Expanded View Figures

Figure EV1. Assembly and characterization of the IL-27-receptor complex.

A Schematic representation of the single chain IL-27 heterodimer.

B Chromatogram overlay from size exclusion chromatography of the different IL-27 complex components.

C Coomassie-stained SDS-PAGE analysis under reducing conditions of the individual components plus the IL-27:IL-27Ra:GP130 complex used for cryoEM studies.

в

din to the second secon	6 9 . 4	e ane	£	
45	89	1958 1	and the second se	16
- <i>4</i> 2	- Alber	~&	d.	Canal State
- See	-10	200	- 1	Sec.

Figure EV2. Supplementary cryoEM data.

- A Raw cryoEM micrograph with examples of the IL-27 receptor complex circled. Scale bar 50 nm.
- B A subset of representative 2D class averages. Scale bar 110 Å.
- C Gold standard Fourier shell correlation (GSFSC) for the final reconstruction. The resolution at the 0.143 cutoff is reported.
- D Angular distribution plot.
- E IL-27 receptor recognition reconstruction filtered according to local resolution ranging from 3 Å (blue) to 7–15 Å (red).

Figure EV3. CryoEM image processing workflow outlining steps performed to obtain the structure of IL-27 heterodimer complex. All processing was performed using CryoSPARC v.3.3.1 (see Materials and Methods for details).

Figure EV4. Model for the IL-27 receptor signaling complex overlaid with the cryoEM map.

- A Map/model overlays for density corresponding to p28 (left panel), EBI3 (middle panel), and IL-27Rα (right panel).
 B Representative glycan density in the map corresponding to known glycosylation sites on GP130 (left and middle panels) and IL-27Rα (right panel).

Figure EV5. EBI3:IL-27Ra interface.

EBI3

IL-27Rα

A–F Ribbon representation of the IL-27 receptor recognition complex (A) and book representation of the EBI3:IL-27Rα interface (B). Individual proteins colored: EBI3 (purple), IL-27Rα (yellow), p28 (blue), GP130 (red). Surface representation of the complex (C) and book representation of the interface (D). Proteins colored as in (A) with EBI3: IL-27Rα interface residues in green. Coulombic electrostatic potential ranging from -10 (red) to 10 (blue) kcal/(mole) calculated from the models in A (E) and corresponding book representation of the interface (F).