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20

21 ABSTRACT
22 Introduction:

23 Supported self-management empowering people with asthma to detect early deterioration and take 
24 timely action reduces the risk of asthma attacks. Smartphones and smart monitoring devices 
25 coupled with machine learning could enhance self-management by predicting asthma attacks and 
26 providing tailored feedback.

27 We aim to develop and assess the feasibility of an asthma attack predictor system based on data 
28 collected from a range of smart devices.

29 Methods and Analysis:

30 A 2-phase, 7-month observational study to collect data about asthma status using three smart 
31 monitoring devices, and daily symptom questionnaires. We will recruit up to 100 people via social 
32 media and from a severe asthma clinic, who are at risk of attacks and who use a pressurised metered 
33 dose relief inhaler (that fits the smart inhaler device).

34 Following a preliminary month of daily symptom questionnaires, 30 participants able to comply with 
35 regular monitoring will complete six months of using smart devices (smart peak flow meter, smart 
36 inhaler, smartwatch) and daily questionnaires to monitor asthma status. The occurrence of asthma 
37 attacks (definition: ATS/ERS Task Force 2009) will be detected by self-reported use (or increased use) 
38 of oral corticosteroids. Monitoring data will be analysed to identify predictors of asthma attacks. At 
39 the end of the monitoring, we will assess users’ perspectives on acceptability and utility of the 
40 system with an exit questionnaire.

41 Ethics and Dissemination:

42 Ethics approval was provided by the East of England - Cambridge Central Research Ethics Committee. 
43 IRAS project ID: 285505 with governance approval from ACCORD (Academic and Clinical Central 
44 Office for Research and Development), project number: AC20145. The study sponsor is ACCORD, the 
45 University of Edinburgh.

46 Results will be reported through peer-reviewed publications, abstracts, and conference posters. 
47 Public dissemination will be centred around blogs and social media from the Asthma UK network 
48 and shared with study participants.

49 Key Words
50 Asthma Attacks, Machine Learning, mHealth, Smart Monitoring Devices, Prediction

51

52 ARTICLE SUMMARY

53 Strengths and limitations of this study
54  This study combines objective data collected from multiple smart monitoring devices 
55 available on the market.
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56  Stratified analysis and individualised asthma attack prediction models are not expected, due 
57 to the limited number of participants and study period.
58  Participants are limited to patients with severe asthma at risk of acute attacks, and to those 
59 using a pressurised metered dose relief inhaler that fits our smart device.
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61

62 INTRODUCTION
63 Asthma is a variable condition, affecting around 5.4 million people in the UK.[1] Every 10 seconds in 
64 the UK alone, someone has an asthma attack. Some of these attacks are life-threatening with over 
65 1400 annual deaths estimated in the UK.[1,2] Since there is no known cure for asthma, self-
66 management is a key part of patient care; this involves detecting deterioration and taking 
67 appropriate action to maintain control and prevent the threatened attack.[3] The most common 
68 symptoms of asthma are wheezing, cough, chest tightness and shortness of breath.

69 Traditional self-management action plans use symptom scores, sometimes supplemented by peak 
70 flow measurements, to determine a patient’s asthma condition.[4–6] Keeping track of relief inhaler 
71 usage can also help measure asthma control.[7] However, patients may regard this level of 
72 monitoring as tedious as it involves high levels of active engagement on their part.

73 Increasingly, smart monitoring devices and “mobile-health” (mHealth) technologies are being 
74 developed to support asthma self-management.[8] Some notable examples include myAsthma [9] 
75 and Asthma MD.[10] myAsthma stores personalised action plans, includes instructional videos about 
76 inhaler techniques, tracks symptoms and peak flow, and provides local weather forecasts. 
77 AsthmaMD [10] has similar features to support self-management and can provide customised 
78 notifications. However, these tools still require a high level to active engagement to monitor one’s 
79 asthma.

80 There has been an increasing number of mHealth studies to predict asthma attacks and develop 
81 passive monitoring to support asthma self-management, including the use of smart peak flow 
82 meters,[11] activity tracking,[12,13] smartphone administrated questionnaires,[6,14] and weather 
83 data.[15,16] However, the combined use of the monitoring devices available to asthma patients to 
84 develop asthma attack prediction models is largely unexplored. In addition, whilst there have been 
85 some studies that explored the use of machine learning algorithms for chronic disease management 
86 with home-monitoring data,[17] there is still no mHealth system that is widely used by asthma 
87 patients. One of the key bottlenecks for the limited progress is the difficulty of collecting asthma 
88 monitoring data and the lack of availability of such datasets from existing studies. Apart from the 
89 Asthma Mobile Health Study,[18] no other asthma mHealth dataset is publicly available to be able to 
90 investigate the development and validation of asthma attack prediction algorithm. 

91 In this study, we will collect novel asthma monitoring data that will facilitate the development of an 
92 asthma attack prediction algorithm leveraging available, approved asthma monitoring devices in the 
93 market. This study will also enable us to test whether unobtrusive, passive monitoring and machine 
94 learning could help minimise the need for active patient data collection whilst maintaining accuracy 
95 for predicting attacks. We envisage that an mHealth system that leverages machine learning to 
96 predict asthma attacks with passive monitoring will enhance patient adherence and improve patient 
97 self-management. 

98 The overarching aim of this study is to develop and assess the feasibility and acceptability of an 
99 asthma self-management system using existing smart devices, collect novel monitoring data and 

100 leverage machine learning to develop asthma attack prediction algorithm.

101
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102 METHODS AND ANALYSIS

103 Study population
104 To maximise the chances of collecting data related to attacks in a short time-span, we will focus on 
105 patients with moderate to severe risk of attacks. Two key predictors are a recent history of attacks 
106 and people with severe asthma.[19,20] We will thus focus on adult asthma patients who have had at 
107 least one course of oral corticosteroid for an acute asthma attack in the past 12 months, and people 
108 attending a secondary care severe asthma clinic. See Table 1 for inclusion and exclusion criteria.

109 Social media recruitment consists of sending tweets on Twitter and posting on Facebook via the 
110 Asthma + Lung UK and Asthma UK Centre for Applied Research (AUKCAR) accounts, which total 
111 around 175,000 followers. The Norfolk and Norwich University Hospital will help identify potentially 
112 eligible patients for the study and direct them to the online information and expression of interest. 

113

114 Table 1: Inclusion and exclusion criteria

Inclusion criteria:  Aged 18 and above

 Self-reported or doctor-diagnosed asthma 

 Possession of a smartphone (from 2016 onwards) that can support 
the Mobistudy and FindAir mobile apps (Android 4.4+, iOS 10+) and 
has Bluetooth capabilities

 Has had at least one course of oral corticosteroids for an acute 
asthma attack in the past 12 months

 Prescribed with pressurised metered dose relief inhaler that is 
compatible with FindAir ONE (e.g. Ventolin and other versions of 
salbutamol if the inhaler is a compatible shape inhaler as Ventolin; 
Salamol; Airomir; Fostair; Budiair)[21]

Exclusion criteria:  Comorbidities that have overlapping symptoms (e.g. wheezing, 
cough, chest tightness and shortness of breath) 

 Aged under 18

 Unable to provide valid consent (e.g. cognitive impairment, learning 
disabilities)

 Unable to use an app and respond to questions in English

115

116 Potential participants will complete an online questionnaire to identify whether they are eligible to 
117 participate. Informed consent will be collected via Online Surveys, a secure online platform for 
118 collecting questionnaire data. Potential participants will be given time to read the participant 
119 information sheet before deciding whether to participate.

120
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121 Sample size calculation

122 To achieve the objectives of this study, we need to collect sufficient data need to train an asthma 
123 attack prediction model.

124 In the study population of UK Optimum Patient Care Research Database (OPCRD) and Clinical 
125 Practice Research Datalink (CPRD), 41% of the patients who had multiple (2 or more) attacks in the 
126 baseline year also had multiple attacks in the following year.[20] 

127 Based on 30 participants with daily monitoring, 3,470 recordings (= 30 people × 30 days × (89% 
128 adherence at baseline, 58% adherence at 3 months, 52% adherence at 6 months [22])) for each of 
129 the daily measurements can be expected in phase 2. Also, 12 recorded asthma attacks are expected, 
130 assuming an average of one attack observed per participant in 41% of phase 2 participants during 
131 the study period.[20] To use the novelty detection algorithm iForest (which can be trained even if 
132 the data collected does not include any attacks), a sample of 256 recordings or data points would 
133 suffice.[23] Other machine learning classification algorithms will also obtain high accuracy on this 
134 sample size.

135

136 Recruitment strategy

137 Using a similar recruitment method, Hui et al. recruited 87 participants using social media alone, the 
138 majority within the first month after the initial invitational message, although the number of those 
139 who continued to use the app dropped to 15 (17% of the total initially recruited participants) after 
140 30 days.[24] Moreover, only 5% of identified participants through practices agreed to join their study, 
141 which totalled 28 participants from five practices.[24] However, the attrition rate for participants 
142 recruited through practices was lower, 63% vs 83% reduction in social media participants; only 25% 
143 of users were still using the app after 30 days.[24] The eligibility criteria (≥16 years, an asthma 
144 prescription in the previous year, registered with a UK general practitioner) is more relaxed than the 
145 proposed criteria. However, this study incentivises entry of data in the first 28 days by giving 
146 adherent participants access to phase 2 which is likely to result in much more than 25% passing 30 
147 days of participation.

148 Following the previous research, which recruited participants through Asthma UK’s social media (at 
149 the time of writing had 175,000 followers), around 87 participants are expected to be eligible and 
150 join this study. In addition, around six participants identified and invited via are expected to be 
151 eligible and join from Norfolk and Norwich University Hospital. Of which, 47 people (50% of 93 
152 respondents) are expected to complete phase 1. Thus, including 30 participants is achievable using 
153 the outlined recruitment method.

154

155 Outcomes

156 Primary endpoints
157 The primary endpoints of this study are severe asthma attacks, as defined in the American Thoracic 
158 Society (ATS)/European Respiratory Society (ERS) Task Force 2009 statement.[25] The definition is as 
159 follows:
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160  Severe asthma attacks are events that require urgent action on the part of the patient and 
161 physician to prevent a serious outcome. Such attacks are defined as a deterioration 
162 requiring use of systemic corticosteroids (or an increase from a stable maintenance 
163 dose).[25]

164 Severe asthma attacks will be identified using the use of systemic corticosteroids question on the 
165 weekly self-reported questionnaire. Courses of corticosteroids separated by 1 week or more will be 
166 treated as separate severe attacks.

167 Secondary endpoints
168 The secondary endpoints of this study are moderate asthma attacks, as defined in the ATS/ERS Task 
169 Force 2009 statement.[25] The definition is as follows:

170  A moderate asthma attack is an event that, when recognised, should result in a temporary 
171 change in treatment to prevent the attack from becoming severe. Such attacks are defined 
172 as a deterioration that does not require use of systemic corticosteroids.[25] Moderate 
173 asthma attacks include a deterioration in symptoms, lung function, and/or increased rescue 
174 bronchodilator use that lasts for 2 days or more but are not severe enough to warrant 
175 systemic corticosteroid use. 

176 Moderate asthma attacks will be identified using the questions about relief inhaler usage, symptoms 
177 (day symptoms, nocturnal symptoms, interference with usual activities, shortness of breath, 
178 wheezing), and unscheduled care (GP, emergency room, and hospitalisations) in the daily and 
179 weekly self-reported questionnaires.

180

181 Data collection
182 The data collection period is split into two phases:

183 1. Questionnaire monitoring, daily for one month. 

184 2. Smart device and questionnaire monitoring, daily for six months. 30 participants who keep a 
185 regular diary in phase 1 will be given three smart devices (smart inhaler, smart peak flow 
186 meter, smartwatch) to collect data automatically as they use the devices, in addition to 
187 completing daily and weekly questionnaires. We will choose participants for this phase with 
188 a range of ages, gender, and smoking status, and with different types of asthma triggers. 

189 At the end of phase 2, we will send a questionnaire asking for feedback about using the smart 
190 devices and whether participants think they could be useful to help them look after their asthma.

191 We will be using Mobistudy to centralise most of the data collection, only the smart inhaler usage 
192 and exit questionnaire will not be collected via Mobistudy (see Figure 1).

193

194 Data collection mobile app (Mobistudy)
195 Mobistudy [26] is an open-source platform facilitating mHealth studies available on Android and iOS 
196 managed by Malmö University, Sweden. The platform has three key components: a mobile app for 
197 participants, a REST API server, and a web portal for researchers (see Figure 2). The platform 
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198 supports multiple studies and participants of the AAMOS-00 study will be given a study invite code 
199 to join the AAMOS-00 study within Mobistudy.

200 Each daily and weekly assessment, such as questionnaires and peak flow measurement, will appear 
201 as an individual task of the home page on the participant’s app (see Figure 3). Once the task is 
202 completed, it will be removed from today’s to-do list and the data is sent directly to the server via 
203 the phone Internet connection. In real-time, the research team will be able to view the collected 
204 data via the online web portal for researchers.

205

206 Phase 1
207 There will be a total of four questionnaires:

208  A daily questionnaire that asks six questions about daily symptoms experienced, medication 
209 usage, and the triggers encountered. This will take around 2 minutes to complete.

210  A weekly questionnaire that asks 10 questions about asthma symptoms in more detail, 
211 medication usage, and healthcare engagement. This will take around 5 minutes to complete. 

212  A questionnaire that asks 11 questions at the start of phase 1 about current asthma 
213 condition and history.

214  A questionnaire that asks five questions about race and smoking status. Additionally, some 
215 demographic information will be collected from the Mobistudy profile of participants, such 
216 as height, weight, and age.

217 The completion rate (50%) of the daily and weekly questionnaire will be used to determine the 
218 eligibility of a participant to join phase 2.

219

220 Phase 2
221 In addition to the daily and weekly questionnaires (see Figure 4), in phase 2 participants will be 
222 asked to collect data using three smart monitoring devices: Smart Peak Flow Meter (by Smart 
223 Asthma [27]), FindAir ONE (by FindAir [21]) smart inhaler, and MiBand3 (by Xiaomi [28]) smartwatch. 

224 Participants will be given the smart peak flow meter to take a peak expiratory flow measurement 
225 twice a day, once in the morning and once at night; each measurement takes the best of three tries 
226 (see Figure 5). They will also be provided in-app written instructions before each set of 
227 measurements on using the peak flow meter. Furthermore, participants recruited through the 
228 Norfolk and Norwich University Hospital have been trained to use a peak flow meter by the practice. 
229 To connect the smart peak flow meter to the smartphone, participants can either use the audio-jack 
230 connection or a Bluetooth adapter.

231 The FindAir ONE smart inhaler attaches to the top of pressurised metered dose relief inhalers, it 
232 records the time at which the inhaler is used. The device can be moved to a new inhaler if 
233 participants change medication. The device will be connected to participants’ smartphone by 
234 Bluetooth to the FindAir mobile app. The data will be transferred from the FindAir server and thence 
235 to the research team using FindAir’s Application Programming Interface (API). The data collection 
236 will happen in the background once the participant has set up the connection between their mobile 
237 app and the AAMOS-00 study.
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238 Using the MiBand3, we will collect minute-by-minute data on heart rate, step count, activity 
239 intensity, and activity type. The watch will connect to the participant’s smartphone via Bluetooth 
240 and to the Mobistudy app. Participants will be asked to upload the data from the watch at least once 
241 every three days. This also gives a chance for users to review their activity (see Figure 6).

242 Local daily weather reports will be obtained using the phone’s location combined with the data from 
243 Open Weather Maps’ [29] and Ambee’s [30] API. The weather data will include the temperature, 
244 humidity, clouds, wind, air quality index, and pollen levels of grass, tree, and weeds measured at a 
245 one-kilometre resolution (see Figure 7).

246

247 Exit questionnaire at the end of Phase 2
248 At the end of phase 2, a survey will gather data regarding users’ perspective of the acceptability and 
249 utility of the monitoring system. The survey combines validated questionnaires on usability and 
250 acceptance (SUS [31] and uMARS [32]) with questions about motivations to use technology (mTEI 
251 [33]) and desired features in an asthma management system.

252 See Table 2 for a summary of the study’s activities.

253

254 Table 2. Summary of data collection

Assessment Screening Day 1
baseline Phase 1 Day 31 

baseline Phase 2 Study Exit

Assessment of 
Eligibility 
Criteria

Once     Once  

Written 
informed 
consent

Once      

Demographic 
data, contact 
details

Once

Weight/height Once    
Known 
triggers

Once

Peak flow Twice daily
Heart rate Automated
Activity Automated
Location, air 
quality and 
allergens

    Daily

Inhaler Usage Daily & 
Weekly

Automated

Symptoms Daily & 
Weekly

Daily

Triggers 
encountered

Daily Daily

Healthcare 
Usage

Weekly Weekly

Page 9 of 24

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For peer review only

Page 10 of 15

Feedback Once at 
the end

255

256 Data analysis plan

257 Feasibility (from usage data)

258 Combining the usage data from phase 1 and 2 of questionnaire completion and device usage will 
259 compute compliance to the monitoring regime to assess if it is feasible for patients to use the 
260 monitoring devices in their daily lives.

261 We will also use activity logs on the server, and communication over email with patients, to identify 
262 major technical issues and shortcomings of the technology.

263

264 Acceptability (from survey data)

265 The data from the final questionnaire will be mostly ordinal data, with some free text answers. Free 
266 text will be processed for thematic text analysis, identifying overall acceptability and recurring topics 
267 present in the feedback. The ordinal data from answers on a Likert scale will provide measures of 
268 acceptability.

269

270 Prediction of asthma attacks (using monitoring data)

271 Severe asthma attacks will be identified by the reports of oral corticosteroid usage (or an increased 
272 dose from normal). Moderate and severe asthma attacks will be identified from the daily and weekly 
273 data, to observe a change in control from the norm lasting two days or more. Sensitivity analysis will 
274 be conducted using different features to define an asthma attack, such as hospitalisations and 
275 changes in peak flow. 

276 The methods of linear fit and bin-algorithms will be used to collate and produce summary variables 
277 over irregular time-series and to handle missing data;[6] though, the longitudinal data collected in 
278 this study are likely to be more complete than the Asthma Mobile Health Study.[34] Data collected 
279 from participants who have withdrawn from the study will be used up to the last recording. After 
280 processing the data, machine learning classifiers will be trained to predict asthma attacks.

281 The primary classifiers that will be used in the study include Bayesian networks, decision trees, 
282 iForest, logistic regression, and support vector machines.[35,36] From the classifiers, a severe 
283 asthma attack predictor will be built on the device and questionnaire data, at a patient-level and 
284 population-level. Also, feature selection will be used to identify the most useful features in the 
285 prediction models. 

286 Furthermore, retrospective analysis will simulate the effects of limiting the use of active monitoring 
287 data, to simulate patients only taking active measurements (e.g., peak flow and symptom diary) 
288 when prompted. In other words, the training set will be considered as all data before a certain date 
289 in the study period and the test set everything after. Moreover, there will be simulation of the 
290 general population using samples of the data, where adherence to monitoring might be lower than 
291 the selected population. For assessing the performance of the models built in this study, we will use 
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292 k-fold cross validation.[35] The performance metrics will include the common machine learning 
293 metrics such as area under the receiver operating characteristic curve (AUC-ROC), sensitivity, and 
294 specificity. 

295

296 PATIENT AND PUBLIC INVOLVEMENT
297 Patient and public involvement (PPI) is part of the project from the beginning. This study is nested 
298 within the Asthma UK Centre for Applied Research and has been reviewed by their AUKCAR PPI 
299 members.

300 All the participant and public-facing documents and study objectives have been reviewed by 
301 AUKCAR PPI members before the start of the study and edited accordingly. Such a close PPI 
302 involvement ensures that the participant and public facing material is accessible. As an example, we 
303 attempted to explain several technical terms (such as “pMDI”) in more detail in the participant 
304 documents and added pictures of pressured metered dose inhalers after feedback from PPI 
305 members.

306

307 DISSEMINATION
308 We will be reporting the results in peer-reviewed journal publications and conference presentations. 
309 Dissemination of the results will also include the AUKCAR network with blogs and social media to 
310 reach an audience who is interested in the used of smart monitoring devices for asthma.

311 We will also be sharing links to publications and summaries with study participants.

312

313 ETHICS
314 This study has received ethics approval by the East of England - Cambridge Central Research Ethics 
315 Committee. IRAS Project ID: 285505.

316

317 DATA AVAILABILITY
318 At the end of the study, the anonymised research data will be stored at Edinburgh DataShare (a 
319 digital repository of research data produced at the University of Edinburgh) in perpetuity.

320

321 CONCLUSIONS
322 The present study will collect an important and novel dataset, where asthma patients use a 
323 combination of multiple market-available mHealth monitoring devices in the real world. We plan to 
324 use the rich dataset to improve existing asthma attack prediction algorithms and use the feedback 
325 from participants to design a patient-centred asthma self-management system. This study is the first 
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326 step in developing the Asthma Attack Management Online System (AAMOS) which will support 
327 asthma patients with real-time tailored feedback based on machine learning driven by mHealth data.
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440 FIGURE LEGENDS
441 Figure 1. AAMOS-00 system overview
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442 Figure 2. Mobistudy system overview

443 Figure 3. Participant’s app home page

444 Figure 4. Questionnaire delivered by Mobistudy

445 Figure 5. Smart peak flow meter task

446 Figure 6. Smartwatch data

447 Figure 7. Local weather data

448
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Figure 1: AAMOS-00 system overview 
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Figure 2: Mobistudy system overview 
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Figure 3: Participant’s app home page 
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Figure 4: Questionnaire delivered by Mobistudy 
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Figure 5: Smart peak flow meter task 
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Figure 6: Smartwatch data 
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Figure 7: Local weather data 
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21

22 ABSTRACT
23 Introduction:

24 Supported self-management empowering people with asthma to detect early deterioration and take 
25 timely action reduces the risk of asthma attacks. Smartphones and smart monitoring devices 
26 coupled with machine learning could enhance self-management by predicting asthma attacks and 
27 providing tailored feedback.

28 We aim to develop and assess the feasibility of an asthma attack predictor system based on data 
29 collected from a range of smart devices.

30 Methods and Analysis:

31 A 2-phase, 7-month observational study to collect data about asthma status using three smart 
32 monitoring devices, and daily symptom questionnaires. We will recruit up to 100 people via social 
33 media and from a severe asthma clinic, who are at risk of attacks and who use a pressurised metered 
34 dose relief inhaler (that fits the smart inhaler device).

35 Following a preliminary month of daily symptom questionnaires, 30 participants able to comply with 
36 regular monitoring will complete six months of using smart devices (smart peak flow meter, smart 
37 inhaler, smartwatch) and daily questionnaires to monitor asthma status. The feasibility of this 
38 monitoring will be measured by the percentage of task completion. The occurrence of asthma 
39 attacks (definition: ATS/ERS Task Force 2009) will be detected by self-reported use (or increased use) 
40 of oral corticosteroids. Monitoring data will be analysed to identify predictors of asthma attacks. At 
41 the end of the monitoring, we will assess users’ perspectives on acceptability and utility of the 
42 system with an exit questionnaire.

43 Ethics and Dissemination:

44 Ethics approval was provided by the East of England - Cambridge Central Research Ethics Committee. 
45 IRAS project ID: 285505 with governance approval from ACCORD (Academic and Clinical Central 
46 Office for Research and Development), project number: AC20145. The study sponsor is ACCORD, the 
47 University of Edinburgh.

48 Results will be reported through peer-reviewed publications, abstracts, and conference posters. 
49 Public dissemination will be centred around blogs and social media from the Asthma UK network 
50 and shared with study participants.

51 Key Words
52 Asthma Attacks, Machine Learning, mHealth, Smart Monitoring Devices, Prediction

53

54 ARTICLE SUMMARY

55 Strengths and limitations of this study
56  This study combines objective data collected from multiple smart monitoring devices 
57 available on the market.
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58  Stratified analysis and individualised asthma attack prediction models are not expected, due 
59 to the limited number of participants and study period.
60  Participants are limited to patients with severe asthma at risk of acute attacks, and to those 
61 using a pressurised metered dose relief inhaler that fits our smart device.

Page 3 of 27

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For peer review only

Page 4 of 17

63

64 INTRODUCTION
65 Asthma is a variable condition, affecting around 5.4 million people in the UK.[1] Every 10 seconds in 
66 the UK alone, someone has an asthma attack. Some of these attacks are life-threatening with over 
67 1400 annual deaths estimated in the UK.[1,2] Since there is no known cure for asthma, self-
68 management is a key part of patient care; this involves detecting deterioration and taking 
69 appropriate action to maintain control and prevent the threatened attack.[3] The most common 
70 symptoms of asthma are wheezing, cough, chest tightness and shortness of breath.

71 Traditional self-management action plans use symptom scores, sometimes supplemented by peak 
72 flow measurements, to determine a patient’s asthma condition.[4–6] Keeping track of relief inhaler 
73 usage can also help measure asthma control.[7] However, patients may regard this level of 
74 monitoring as tedious as it involves high levels of active engagement on their part.

75 Increasingly, smart monitoring devices and “mobile-health” (mHealth) technologies are being 
76 developed to support asthma self-management.[8] Some notable examples include myAsthma [9] 
77 and Asthma MD.[10] myAsthma stores personalised action plans, includes instructional videos about 
78 inhaler techniques, tracks symptoms and peak flow, and provides local weather forecasts. 
79 AsthmaMD [10] has similar features to support self-management and can provide customised 
80 notifications. However, these tools still require a high level to active engagement to monitor one’s 
81 asthma.

82 There has been an increasing number of mHealth studies to predict asthma attacks and develop 
83 passive monitoring to support asthma self-management,[11] including the use of smart peak flow 
84 meters,[12] night-time activity tracking,[13,14] smart inhalers,[15] smartphone administrated 
85 questionnaires,[6,16,17] and weather data.[18,19] However, the combined use of the monitoring 
86 devices available to asthma patients to develop asthma attack prediction models is largely 
87 unexplored. In addition, whilst there have been some studies that explored the use of machine 
88 learning algorithms for chronic disease management with home-monitoring data,[20] there is still no 
89 mHealth system that is widely used by asthma patients. One of the key bottlenecks for the limited 
90 progress is the difficulty of collecting asthma monitoring data and the lack of availability of such 
91 datasets from existing studies. Apart from the Asthma Mobile Health Study,[21] no other asthma 
92 mHealth dataset is publicly available to be able to investigate the development and validation of 
93 asthma attack prediction algorithm. 

94 A related study is the myAirCoach study,[22] which investigated asthma home-monitoring using 
95 connected devices. However, their participants conducted daily monitoring for the first month with 
96 an additional randomly allocated two weeks, compared to seven months in total proposed in this 
97 study. To our knowledge, the dataset from myAirCoach is not publicly available and it has not yet 
98 been used to test any machine learning-based algorithms for asthma attack prediction.[23,24] 

99 In this study, we will collect novel asthma monitoring data that will facilitate the development of an 
100 asthma attack prediction algorithm leveraging available, approved asthma monitoring devices in the 
101 market. This study will also enable us to test whether unobtrusive, passive monitoring and machine 
102 learning could help minimise the need for active patient data collection whilst maintaining accuracy 
103 for predicting attacks. We envisage that an mHealth system that leverages machine learning to 
104 predict asthma attacks with passive monitoring will enhance patient adherence and improve patient 
105 self-management. 
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106 The overarching aim of this study is to develop and assess the feasibility and acceptability of an 
107 asthma self-management system using existing smart devices, collect novel monitoring data and 
108 leverage machine learning to explore the feasibility of an asthma attack prediction algorithm based 
109 on passive monitoring.

110

111 METHODS AND ANALYSIS

112 Study population
113 To maximise the chances of collecting data related to attacks in a short time-span, we will focus on 
114 patients with moderate to severe risk of attacks. Two key predictors are a recent history of attacks 
115 and people with severe asthma.[25,26] We will thus focus on adult asthma patients who have had at 
116 least one course of oral corticosteroid for an acute asthma attack in the past 12 months, and people 
117 attending a secondary care severe asthma clinic. See Table 1 for inclusion and exclusion criteria.

118 Social media recruitment consists of sending tweets on Twitter and posting on Facebook via the 
119 Asthma + Lung UK and Asthma UK Centre for Applied Research (AUKCAR) accounts, which total 
120 around 175,000 followers. The Norfolk and Norwich University Hospital will help identify potentially 
121 eligible patients for the study and direct them to the online information and expression of interest. 

122

123 Table 1: Inclusion and exclusion criteria

Inclusion criteria:  Aged 18 and above

 Self-reported or doctor-diagnosed asthma 

 Possession of a smartphone (from 2016 onwards) that can support 
the Mobistudy and FindAir mobile apps (Android 4.4+, iOS 10+) and 
has Bluetooth capabilities

 Has had at least one course of oral corticosteroids for an acute 
asthma attack in the past 12 months

 Prescribed with pressurised metered dose relief inhaler that is 
compatible with FindAir ONE (e.g. Ventolin and other versions of 
salbutamol if the inhaler is a compatible shape inhaler as Ventolin; 
Salamol; Airomir; Fostair; Budiair)[27]

Exclusion criteria:  Comorbidities that have overlapping symptoms (e.g. wheezing, 
cough, chest tightness and shortness of breath) 

 Aged under 18

 Unable to provide valid consent (e.g. cognitive impairment, learning 
disabilities)

 Unable to use an app and respond to questions in English

124
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125 Potential participants will complete an online questionnaire to identify whether they are eligible to 
126 participate. Informed consent will be collected via Online Surveys, a secure online platform for 
127 collecting questionnaire data. Potential participants will be given time to read the participant 
128 information sheet before deciding whether to participate.

129

130 Sample size calculation

131 To achieve the objectives of this study, we need to collect sufficient data need to train an asthma 
132 attack prediction model.

133 In the study population of UK Optimum Patient Care Research Database (OPCRD) and Clinical 
134 Practice Research Datalink (CPRD), 41% of the patients who had multiple (2 or more) attacks in the 
135 baseline year also had multiple attacks in the following year.[26] 

136 Based on 30 participants with daily monitoring, 3,098 recordings (= 30 people × 30 days × (85% 
137 retention at baseline,[28–30] 50% retention at 6 months[28,29,31,32])  × 85% adherence[30,31]) for 
138 each of the daily measurements can be expected in phase 2. Also, 12 recorded asthma attacks are 
139 expected, assuming an average of one attack observed per participant in 41% of phase 2 participants 
140 during the study period.[26] To use the novelty detection algorithm iForest (which can be trained 
141 even if the data collected does not include any attacks), a sample of 256 recordings or data points 
142 would suffice.[33] Other machine learning classification algorithms will also obtain high accuracy on 
143 this sample size.

144

145 Recruitment strategy

146 Using a similar recruitment method, Hui et al. recruited 87 participants using social media alone, the 
147 majority within the first month after the initial invitational message, although the number of those 
148 who continued to use the app dropped to 15 (17% of the total initially recruited participants) after 
149 30 days.[28] Moreover, only 5% of identified participants through practices agreed to join their study, 
150 which totalled 28 participants from five practices.[28] However, the attrition rate for participants 
151 recruited through practices was lower, 63% vs 83% reduction in social media participants; only 25% 
152 of users were still using the app after 30 days.[28] The eligibility criteria (≥16 years, an asthma 
153 prescription in the previous year, registered with a UK general practitioner) is more relaxed than the 
154 proposed criteria. However, this study incentivises entry of data in the first 28 days by giving 
155 adherent participants access to phase 2 (where participants are sent smart devices) which is likely to 
156 result in much more than 25% passing 30 days of participation. The adherence to four weeks of 
157 monitoring with daily questionnaires and activity monitors has seen values upwards of 95%.[30]

158 Following the previous research, which recruited participants through Asthma UK’s social media (at 
159 the time of writing had 175,000 followers), around 87 participants are expected to be eligible and 
160 join this study. In addition, around six participants identified and invited via are expected to be 
161 eligible and join from Norfolk and Norwich University Hospital. Of which, 47 people (50% of 93 
162 respondents) are expected to complete phase 1. Thus, including 30 participants is achievable using 
163 the outlined recruitment method.

164
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165 Outcomes

166 Primary endpoints
167 The primary endpoints of this study are adherence to monitoring, which are defined by the 
168 collection of data using different devices. For each task, we will measure the percentage of total 
169 days completed.

170 Secondary endpoints
171 The secondary endpoints of this study are asthma attacks. Primarily, we use severe asthma attacks 
172 as defined in the American Thoracic Society (ATS)/European Respiratory Society (ERS) Task Force 
173 2009 statement.[34] The definition is as follows:

174  Severe asthma attacks are events that require urgent action on the part of the patient and 
175 physician to prevent a serious outcome. Such attacks are defined as a deterioration 
176 requiring use of systemic corticosteroids (or an increase from a stable maintenance 
177 dose).[34]

178 Severe asthma attacks will be identified using the use of systemic corticosteroids question on the 
179 weekly self-reported questionnaire. Courses of corticosteroids separated by 1 week or more will be 
180 treated as separate severe attacks.

181 We will also explore the use of moderate asthma attacks, as defined in the ATS/ERS Task Force 2009 
182 statement.[34] The definition is as follows:

183  A moderate asthma attack is an event that, when recognised, should result in a temporary 
184 change in treatment to prevent the attack from becoming severe. Such attacks are defined 
185 as a deterioration that does not require use of systemic corticosteroids.[34] Moderate 
186 asthma attacks include a deterioration in symptoms, lung function, and/or increased rescue 
187 bronchodilator use that lasts for 2 days or more but are not severe enough to warrant 
188 systemic corticosteroid use. 

189 Moderate asthma attacks will be identified using the questions about relief inhaler usage, symptoms 
190 (day symptoms, nocturnal symptoms, interference with usual activities, shortness of breath, 
191 wheezing), and unscheduled care (GP, emergency room, and hospitalisations) in the daily and 
192 weekly self-reported questionnaires.

193

194 Data collection
195 The data collection period is split into two phases:

196 1. Questionnaire monitoring, daily for one month. 

197 2. Smart device and questionnaire monitoring, daily for six months. 30 participants who keep a 
198 regular diary in phase 1 will be given three smart devices (smart inhaler, smart peak flow 
199 meter, smartwatch) to collect data automatically as they use the devices, in addition to 
200 completing daily and weekly questionnaires. We will choose participants for this phase with 
201 a range of ages, gender, and smoking status, and with different types of asthma triggers. 

202 At the end of phase 2, we will send a questionnaire asking for feedback about using the smart 
203 devices and whether participants think they could be useful to help them look after their asthma.
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204 We will be using Mobistudy to centralise most of the data collection, only the smart inhaler usage 
205 and exit questionnaire will not be collected via Mobistudy (see Figure 1).

206

207 Data collection mobile app (Mobistudy)
208 Mobistudy [35] is an open-source platform facilitating mHealth studies available on Android and iOS 
209 managed by Malmö University, Sweden. The platform has three key components: a mobile app for 
210 participants, a REST API server, and a web portal for researchers (see Figure 2). The platform 
211 supports multiple studies and participants of the AAMOS-00 study will be given a study invite code 
212 to join the AAMOS-00 study within Mobistudy.

213 Each daily and weekly assessment, such as questionnaires and peak flow measurement, will appear 
214 as an individual task of the home page on the participant’s app (see Figure 3). Once the task is 
215 completed, it will be removed from today’s to-do list and the data is sent directly to the server via 
216 the phone Internet connection. In real-time, the research team will be able to view the collected 
217 data via the online web portal for researchers.

218

219 Phase 1
220 There will be a total of four questionnaires:

221  A daily questionnaire that asks six questions about daily symptoms experienced, medication 
222 usage, and the triggers encountered. This will take around 2 minutes to complete.

223  A weekly questionnaire that asks 10 questions about asthma symptoms in more detail, 
224 medication usage, and healthcare engagement. This will take around 5 minutes to complete. 

225  A questionnaire that asks 11 questions at the start of phase 1 about current asthma 
226 condition and history.

227  A questionnaire that asks five questions about race and smoking status. Additionally, some 
228 demographic information will be collected from the Mobistudy profile of participants, such 
229 as height, weight, and age.

230 The completion rate (50%) of the daily and weekly questionnaire will be used to determine the 
231 eligibility of a participant to join phase 2.

232

233 Phase 2
234 In addition to the daily and weekly questionnaires (see Figure 4), in phase 2 participants will be 
235 asked to collect data using three smart monitoring devices: Smart Peak Flow Meter (by Smart 
236 Asthma [36]), FindAir ONE (by FindAir [27]) smart inhaler, and MiBand3 (by Xiaomi [37]) smartwatch. 

237 Participants will be given the smart peak flow meter to take a peak expiratory flow measurement 
238 twice a day, once in the morning and once at night; each measurement takes the best of three tries 
239 (see Figure 5). They will also be provided in-app written instructions before each set of 
240 measurements on using the peak flow meter. Furthermore, participants recruited through the 
241 Norfolk and Norwich University Hospital have been trained to use a peak flow meter by the practice. 
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242 To connect the smart peak flow meter to the smartphone, participants can either use the audio-jack 
243 connection or a Bluetooth adapter.

244 The FindAir ONE smart inhaler attaches to the top of pressurised metered dose relief inhalers, it 
245 records the time at which the inhaler is used. The device can be moved to a new inhaler if 
246 participants change medication. The device will be connected to participants’ smartphone by 
247 Bluetooth to the FindAir mobile app. The data will be transferred from the FindAir server and thence 
248 to the research team using FindAir’s Application Programming Interface (API). The data collection 
249 will happen in the background once the participant has set up the connection between their mobile 
250 app and the AAMOS-00 study.

251 Using the MiBand3, we will collect minute-by-minute data on heart rate, step count, activity 
252 intensity, and activity type. The watch will connect to the participant’s smartphone via Bluetooth 
253 and to the Mobistudy app. Participants will be asked to upload the data from the watch at least once 
254 every three days. This also gives a chance for users to review their activity (see Figure 6).

255 Local daily weather reports will be obtained using the phone’s location combined with the data from 
256 Open Weather Maps’ [38] and Ambee’s [39] API. The weather data will include the temperature, 
257 humidity, clouds, wind, air quality index, and pollen levels of grass, tree, and weeds measured at a 
258 one-kilometre resolution (see Figure 7).

259

260 Exit questionnaire at the end of Phase 2
261 At the end of phase 2, a survey will gather data regarding users’ perspective of the acceptability and 
262 utility of the monitoring system. The survey combines validated questionnaires on usability and 
263 acceptance (SUS [40] and uMARS [41]) with questions about motivations to use technology (mTEI 
264 [42]) and desired features in an asthma management system.

265 See Table 2 for a summary of the study’s activities.

266
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267 Table 2. Summary of data collection

Assessment Screening Day 1
baseline Phase 1 Day 31 

baseline Phase 2 Study Exit

Assessment of 
Eligibility 
Criteria

Once     Once  

Written 
informed 
consent

Once      

Demographic 
data, contact 
details

Once

Weight/height Once    
Known 
triggers

Once

Peak flow Twice daily
Heart rate Automated
Activity Automated
Location, air 
quality and 
allergens

    Daily

Inhaler Usage Daily & 
Weekly

Automated

Symptoms Daily & 
Weekly

Daily

Triggers 
encountered

Daily Daily

Healthcare 
Usage

Weekly Weekly

Feedback Once at 
the end

268

269 At the end of the study, participants will be compensated for mobile data charges that may have 
270 incurred from participating in the study, £5 per month. Participants are also able to continue using 
271 the smart devices beyond the study.

272 Following ethics approval in December 2020, we aim to complete the study by June 2023. 

273

274 Data analysis plan

275 Feasibility (from usage data)

276 Combining the usage data from phase 1 and 2 of questionnaire completion and device usage will 
277 compute compliance to the monitoring regime to assess if it is feasible for patients to use the 
278 monitoring devices in their daily lives.

279 We will also use activity logs on the server, and communication over email with patients, to identify 
280 major technical issues and shortcomings of the technology.
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281

282 Acceptability (from survey data)

283 The data from the final questionnaire will be mostly ordinal data, with some free text answers. Free 
284 text will be processed for thematic text analysis, identifying overall acceptability and recurring topics 
285 present in the feedback. The ordinal data from answers on a Likert scale will provide measures of 
286 acceptability.

287

288 Exploring asthma attack prediction (using monitoring data)

289 Severe asthma attacks will be identified by the reports of oral corticosteroid usage (or an increased 
290 dose from normal). Moderate and severe asthma attacks will be identified from the daily and weekly 
291 data, to observe a change in control from the norm lasting two days or more. Sensitivity analysis will 
292 be conducted using different features to define an asthma attack, such as hospitalisations and 
293 changes in peak flow. Data collected from participants who have withdrawn from the study will be 
294 used up to the last recording.

295 The methods of linear fit and bin-algorithms will be used to collate and produce summary variables 
296 over irregular time-series and to handle missing data.[6] After processing the data, machine learning 
297 classifiers will be trained to predict asthma attacks. Evaluation of these classifiers will allow 
298 comparison with the benchmarks set using daily questionnaires alone.[6] However, due to the 
299 selection of participants with higher adherence to monitoring in phase 2 of this AAMOS-00 study, 
300 the longitudinal data collected in this study are likely to be more complete than the data collected by 
301 the wide range of participants in the Asthma Mobile Health Study.[43]

302 Using different subsets of the data and features, we will test the performance of predictions made 
303 using different modes of monitoring, such as self-reported data alone, self-reported and objective 
304 data (active and passive monitoring), and passive monitoring data only (see Figure 8). Our previous 
305 analysis using only self-reported data achieved AUC > 0.87 and we expect the performance to 
306 increase with the addition of objective data.[6]

307 There is no consensus on the optimal algorithm for classification as previous studies are not 
308 comparable.[11] Therefore, we have taken a broad approach to use five state-of-the-art algorithm 
309 classes including Bayesian networks, decision trees, iForest, logistic regression, and support vector 
310 machines.[44,45] From the classifiers, a severe asthma attack predictor will be built on the device 
311 and questionnaire data, at a patient-level and population-level. Also, feature selection will be used 
312 to identify the most useful features in the prediction models. 

313 Furthermore, if there are sufficient data, retrospective analysis will simulate the effects of limiting 
314 the use of active monitoring data, to simulate patients only taking active measurements (e.g., peak 
315 flow and symptom diary) when prompted. Moreover, there will be simulation of the general 
316 population using samples of the data, where adherence to monitoring is lower than the select 
317 population. For assessing the performance of the models built in this study, we will use k-fold cross 
318 validation.[44] The performance metrics will include the common machine learning metrics such as 
319 area under the receiver operating characteristic curve (AUC-ROC), sensitivity, and specificity. 

320
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321 Strengths and limitations

322 This study combines objective data collected from multiple smart monitoring devices available on 
323 the market. Not only will this independently test the monitoring devices in the real-world, but also 
324 patients will be able to continue using the devices they have found useful beyond the study. It also 
325 allows other researchers to reproduce the study with the current or latest versions of the devices. 

326 Due to the limited number of participants and study period, stratified analysis and individualised 
327 asthma attack prediction models are not expected. However, seven months of daily monitoring per 
328 participant will provide insightful data.

329 This study is limited to patients with severe asthma at risk of acute attacks, and the findings may not 
330 generalise to the wider asthma population. Furthermore, only participants using a pressurised 
331 metered dose relief inhaler that fits our smart device are able to join the study, which is around 80% 
332 of the UK’s asthma population.[46] If there are sufficient data, we will explore the generalisability of 
333 the results through simulating different adherence to monitoring.

334 The anonymised research data will be stored at Edinburgh DataShare (a digital repository of research 
335 data produced at the University of Edinburgh),[47] which researchers can access for their own 
336 research.

337

338 PATIENT AND PUBLIC INVOLVEMENT
339 Patient and public involvement (PPI) is part of the project from the beginning. This study is nested 
340 within the Asthma UK Centre for Applied Research and has been reviewed by their AUKCAR PPI 
341 members.

342 All the participant and public-facing documents and study objectives have been reviewed by 
343 AUKCAR PPI members before the start of the study and edited accordingly. Such a close PPI 
344 involvement ensures that the participant and public facing material is accessible. As an example, we 
345 attempted to explain several technical terms (such as “pMDI”) in more detail in the participant 
346 documents and added pictures of pressured metered dose inhalers after feedback from PPI 
347 members.

348 The findings about feasibility and acceptability will be interpreted with input from PPI members. 
349 Furthermore, we plan to continue working with PPI members to develop a system that supports 
350 asthma self-management.

351

352 DISSEMINATION
353 We will be reporting the results in peer-reviewed journal publications and conference presentations. 
354 Dissemination of the results will also include the AUKCAR network with blogs and social media to 
355 reach an audience who is interested in the used of smart monitoring devices for asthma.

356 We will also be sharing links to publications and summaries with study participants.

357
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358 ETHICS
359 This study has received ethics approval by the East of England - Cambridge Central Research Ethics 
360 Committee. IRAS Project ID: 285505.

361

362 DATA AVAILABILITY
363 At the end of the study, the anonymised research data will be stored at Edinburgh DataShare (a 
364 digital repository of research data produced at the University of Edinburgh) in perpetuity. 
365 Researchers will be able to access and download the data from the website for their own research.

366

367 CONCLUSIONS
368 The present study will collect an important and novel dataset, where asthma patients use a 
369 combination of multiple market-available mHealth monitoring devices in the real world. We plan to 
370 use the rich dataset to improve existing asthma attack prediction algorithms and use the feedback 
371 from participants to design a patient-centred asthma self-management system. This study is the first 
372 step in developing the Asthma Attack Management Online System (AAMOS) which will support 
373 asthma patients with real-time tailored feedback based on machine learning driven by mHealth data.
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513 FIGURE LEGENDS
514 Figure 1. AAMOS-00 system overview

515 Figure 2. Mobistudy system overview

516 Figure 3. Participant’s app home page

517 Figure 4. Questionnaire delivered by Mobistudy

518 Figure 5. Smart peak flow meter task

519 Figure 6. Smartwatch data

520 Figure 7. Local weather data

521 Figure 8. Exploring asthma attack prediction.
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Figure 1: AAMOS-00 system overview 
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Figure 2: Mobistudy system overview 
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Figure 3: Participant’s app home page 
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Figure 4: Questionnaire delivered by Mobistudy 
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Figure 5: Smart peak flow meter task 
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Figure 6: Smartwatch data 
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Figure 7: Local weather data 
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Figure 8. Exploring asthma attack prediction 
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