</i> Effectiveness of myAirCoach: A mHealth Self- Management System in Asthma. <i>J Allergy Clin Immunol Pract</i> 2020; 8 :1972-1979.e8. doi:10.1016/J.JAIP.2020.02.018
35 36 37 38	455 456 457	24	myAirCoach. D7.6 Data Management Plan (Second Year Update). 2016.https://www.myaircoach.eu/content/d76-data-management-plan-second-year-update (accessed 20 Aug 2022).
39 40 41 42	458 459 460	25	Blakey JD, Price DB, Pizzichini E, et al. Identifying Risk of Future Asthma Attacks Using UK Medical Record Data: A Respiratory Effectiveness Group Initiative. J Allergy Clin Immunol Pract 2017;5:1015-1024.e8. doi:10.1016/j.jaip.2016.11.007
43 44 45 46	461 462 463	26	Price D, Wilson AM, Chisholm A, <i>et al.</i> Predicting Frequent Asthma Exacerbations Using Blood Eosinophil Count and Other Patient Data Routinely Available in Clinical Practice. <i>J Asthma Allergy</i> 2016; 9 :1–12. doi:10.2147/JAA.S97973
47	464	27	FindAir. FindAir. https://findair.eu/ (accessed 9 Mar 2022).
48 49 50 51	465 466 467	28	Hui CY, McKinstry B, Walton R, <i>et al.</i> A Mixed Method Observational Study of Strategies to Promote Adoption and Usage of an Application to Support Asthma Self-Management. <i>J Innov Heal Informatics</i> 2019; 25 :243–53. doi:10.14236/jhi.v25i4.1056
52 53 54 55	468 469 470	29	Pathiravasan CH, Zhang Y, Trinquart L, <i>et al.</i> Adherence of Mobile App-Based Surveys and Comparison With Traditional Surveys: eCohort Study. <i>J Med Internet Res</i> 2021; 23 :e24773. doi:10.2196/24773
56 57 58 59 60	471 472 473	30	Xu X, Tupy S, Robertson S, <i>et al.</i> Successful adherence and retention to daily monitoring of physical activity: Lessons learned. <i>PLoS One</i> 2018; 13 :e0199838. doi:10.1371/journal.pone.0199838


- 2 3 474 31 Senturia YD, McNiff Mortimer K, Baker D, et al. Successful Techniques for Retention of Study 4 475 Participants in an Inner-City Population. Control Clin Trials 1998;**19**:544-54. 5 476 doi:10.1016/S0197-2456(98)00032-4 6 7 477 32 Compernolle S, Vandelanotte C, Cardon G, et al. Effectiveness of a Web-Based, Computer-8 478 Tailored, Pedometer-Based Physical Activity Intervention for Adults: A Cluster Randomized 9 479 Controlled Trial. J Med Internet Res 2015;17:e38. doi:10.2196/jmir.3402 10 11 480 33 Liu FT, Ting KM, Zhou Z-H. Isolation Forest. In: 2008 Eighth IEEE International Conference on 12 481 Data Mining. IEEE 2008. 413-22. doi:10.1109/ICDM.2008.17 13 14 482 34 Reddel HK, Taylor DR, Bateman ED, et al. An official American Thoracic Society/European 15
- 1448234Reddel HK, Taylor DR, Bateman ED, et al. An official American Thoracic Society/European15483Respiratory Society statement: Asthma control and exacerbations Standardizing endpoints16484for clinical asthma trials and clinical practice. Am J Respir Crit Care Med 2009;180:59–99.18485doi:10.1164/rccm.200801-060ST
- 19
20
21
22486
48735
487Salvi D, Magnus Olsson C, Ymeri G, et al. Mobistudy: mobile-based, platform-independent,
multi-dimensional data collection for clinical studies. In: 11th International Conference on the
Internet of Things. St.Gallen, Switzerland: : ACM 2021. 219–22. doi:10.1145/3494322
- 489 36 Smart Asthma. Smart Asthma. https://smartasthma.com/ (accessed 9 Mar 2022).
- 490 37 Xiaomi. Xiaomi UK. https://www.mi.com/uk/ (accessed 9 Mar 2022).
- 491 38 OpenWeatherMaps. OpenWeatherMap. https://openweathermap.org/ (accessed 14 Jun
 492 2021).
- 30 493 39 Ambee. Ambee. https://www.getambee.com/ (accessed 14 Jun 2021).
- 31
 32
 494
 40
 Brooke J. SUS: A 'Quick and Dirty' Usability Scale. In: Usability Evaluation In Industry. CRC


 33
 495
 Press 1996. 207–12. doi:10.1201/9781498710411-35
- 34
 35
 496
 41
 36
 497
 37
 498
 41
 420
 421
 421
 422
 423
 424
 424
 425
 427
 428
 427
 428
 428
 429
 429
 420
 420
 421
 421
 421
 421
 422
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 <li
- 499 42 Dewar AR, Bull TP, Malvey DM, *et al.* Developing a Measure of Engagement with Telehealth
 500 500 Systems: The mHealth Technology Engagement Index. *J Telemed Telecare* 2017;23:248–55.
 41 501 doi:10.1177/1357633X16640958
- 42
4350243Chan Y-FY, Bot BM, Zweig M, et al. The asthma mobile health study, smartphone data
collected using ResearchKit. Sci Data 2018;5:180096. doi:10.1038/sdata.2018.96
- 45
46
4750444Hastie T, Tibshirani R, Friedman J. The Elements of Statistical Learning. 2nd ed. New York, NY: :
Springer 2009. doi:10.1007/978-0-387-84858-7
- 48 506 45 Bishop CM. *Pattern Recognition and Machine Learning*. Berlin, Heidelberg: : Springer 2006.
- 5050746Lavorini F, Corrigan CJ, Barnes PJ, et al. Retail Sales of Inhalation Devices in European51508Countries: So Much for a Global Policy. Respir Med 2011;105:1099–103.52509doi:10.1016/j.rmed.2011.03.012
- 54 510 47 The University of Edinburgh. Edinburgh DataShare. https://datashare.ed.ac.uk/ (accessed 15
 55 511 Aug 2022).
- 57


58 59

1


1 2		
3 4	513	FIGURE LEGENDS
5 6	514	Figure 1. AAMOS-00 system overview
7 8	515	Figure 2. Mobistudy system overview
9	516	Figure 3. Participant's app home page
10 11	517	Figure 4. Questionnaire delivered by Mobistudy
12 13	518	Figure 5. Smart peak flow meter task
14 15	519	Figure 6. Smartwatch data
16	520	Figure 7. Local weather data
17 18 19	521	Figure 8. Exploring asthma attack prediction.
20 21 22 23 24 25 26 27 28 29 30 31 22 33 34 35 36 37 38 39 40 41 42 43 44 50 51 52 53 54 55 56 57 8 9 60		Figure 8. Exploring asthma attack prediction.

819x545mm (72 x 72 DPI)

Mobistudy

Today's pending tasks

AAMO	S-00 Phase 2 Daily Questionnaire Answer a few questions				
	•				
:	Weekly Questionnaire Answer a few questions				
Ō	Activity tracker Extract data from your activity tracker				
ဂျင်	Peak Flow Record peak flow with the smart peak flow meter				
•	Position Send your current location				

Missed tasks

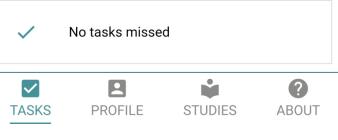
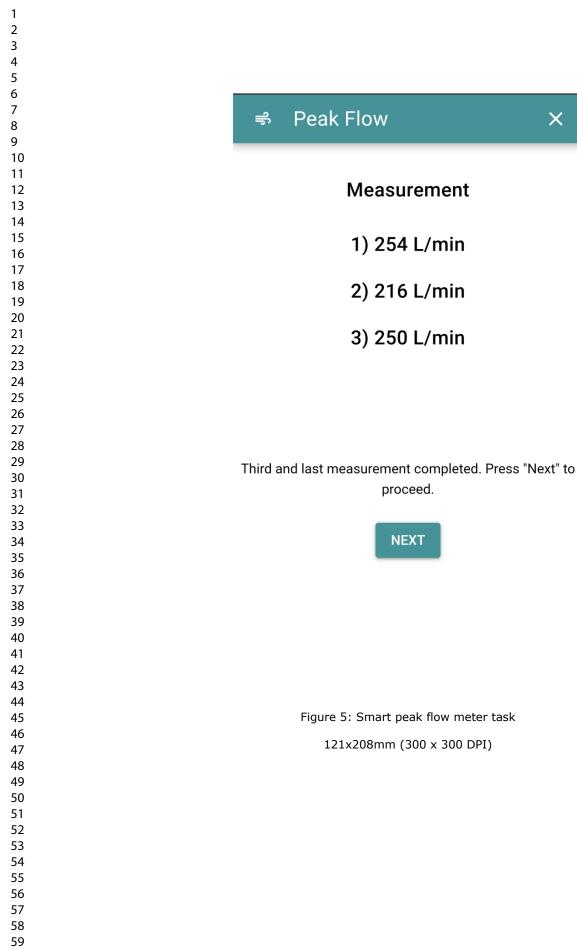



Figure 3: Participant's app home page

121x208mm (300 x 300 DPI)

3	
4 5	
6	
7	
8	\equiv Daily Questionnaire \times
9	
10	Have you had your usual asthma symptoms
11 12	
12	during the day (cough, wheeze, chest tightness
14	or breathlessness) in the past 24 hours?
15	
16	
17	Yes
18 19	
20	O No
21	
22	Remove answer
23	
24	
25	NEAT -7
26 27	
28	
29	
30	
31	
32	
33 34	
35	
36	
37	
38	
39	
40 41	
41	
43	
44	
45	Figure 4: Questionnaire delivered by Mobistudy
46	121x208mm (300 x 300 DPI)
47 48	
40 49	
50	
51	
52	
53	
54 55	
55 56	
57	
58	
59	
60	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xht

X

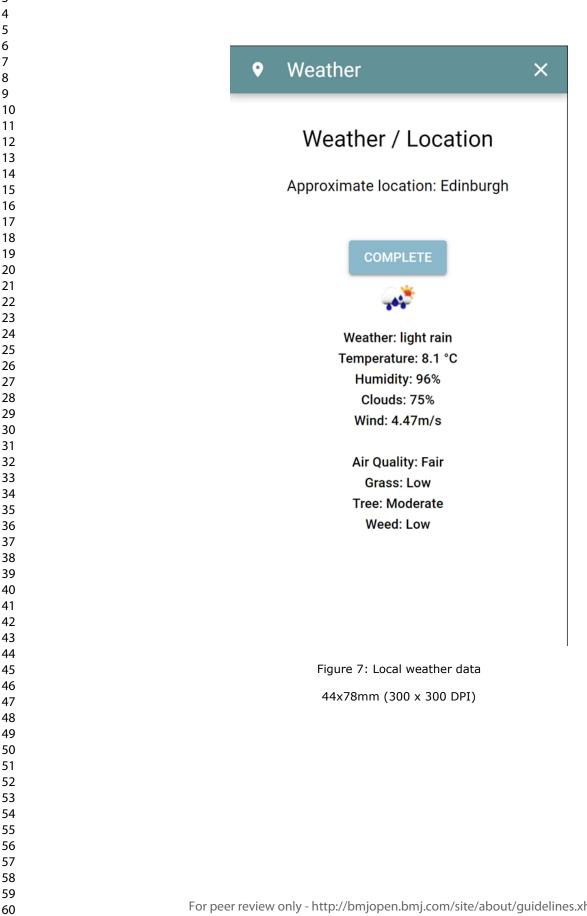
60

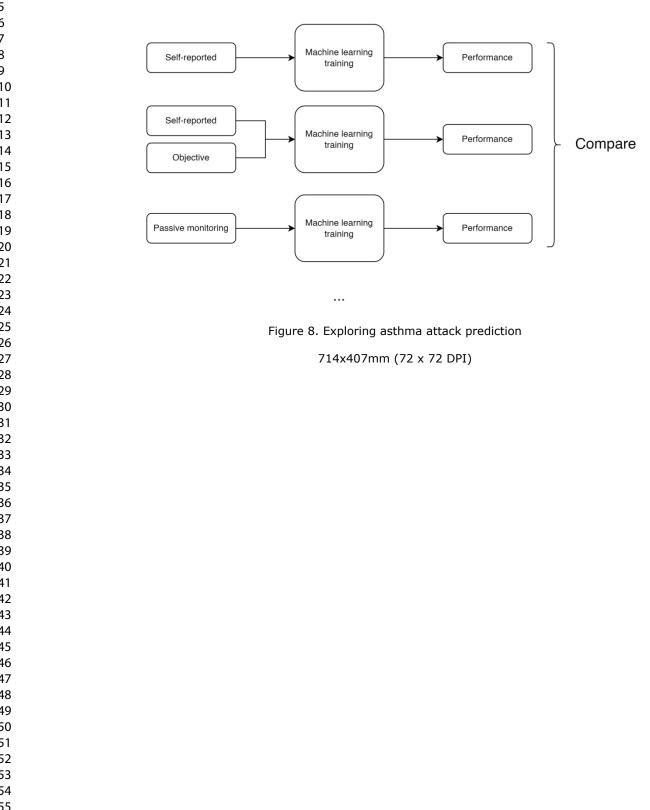
For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Activity tracker

The following charts summarize the data that have been retrieved from the band. Tap on "Send" to share these data with the research team or tap on "Discard" to avoid sending these data.

×




Activity over time

Time coant in each activity

Figure 6: Smartwatch data

121x207mm (300 x 300 DPI)

STROBE Statement-checklist of items that should be included in reports of observational studies

	Item No	Recommendation	Pag No
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or	1
		the abstract	
		(b) Provide in the abstract an informative and balanced summary of what	2
		was done and what was found	
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	4
Objectives	3	State specific objectives, including any prespecified hypotheses	4
Methods			
Study design	4	Present key elements of study design early in the paper	7
Setting	5	Describe the setting, locations, and relevant dates, including periods of	5
U		recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Cohort study—Give the eligibility criteria, and the sources and	5
1		methods of selection of participants. Describe methods of follow-up	
		Case-control study—Give the eligibility criteria, and the sources and	
		methods of case ascertainment and control selection. Give the rationale	
		for the choice of cases and controls	
		Cross-sectional study—Give the eligibility criteria, and the sources and	
		methods of selection of participants	
		(b) Cohort study—For matched studies, give matching criteria and	
		number of exposed and unexposed	
		Case-control study—For matched studies, give matching criteria and the	
		number of controls per case	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders,	6
		and effect modifiers. Give diagnostic criteria, if applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of methods	7
measurement		of assessment (measurement). Describe comparability of assessment	
		methods if there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	NA
Study size	10	Explain how the study size was arrived at	6
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If	8
		applicable, describe which groupings were chosen and why	
Statistical methods	12	(a) Describe all statistical methods, including those used to control for	10
		confounding	
		(b) Describe any methods used to examine subgroups and interactions	10
		(c) Explain how missing data were addressed	10
		(d) Cohort study—If applicable, explain how loss to follow-up was	NA
		addressed	
		Case-control study-If applicable, explain how matching of cases and	
		controls was addressed	
		Cross-sectional study-If applicable, describe analytical methods taking	
		account of sampling strategy	
		(\underline{e}) Describe any sensitivity analyses	10

Continued on next page

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially	1
		eligible, examined for eligibility, confirmed eligible, included in the study,	
		completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	1
		(c) Consider use of a flow diagram]
Descriptive	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and]
data		information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of interest]
		(c) Cohort study—Summarise follow-up time (eg, average and total amount)]
Outcome data	15*	Cohort study-Report numbers of outcome events or summary measures over time	
		Case-control study—Report numbers in each exposure category, or summary	
		measures of exposure	
		Cross-sectional study—Report numbers of outcome events or summary measures	
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and]
		their precision (eg, 95% confidence interval). Make clear which confounders were	
		adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a	
		meaningful time period	
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and	
		sensitivity analyses	
Discussion			
Key results	18	Summarise key results with reference to study objectives	
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or]
		imprecision. Discuss both direction and magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,	
		multiplicity of analyses, results from similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	
Other informati	on		
Funding	22	Give the source of funding and the role of the funders for the present study and, if	

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.