Supporting Information

Per- and polyfluoroalkyl substances in North American School Uniforms

Chunjie Xia¹, Miriam L. Diamond^{2,3}, Graham F. Peaslee⁴, Hui Peng^{5,3}, Arlene Blum⁶, Zhanyun Wang^{7,8}, Anna Shalin², Heather D. Whitehead⁹, Megan Green⁴, Heather Schwartz-Narbonne², Diwen. Yang⁵, Marta Venier^{1*}

1. Paul H. O'Neill School of Public and Environmental Affairs, Indiana University, Bloomington, IN, 47405, USA

2. Department of Earth Sciences, University of Toronto, Toronto, ON, M5S 3B1, Canada

3. School of the Environment, University of Toronto, Toronto, ON, M5S 3E8, Canada

4. Department of Physics and Astronomy, University of Notre Dame, Notre Dame, IN 46556, USA

5. Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada

6. Green Science Policy Institute, Berkeley, CA 94709, USA

7. Institute of Environmental Engineering, ETH Zürich, 8093 Zürich, Switzerland

8. Empa – Swiss Federal Laboratories for Materials Science and Technology, Technology and Society Laboratory, CH-9014 St. Gallen, Switzerland

9. Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA

Number of pages: 48

Number of tables: 23

Number of figures: 5

* Corresponding author: Marta Venier. Email: <u>mvenier@indiana.com</u>; Phone: +1-(812) 855-100

Calibration description for PIGE analysis

Figure S2 reveals that as material thickness increases, the slope of the standard curve decreased, and the limit of detection increased. This thickness-dependent response was used to develop a standardized approach for determining accurate concentrations of fluorine in textiles where the thickness of each textile standard (from 180-620 μ m) was plotted against its measured slope (**Figure S2**). A linear fit was applied to generate an equation relating measured thickness to a predicted slope. For thicknesses below the minimum and above the maximum thickness used to generate this fit equation (areas where the slope is constant), a single value slope for the material with the closest thickness was used (**Table S3**).

Substance Flow Analysis (SFA)

Stocks and flows of specific chemicals can be tracked, ultimately providing a better understanding of where to prioritize intervention.¹ We constructed a SFA tracking PFAS originating from intentional use in school uniforms. The proposed model is based on the framework developed by Minet et. al. (submitted)² which was used to track PFAS deriving from use in food packaging. We modified that framework by considering uniforms with intentionally added PFAS (concentration >0.15% or 1500 ppm see below) and combining together uniforms no PFAS (e.g., not marketed to be stain resistant and ND in Table S1) with low PFAS concentrations (< 0.15% , see below). Levels of PFAS <0.15%, a minimum level recommended to confer water and grease repellency, presumably come from PFAS used as a processing agent or lubricant in the textile production process.³

Insufficient information was available to allow us to quantitatively estimate flows except for the use of PFAS in school uniforms purchased in a given year. However, the entire SFA provides insights into intermediate and final sinks of PFAS used in school uniforms.

The flow of total PFAS in children's school uniforms purchased in a given year (F_1) was calculated as:

$$F_1 = M_{school\,uniform} * \left(C_{functional} * \mathcal{N}_{functional} + C_{no\,PFAS} * \mathcal{N}_{no\,PFAS} \right) \tag{1}$$

where $M_{school\ uniform}$ is the mass of children's school uniforms purchased in a given year; $C_{functional}$ is the concentration of functional PFAS in school uniforms, C_{noPFAS} is the concentration of PFAS in untreated school uniforms, $\%_{functional}$ is the percent of school uniforms with functional PFAS, and $\%_{noPFAS}$ is the percent of school uniforms with PFAS levels below those conferring functionality. Two versions of F1 were

calculated: one for polymeric PFAS and one for non-polymeric PFAS. We assumed that these estimates pertained to a single year between 2019 and 2021.

1) Mass of School Uniforms Purchased. The mass of children's school uniforms purchased in a given year, M_{school uniform}, was defined in equation 2 below, where %_{children} is the percent of school-aged children that wear uniforms; *Population* represents number of school-aged children (5-19 years, which includes elementary, middle and high school); *Number of Items* is the average number of new school uniforms an individual will purchase, per year; *Weight of garment* represents the average weight of a school uniform.

$M_{school\,uniform} = (\%_{children})(Population)(Number of items)(Weight of garment)$ (2)

A Coresight Research survey reported that in 2018, 26.1% of American school-aged children wore uniforms to school.⁴ This value was used for as both the US and Canadian mid-range estimate for $\%_{children}$, with assumed low and high estimates of 16 and 36%, respectively. We then assumed the number of new school uniform items that an individual would purchase, per year. Assuming that a child would need to purchase at least 1 bottom (pants, skirt, etc.) and 1 top (polo, dress shirt, etc.), the low estimate was set at 2 garments per student per year, where the same set of garments would be worn year-round. We estimated that most students would purchase between 2-3 sets of garments and some may purchase a set for each day of the week, which puts the mid-range estimate at 6 garments and the high-estimate at 10 garments, per year.

Populations of school-aged children between 5-19 years of age for US and Canada were taken from 2020 data from the United Nations Department of Economic and Social Affairs⁵ and Statistics Canada,⁶ respectively.

Given that the weight of garments for children's school uniforms can be highly variable, depending on the size, material, and type of garment, we calculated an average weight using data from our sample analysis. Twenty-nine unique U.S. and Canadian children's school uniforms were weighed prior to sample manipulation. This included a diverse range of types of school uniforms, including polo shirts, pants and skirts. Additionally, a variety of garment sizes were included, ranging from children's products to pre-teen apparel. The mean garment weight from these data was taken as the middle estimate (166 g), bound by the first quartile weight for low estimate (125 g) and third quartile weight for high estimate (202 g).

2) $C_{\text{functional}}$, Polymeric. Typical textile finishing agents use copolymers with side-chain fluoropolymers, such as methyl acrylate or perfluoroalkyl acrylate, as active ingredients.⁷ These polymers are described as fluoroalkyl chains attached to a polymer back bone.⁸ The fluorinated chains are positioned perpendicular to the surface of the fabric and exist in a tight formation, acting as a barrier between oil/water

and the fabric layer.⁸ Polymers used in textiles include C4 and C6 short-chain fluorinated polymers, which are used for oil, stain, and water repellency, as well as fluoropolymers such as polytetrafluoroethylene (PFTE), which is commonly used in "breathable" membranes.⁹

We based our estimates on literature recommendations for polymeric fluorochemical deposition on fabric to acquire optimal functionality of stain and water repellency. According to a 3M report on fluorochemical textile repellents, fluorochemical repellency performance is reported to "plateau between 0.3%-0.45% solids fluorine on fabric", corresponding to roughly 1000-1500 ppm of fluorine on fabric.¹⁰ Other sources suggest fluorochemical deposited on the fabric ranges from 0.15%-0.30% "on the weight of the fabric", ¹¹ or more generally summarized as <1% "on weight fabric". ¹² We proposed 0.1% as a low range estimate, 0.30% as a mid-range estimate, and 0.45% as a high range estimate for functional polymeric PFAS in textile use, where percent indicates weight of PFAS formulation relative to weight of garment.

We note that the literature mentions (e.g., Choudhury et al. 2017^{12}) and our results showed that school uniforms made from cotton had higher levels of PFAS than those made from cotton-synthetic blends. The range of C_{functional} chosen for the Substance Flow Analysis brackets the use of PFAS in both cotton and cotton-synthetic blends.

3) **C**_{functional}, Non-Polymeric. Non-polymeric PFAS are used in the production of fluoropolymers,³ but can also form as a result of polymeric PFAS breakdown.¹³ The concentration of functional non-polymeric PFAS in school uniforms was estimated using values from the total oxidizable precursor (TOP) assay of 5 school uniforms reported in this study. TOP assay values were converted to percent PFAS using the mass of the material (gram) as for C_{functional} polymeric. The first quartile measurement for Σ_{49} PFAS was used as a low estimate (3.52E-03%), followed by the median value used as the mid-range estimate (1.05E-02%), and third quartile measurement used as the high estimate (1.25E-02%) (Table S15). Due to large variety of PFAS species (>4700)³ and the limited number of commercially available standards (49 species considered in this study), the suggested values for non-polymeric PFAS in school uniforms are likely underestimates. Due to a lack of data, we did not apportion C_{functional} according to fabric-type on account of our finding of higher PFAS in cotton versus cotton blend fabrics.

4) **Percent Functional & Percent No PFAS.** The percent of school uniforms with functional PFAS was estimated using equation 3:

$$\mathscr{H}_{functional} = \mathscr{H}_{SR \text{ marketed }} * \mathscr{H}_{SR \text{ actual}}$$
(3)

where $\%_{functional}$ represents the percent of school uniforms with PFAS added for stain resistance; $\%_{SR marketed}$ is the percent of school uniforms marketed as stain resistant; $\%_{SR actual}$ is the percent of school uniforms

marketed as stain resistant suspected of PFAS treatment, based on PIGE data. In other words, we did not assume that all school uniforms marketed as stain resistant contained PFAS.

%_{SR marketed} was estimated using data collected from 5 major retailer websites (both US and Canadian) that were sampled in this study. Under the "uniforms" category of each website, the terms "stain" or "stain-resistant" were used to highlight specific uniforms. We then compared the number of stain-resistant items to the total number of uniforms available on each website. Table S19 lists each major retailer website surveyed and the percent of uniforms available for sale that were marketed as "stain resistant", %_{SR marketed}. The low estimate of 2% was the minimum value reported by retailer #2, the middle estimate of 8% was the median value reported by retailer #1.

Although items may be marketed as stain resistant, they may be treated with non-fluorinated substances to acquire water, grease and/or dirt repellency. ^{14, 15} For this reason, we considered the percentage of school uniforms marketed as "stain resistant" that were indicative of PFAS use, based on PIGE data. Of the 30 unique uniforms sampled across US and Canada (excluding field and lab duplicates), 26 were marketed as "stain resistant". For samples tested on front and back and/or different layers, only the highest total F value of each sample was considered in the calculation. Of the 26 samples, 19 samples had fluorine levels of 1000 ppm or higher, which we assumed was indicative of intentional PFAS use. This equates to ~73% that was used as the middle estimate for %_{SR actual}. The middle value was bounded by assumed values of 65% and 85% as low and high estimates, respectively.

The low, mid, and high estimates for %_{functional} were 1, 6, and 16%, respectively. For each estimate, the percent of school uniforms with no PFAS was calculated accordingly.

Canadian values were taken as one-tenth of the US values based according to country populations and because no significant differences were found between PFAS concentrations in school uniforms purchased in the US and Canada.

 Table S1 Sample information with PIGE results.

Sample ID	Subsam ple ID	Total fluorine, μg F/m ²	Product Category	Material composition	Country of manufacture	
				Purchased country: US		Functionality
	1A	ND	Bib	60% Cotton, 40% polyester	China	Water resistant
001-19-03-1	1B	ND	Bib	100% Thermoplastic polyurethane	China	Water resistant
UOT-IP-US-2	2A	16000	Bib	100% Polyester	China	Stain-resistant, water- resistant
	28	12500	Bib	100% Polyester	China	Stain-resistant, water-
UOT-IP-US-3	2D 3	12500 ND	Bib	100% polyester twill	China	Water resistant
	14	30700	Mittens	No label	China	Waterproof
UOT-IP-US-4	4 <u>7</u> 4B	ND	Mittens	No label	China	Waterproof
	4 <u>C</u>	ND	Mittens	100% cotton	China	Waterproof
	5A	25800	Mittens	100% polyester	China	Waterproof
UOT-IP-US-5	5B	42500	Mittens	100% polyester	China	Waterproof
	5 <u>C</u>	ND	Mittens	100% polyester	China	Waterproof
	6A	ND	Rainsuit	100% polyester for shell and lining, 100% acrylic for coating	Bangladesh	Water resistant
UOT-IP-US-6	6B	ND	Rainsuit	100% polyester for shell and lining, 100% acrylic for coating	Bangladesh	Water resistant
	6C	ND	Rainsuit	100% polyester for shell and lining, 100% acrylic for coating	Bangladesh	Water resistant
	7A	ND	Sweatshirt	TPU	USA	Stain proof
UOT-IP-US-7	7B	ND	Sweatshirt	100% cotton	USA	Stain proof
	7C	ND	Sweatshirt	100% cotton	USA	Stain proof
	8A	26000	Shoes	100% polyester	China	Windproof, water-resistant
	8B	ND	Shoes	unknown	China	Windproof, water-resistant
001-19-03-8	8C	25300	Shoes	unknown	China	Windproof, water-resistant
	8D	ND	Shoes	unknown	China	Windproof, water-resistant
UOT-IP-US-9	9	ND	Shoes	100% cotton	China	Waterproof
UOT-IP-US-10	10	16000	Stroller Cover	Nylon (210D)	China	Waterproof
LIOT ID LIG 11	11A	ND	Swim Diaper	Nylon, elastane, polyester, spandex	Vietnam	Water resistant lining
001-11-03-11	11B	ND	Swim Diaper	Nylon, elastane, polyester, spandex	Vietnam	Water resistant lining

UOT-IP-US-12	12A	13600	Swim Diaper	100% Polyester	China	Waterproof
001-11-05-12	12B	ND	Swim Diaper	100% Polyester	China	Waterproof
LIOT ID US 12	13A	53600	Snow suit	100% polyester, coating: polyacrylates	Indonesia	NA
001-11-05-15	13B	ND	Snow suit	35% Cotton, 65% Polyester	Indonesia	NA
UOT-IP-US-14	14A	ND	Snow suit	100% polyester	China	Durable water-repellent, windproof
	14B	ND	Snow suit	100% polyester	China	Durable water-repellent, windproof
UOT-IP-US-15	15	319000	School Uniform	50% cotton, 50% polyester	EI Salvador	Stain-resistant treatment
UOT-IP-US-16	16	222000	School Uniform	60% Cotton, 40% Polyester	China	Easy-to-care, stain release and wrinkle-resistant
UOT-IP-US-17	17	ND	School Uniform	60% Cotton, 40% Polyester	Vietnam	Easy-to-care, stain release and wrinkle-resistant
UOT-IP-US-18	18	ND	School Uniform	100% polyester	Egypt	Stain, fade, shrink and pill resistant
UOT-IP-US-19	19	ND	School Uniform	67% cotton/30% polyester/3% Lycra	Dominican Republic	Stain and wrinkle-resistant
UOT-IP-US-20	20	2100000	School Uniform	97% cotton, 3% spandex	Vietnam	Stain resistant
UOT-IP-US-21	21	954000	School Uniform	98% cotton, 2% spandex	Indonesia	Stain resistant
UOT-IP-US-22	22	1040000	School Uniform	98% cotton, 2% spandex	Bangladesh	Stain resistant
UOT-IP-US-23	23	696000	School Uniform	98% cotton, 2% spandex	Bangladesh	Stain resistant
UOT-IP-US-24	24	984000	School Uniform	98% cotton, 2% spandex	Bangladesh	Stain resistant
UOT-IP-US-25	25	2040000	School Uniform	100% Cotton	Indonesia	Stain Release
UOT-IP-US-26	26	ND	School Uniform	60% Cotton, 40% Polyester	Honduras	Easy-care stain release, wrinkle resistant
UOT-IP-US-27	27	103000	School Uniform	35% Cotton, 65% Polyester	Nicaragua	Easy-care stain release, wrinkle resistant
UOT-IP-US-28	28	492000	School Uniform	100% Cotton	Bangladesh	Stain-resistant
UOT-IP-US-29	29	1010000	School Uniform	100% Cotton	Bangladesh	Stain-resistant

			School			Stain resistant, wrinkle
001-IP-0S-30	30	402000	Uniform	97% cotton, 3% spandex	Bangladesh	resistant
LIOT_IP_US_31			School			Stain resistant, wrinkle
001-11-05-51	31	1440000	Uniform	97% cotton, 3% spandex	Indonesia	resistant
UOT-IP-US-32			School			
	32	ND	Uniform	100% cotton	Tanzania	NA
UOT-IP-US-33	22	5020000	School	1000/	T 1 ·	
	33	5020000	Uniform	100% cotton	Indonesia	Stain release
UOT-IP-US-34	34	ND	School	60% Cotton, 40% recycled Polyester	Indonesia	NA
LIOT ID US 35		ND	UIIIOIIII			NA
(Lab duplicate						
for UOT-IP-US-			School			
34)	35	ND	Uniform	60% Cotton, 40% recycled Polyester	Indonesia	NA
		1	Р	Purchased country: Canada	1	Functionality
	1A	21300	Bib	100% polyester with TPU coating for waterproofing	China	Waterproof, stain resistant
UOT-IP-1	1B	17000	Bib	100% polyester with TPU coating for waterproofing	China	Waterproof, stain resistant
	2A	ND	Bib	Shell: 80% Cotton, 20% polyester, Lining: Polyurethane	China	Waterproof
UOT-IP-2	2B	ND	Bib	Shell: 80% Cotton, 20% polyester, Lining: Polyurethane	China	Waterproof
	3A	19500	Bib	100% Nylon with polyurethane coating	Canada	Waterproof
UOT-IP-3	3B	15800	Bib	100% Nylon with polyurethane coating	Canada	Waterproof
	50	10000	School		Cuntura	Stain resistant
	4A	441000	Uniform	97% Cotton, 3% Spandex	Vietnam	
UOT-IP-4			School			Stain resistant
	4B	439000	Uniform	97% Cotton, 3% Spandex	Vietnam	
			School			Stain resistant
UOT-IP-5	5A	393000	Uniform	98% Cotton, 2% Spandex	Indonesia	
001110			School			Stain resistant
	5B	609000	Uniform	98% Cotton, 2% Spandex	Indonesia	
		212000	School		CI.	Waterproof, repel oil, stain
UOT-IP-6	6A	212000	Uniform	95% Polyester, 5% elastane	China	Wetermood word all stein
	6B	181000	Uniform	05% Polyastar 5% alastana	China	vv aterproof, reper off, stain
	0D	101000	Miscellaneou	Outer: 100% laminated polyester Lining: 70% rayon from hamboo		Waterproof
	7A	ND	s	30% cotton	Canada	
UOT-IP-7			Miscellaneou	Outer: 100% laminated polyester. Lining: 70% rayon from bamboo.		Waterproof
	7B	ND	s	30% cotton	Canada	1

	1	I	Miscellaneou			Waterproof
	8A	ND	s	Top: 80% cotton, 20% polyester. Fill and lining: 100% polyester	Pakistan	waterproof
UOT-IP-8		1,2	Miscellaneou			Waterproof
	8B	ND	S	Top: 80% cotton, 20% polyester. Fill and lining: 100% polyester	Pakistan	1
			Miscellaneou	Front: 100% polyester. Back: 100% polyurethane. Filling: 100%		Waterproof
UOT-IP-9	9A	ND	S	polyester	China	
00111)			Miscellaneou	Front: 100% polyester. Back: 100% polyurethane. Filling: 100%	~	Waterproof
	9B	ND	S	polyester	China	
UOT-IP-10	10.4	ND	Miscellaneou	Front: 100% polyester. Back: 100% polyurethane. Filling: 100%		Waterproof
(Lab duplicate	10A	ND	S Misselleneou	polyester	China	Watanna of
for UOT-IP-9)	10B	ND	wiscenatieou	polyester	China	waterproof
	10D	30100	Shoes	No label	No label	Waterproof
UOT-IP-11	11R	ND	Shoes	No label	No label	Waterproof
	124	ND	Shoes	Polyester, ethylene vinyl acetate	Cambodia	Waterproof
	12R 12B	55600	Shoes	Polyester, ethylene vinyl acetate	Cambodia	Waterproof
UOT-IP-12	120	ND	Shoes	Polyester, ethylene vinyl acetate	Cambodia	Waterproof
	120	ND	Shoes	Polyester, ethylene vinyl acetate	Cambodia	Waterproof
	120	5100	Shoes	No lobel	Chino	NA
UOT-IP-13	13A 12D	3190 ND	Sheer	No label	China	NA
	138	ND	Shoes		China	Waterproof
001-IP-14	14A	53800	Mittens	Outer: 100% nylon. Lining: 100% polyester	China	Waterproof
	154	11800	Mittens	Outer: 100% nylon. Insulation: 100% polyester. Inner lining: 100%	Canada	waterproof
UOT-IP-15	15A	11000	writtens	Outer: 100% nylon Insulation: 100% polyester Inner lining: 100%	Canada	Waterproof
	15B	24900	Mittens	polyester	Canada	w uterproof
				Shell: 100% polyester with polyurethane membrane. Palm: 100%		Water repellant
	16A	18300	Mittens	nylon. Fill & lining: 100% polyester	Cambodia	
UOT_IP_16				Shell: 100% polyester with polyurethane membrane. Palm: 100%		Water repellant
001-11-10	16B	132000	Mittens	nylon. Fill & lining: 100% polyester	Cambodia	
				Shell: 100% polyester with polyurethane membrane. Palm: 100%		Water repellant
	16C	145000	Mittens	nylon. Fill & lining: 100% polyester	Cambodia	
UOT-IP-17	17A	67200	Swimwear	100% polyester	China	Waterproof (outer layer)
	17B	ND	Swimwear	100% polyester	China	Waterproof (outer layer)
LIOT ID 19	18A	ND	Swimwear	No label	No label	Waterproof (outer layer)
001-12-18	18B	ND	Swimwear	No label	No label	Waterproof (outer layer)

	19A	20300	Swimwear	Shell: 100% polyester. Back: Polyurethane. Inner layer: 88% biconstituent fiber (80% polyester, 20% nylon), 12% polyester. Lining: 100% cotton	China	NA
001-12-19	19B	ND	Swimwear	Shell: 100% polyester. Back: Polyurethane. Inner layer: 88% biconstituent fiber (80% polyester, 20% nylon), 12% polyester. Lining: 100% cotton	China	NA
UOT-IP-20	20A	45700	Swimwear	Shell: 100% polyester. Back: Polyurethane. Inner layer: 88% biconstituent fiber (80% polyester, 20% nylon), 12% polyester. Lining: 100% cotton	China	NA
for UOT-IP-19)	20B	ND	Swimwear	Shell: 100% polyester. Back: Polyurethane. Inner layer: 88% biconstituent fiber (80% polyester, 20% nylon), 12% polyester. Lining: 100% cotton	China	NA
UOT-2-IP-1	1A	26100	Bib	Shell: 100% polyester with polyurethane coating. Lining: 100% polyester. Pocket: 100% silicone	China	Waterproof
	1B	ND	Bib	Shell: 100% polyester with polyurethane coating. Lining: 100% polyester. Pocket: 100% silicone	China	Waterproof
UOT-2-IP-2	2A	ND	Bib	Front: 75% cotton, 25% polyester. Back: 100% polyethylene vinyl acetate	China	Water resistant
	2B	ND	Bib	Front: 75% cotton, 25% polyester. Back: 100% polyethylene vinyl acetate	China	Water resistant
	3A	13600	Hat	Shell: 100% nylon. Lining: 100% polyester	Canada	Water-repellent (outer layer)
UOT-2-IP-3	3B	ND	Hat	Shell: 100% nylon. Lining: 100% polyester	Canada	Water-repellent (outer layer)
	3C	ND	Hat	Shell: 100% nylon. Lining: 100% polyester	Canada	Water-repellent (outer layer)
UOT-2-IP-4	4A	24400	Hat	100% polyester	China	Waterproof
	4B	ND	Hat	100% polyester	China	Waterproof
UOT-2-IP-5	5A	12000	Hat	100% nylon with polyurethane coating	China	Waterproof
	6A	ND	Mittens	Shell, lining & padding: 100% polyester	China	Water-repellent
UOT-2-IP-6	6B	ND	Mittens	Shell, lining & padding: 100% polyester	China	Water-repellent
	6C	ND	Mittens	Shell, lining & padding: 100% polyester	China	Water-repellent
LIOT-2-IP-7	7A	10200	Mittens	Shell: 100% polyester with polyurethane membrane. Palm: 100% nylon. Fill & lining: 100% polyester	Cambodia	Water repellant
(Field duplicate	7B	21400	Mittens	Shell: 100% polyester with polyurethane membrane. Palm: 100% nylon. Fill & lining: 100% polyester	Cambodia	Water repellant
101 001-11-10)	7C	136000	Mittens	Shell: 100% polyester with polyurethane membrane. Palm: 100% nylon. Fill & lining: 100% polyester	Cambodia	Water repellant

	8A	10800	Mittens	Shell, lining & padding: 100% polyester	China	Waterproof
UOT-2-IP-8	8B	32500	Mittens	Shell, lining & padding: 100% polyester	China	Waterproof
	8C	24800	Mittens	Shell, lining & padding: 100% polyester	China	Waterproof
	9A	114000	Rainsuit	Shell: 100% polyester. Lining: 100% nylon. Fleece: 100% polyester	Vietnam	NA
UOT-2-IP-9	9B	ND	Rainsuit	Shell: 100% polyester. Lining: 100% nylon. Fleece: 100% polyester	Vietnam	NA
	10A	4780	Rainsuit	100% nylon	China	Waterproof
	10B	7450	Rainsuit	100% nylon	China	Waterproof
UOT-2-IP-10	10C	6830	Rainsuit	100% nylon	China	Waterproof
	10D	4000	Rainsuit	100% nylon	China	Waterproof
LIOT 2 ID 11	11A	4460	Rainsuit	100% nylon	China	Waterproof
(Lab duplicate	11B	8400	Rainsuit	100% nylon	China	Waterproof
for UOT-2-IP-	11 <u>C</u>	7510	Rainsuit	100% nylon	China	Waterproof
10)	11D	4350	Rainsuit	100% nylon	China	Waterproof
		1550	School			Waterproof, stain resistant
LIOT 2 ID 12	12A	462000	Uniform	98% cotton, 2% spandex	Bangladesh	1
001-2-11-12			School			Waterproof, stain resistant
	12B	555000	Uniform	98% cotton, 2% spandex	Bangladesh	
	124	5(2000	School	Shall 0200 anthem 200 and her Linking 10000 anthem	D 1. 1 l.	Waterproof, stain resistant
	13A	563000	Uniform	Shell: 98% cotton, 2% spandex. Lining: 100% cotton	Bangladesh	Watanna of stain registant
UOT-2-IP-13	12D	7450	School	Shall: 08% actton 2% anonday Lining: 100% actton	Dangladash	waterproof, stain resistant
	130	7430	School	Shen. 98% couon, 2% spandex. Linnig. 100% couon	Daligiadesii	Waterproof stein resistant
	13C	5380	Uniform	Shell: 98% cotton 2% spandex Lining: 100% cotton	Bangladesh	waterproof, stam resistant
	150	5500	School		Dunghudebh	NA
	14A	ND	Uniform	97% cotton, 3% spandex/elastane	Vietnam	
UU1-2-IP-14			School			NA
	14B	ND	Uniform	97% cotton, 3% spandex/elastane	Vietnam	
			School			NA
$UOT_2 IP_15$	15A	ND	Uniform	100% cotton	India	
001-2-11-13			School			NA
	15B	ND	Uniform	100% cotton	India	
			School			NA
UOT 2 IP 16	16A	ND	Uniform	97% cotton, 3% spandex	Bangladesh	
001-2-11-10			School			NA
	16B	ND	Uniform	97% cotton, 3% spandex	Bangladesh	
$110T_2^{-1}P_1^{-17}$			School			Stain resistant
001-2-11-17	17A	ND	Uniform	100% cotton	India	

	17D	ND	School	100% action	India	Stain resistant
	1/D	ND	Cilitorini		muia	Stain and weathernnoof
	184	ND	Uniform	65% polyester 35% viscose	Bangladash	Stam and weatherproof
UOT-2-IP-18	10A	ND	Sabaal	03% poryester, 55% viscose	Daligiauesii	Stein and weather proof
	18B	ND	Uniform	65% polyester, 35% viscose	Bangladesh	Stall and weatherproof
			School		0	Stain resistant
UOT-2-IP-19	19A	514000	Uniform	98% cotton, 2% spandex/elastane	Indonesia	
(Field duplicate			School	<u>^</u>		Stain resistant
for UOT-IP-5)	19B	463000	Uniform	98% cotton, 2% spandex/elastane	Indonesia	
				Shell, filler & lining: 100% polyester. Coating: polyacrylates. Fur:		Water resistant
	20A	97200	Snowsuit	67% acrylic, 18% modacrylic, 15% polyester	Vietnam	
001-2-19-20				Shell, filler & lining: 100% polyester. Coating: polyacrylates. Fur:		Water resistant
	20B	ND	Snowsuit	67% acrylic, 18% modacrylic, 15% polyester	Vietnam	
UOT-2-IP-21				Shell, filler & lining: 100% polyester. Coating: polyacrylates. Fur:		Water resistant
(Lab duplicate	21A	99500	Snowsuit	67% acrylic, 18% modacrylic, 15% polyester	Vietnam	
for UOT-2-IP-				Shell, filler & lining: 100% polyester. Coating: polyacrylates. Fur:		Water resistant
20)	21B	ND	Snowsuit	67% acrylic, 18% modacrylic, 15% polyester	Vietnam	
				Shell & lining: 100% recycled polyester. Fill: 60% recycled		Durable water repellent
LIOT 2 IP 22	22A	119000	Snowsuit	polyester, 40% polyester	China	
001-2-11-22				Shell & lining: 100% recycled polyester. Fill: 60% recycled		Durable water repellent
	22B	67500	Snowsuit	polyester, 40% polyester	China	
LIOT 2 ID 23	23A	16200	Stroller Cover	No label	China	Waterproof
001-2-11-23	23B	14100	Stroller Cover	No label	China	Waterproof
LIOT 2 ID 24	24A	15100	Stroller Cover	No label	No label	Waterproof
UOT-2-IP-24 24B	24B	14800	Stroller Cover	No label	No label	Waterproof

			A		Slope of µg	Slope of		Accuracy
Material	Material	Thickness	Area 2	Volume	F/mL	µg F/cm	Precision	(%
Туре	Composition	(µm)	(cm)	(µL)	curve	curve	(RSD)	Difference)
Whatman 1	1000/ 0 11 1	100	14.0	200	14.0	1555	100/	200/
Filter Paper	100% Cellulose	180	14.2	300	14.9	1555	19%	30%
Cotton								
Broadcloth	100% Cotton	370	4	80	5.7	634	10%	2%
Cotton								
Polyester	60% Cotton,	450		00		402		
Broadcloth	40% Polyester	450	4	80	4.4	492	-	-
Matte								
Milliskin	80% Nylon,	10 0		100		~ -	50/	10/
Tricot	20% Spandex	620	4	190	2.7	95	6%	4%
Scuba								
Double								
Knit	100% Polyester	950	4	250	3.5	123	6%	2%

Table S2. Details of Fabrics and paper selected for total Fluorine analysis by PIGE.

Table S3.	Values and equations used to determine a predicted slope (in units of $\mu g F/cm^2$) based on the
thickness of	of the material being measured.

Thickness (µm)	Slope value or equation (μg F/cm²)			
0-370	1555			
370-620	y = -3.3 + 2027			
620+	109			

Abbr.	CAS #	Compound name
PFPrA	422-64-0	Perfluoropropanotic acid
PFBA	375-22-4	Perfluorobutanoic acid
PFPeA	2706-90-3	Perfluoropentanoic acid
PFHxA	307-24-4	Perfluoro-n-hexanoic acid
PFHpA	375-85-9	Perfluoro-n-heptanoic acid
PFOA	335-67-1	Perfluoro-n-octanoic acid
PFNA	375-95-1	Perfluoro-n-nonanoic acid
PFDA	335-76-2	Perfluoro-n-decanoic acid
PFUnDA	2058-94-8	Perfluoro-n-undecanoic acid
PFDoDA	307-55-1	Perfluoro-n-dodecanoic acid
PFTrDA	72629-94-8	Perfluoro-n-tridecanoic acid
PFTeDA	376-06-7	Perfluoro-n-tetradecanoic acid
PFHxDA	67905-19-5	Perfluoro-n-hexadecanoic acid
PFPrS	423-41-6	Perfluoro-1-propanesulfonic acid
PFBS	375-73-5	Perfluoro-1-butanesulfonic acid
PFPeS	2706-91-4	Perfluoro-1-pentanesulfonic acid
PFHxS	355-46-4	Perfluoro-1-hexanesulfonic acid
PFHpS	375-92-8	Perfluoro-1-heptanesulfonic acid
PFOS	1763-23-1	Perfluoro-1-octanesulfonic acid
PFNS	68259-12-1	Perfluoro-1-nonanesulfonic acid
PFDS	335-77-3	Perfluoro-1-decanesulfonic acid
PFECHS	646-83-3	Perfluoro-4-ethylcyclohexanesulfonic acid
Cl-PFOS	777011-38-8	8-Chloroperfluoro-1-octanesulfonic acid
FBSA	30334-69-1	Perfluoro-1-butanesulfonamide
FHxSA	41997-13-1	Perfluoro-1-hexanesulfonamide
FOSA	754-91-6	Perfluoro-1-octanesulfonamide
MeFOSA	31506-32-8	N-methylperfluoro-1-octanesulfonamide
EtFOSA	4151-50-2	N-ethylperfluoro-1-octanesulfonamide
4:2 FTSA	757124-72-4	1H,1H,2H,2H-perfluorohexane sulfonic acid (4:2)
6:2 FTSA	27619-97-2	1H,1H,2H,2H-perfluorooctane sulfonic acid (6:2)
8:2 FTSA	39108-34-4	1H,1H,2H,2H-perfluorodecane sulfonic acid (8:2)
M3PFBA (SS)		Perfluoro-n-[2,3,4- ¹³ C ₃]butanoic acid
MPFHxA (SS)		Perfluoro-n-[1,2- ¹³ C ₂]hexanoic acid
MPFOA (SS)		Perfluoro-n-[1,2,3,4- ¹³ C ₄]octanoic acid
MPFUnDA (SS)		Perfluoro-n-[1,2- ¹³ C ₂]undecanoic acid
M2PFTeDA (SS)		Perfluoro-n-[1,2- ¹³ C ₂]tetradecanoic acid
M3PFBS (SS)		Perfluoro-1-[2,3,4- ¹³ C ₃]butanesulfonic acid
MPFHxS (SS)		Perfluoro-1-hexane[¹⁸ O ₂]sulfonic acid
MPFOS (SS)		Perfluoro-1-[1,2,3,4- ¹³ C ₄]octanesulfonic acid
dMeFOSA (SS)		N-methyl-d ₃ -perfluoro-1-octanesulfonamide

Table S4. List of PFAS analytes including abbreviation, CAS number and full name. SS and IS represent surrogate and internal standard, respectively.

M2-8:2 FTCA (SS)		2-Perfluorooctyl- $[1,2^{-13}C_2]$ -ethanoic acid (8:2)
M2-8:2 FTSA (SS)		1H,1H,2H,2H-perfluoro-1-[1,2- ¹³ C ₂]-decane sulfonic acid (8:2)
MPFBA (IS)		Perfluoro-n-[1,2,3,4- ¹³ C ₄]butanoic acid
M8PFOA (IS)		Perfluoro-n-[¹³ C ₈]octanoic acid
M7PFUnDA (IS)		Perfluoro-n-[1,2,3,4,5,6,7- ¹³ C ₇]undecanoic acid
M3PFHxS (IS)		Perfluoro-1-[1,2,3- ¹³ C ₃]hexanesulfonic acid
M8PFOS (IS)		Perfluoro-[¹³ C ₈]octanesulfonic acid
6:2 PAP	57678-01-0	1H,1H,2H,2H-perfluorooctylphosphate
8:2 PAP	57678-03-2	1H,1H,2H,2H-perfluorodecylphosphate
6:2 diPAP	57677-95-9	Bis(1H,1H,2H,2H-perfluorooctyl)phosphate
6:2/8:2 diPAP	943913-15-3	(1H,1H,2H,2H-perfluorooctyl-1H,1H,2H,2H- perfluorodecyl)phosphate
8:2 diPAP	678-41-1	Bis(1H,1H,2H,2H-perfluorodecyl)phosphate
M2-8:2 PAP (SS)		1H,1H,2H,2H-[1,2-13C2]perfluorodecylphosphate
M4-6:2 diPAP (IS)		Bis(1H,1H,2H,2H-[1,2-13C2]perfluorooctyl)phosphate
4:2 FTOH	2043-47-2	2-Perfluorobutyl ethanol (4:2)
6:2 FTOH	647-42-7	2-Perfluorohexyl ethanol (6:2)
8:2 FTOH	678-39-7	2-Perfluorooctyl ethanol (8:2)
10:2 FTOH	865-86-1	2-Perfluorodecyl ethanol (10:2)
6:2 FTAC	17527-29-6	1H,1H,2H,2H-perfluorooctyl acrylate
8:2 FTAC	27905-45-9	1H,1H,2H,2H-Perfluorodecyl acrylate
10:2 FTAC	17741-60-5	1H,1H,2H,2H-Perfluorododecyl acrylate
6:2 FTMAC	2144-53-8	1H,1H,2H,2H-perfluorooctyl methacrylate
8:2 FTMAC	1996-88-9	1H,1H,2H,2H-heptadecafluorodecyl methacrylate
MeFOSE	24448-09-7	2-(N-methylperfluoro-1-octanesulfonamido)-ethanol
EtFOSE	1691-99-2	2-(N-ethylperfluoro-1-octanesulfonamido)-ethanol
M4-4:2 FTOH (SS)		2-Perfluorobutyl-[1,1,2,2- ² H ₄]-ethanol (4:2)
M2-8:2 FTOH (SS)		2-Perfluorooctyl- $[1,2-^{13}C_2]$ -ethanol (8:2)
dMeFOSE (SS)		2-(N-methyl-d ₃ -perfluoro-1-octanesulfonamido)ethan- d ₄ -ol
M4-8:2 FTOH (IS)		2-Perfluorooctyl- $[1,1-^{2}H_{2}]-[1,2-^{13}C_{2}]$ -ethanol (8:2)

Column	Acquity BEH C18 1.7 µm (2.1 id x	50 mm)					
Column temp	40 °C						
	A = 2 mM ammonium acetate + 5 m	M N-Methylpiperidine in water;					
Mobile phase	B = 2 mM ammonium acetate + 5 mM N-Methylpiperidine in methanol						
Flow rate	0.4 mL/min						
Injection volume	5 µL						
Mode	Negative ESI using the Agilent jet spray ionization source						
Nebulizer	25 psi						
Gas flow	5 L/min						
Gas temp	300 °C						
Capillary voltage	2800 V						
Sheath gas temp	330 °C						
Sheath gas flow	11 L/min						
Ramp gradient							
Time (min)	%A	%B					
0.0	90	10					
0.5	90	10					
1.0	70	30					
7.5	0	100					
8.0	90	10					
Post-run (2 min)	90	10					

Table S5. Instrumental parameters of LC-MS/MS for PAPs analysis.

 Table S6. Instrumental parameters of LC-MS/MS for ionic PFAS analysis.

ColumnAcquity BEH C18 $1.7 \mu m (2.1 \text{ id } x 50 \text{ mm})$ Column temp $40 \,^{\circ}\text{C}$

Mobile phase	A = 2 mM ammonium acetate in water; B = 2 mM ammonium acetate in methanol
Flow rate	0.4 mL/min
Injection volume	5 μL
Mode	Negative ESI using the Agilent jet spray ionization source
Nebulizer	25 psi
Gas flow	5 L/min
Gas temp	300 °C
Capillary voltage	2800 V
Sheath gas temp	330 °C
Sheath gas flow	11 L/min

Ramp gradient			
Time (min)	%A	%B	
0.0	90	10	
0.5	90	10	
1.0	60	40	
17.5	0	100	
18.0	90	10	
Post-run (3 min)	90	10	

Table S7. Instrumental parameters for GC-MS analysis.

20.0

28.0

Mode	Positive chemical ionization
Inlet temperature	200 °C
AUX temperature	200 °C
Injection mode	Pulsed splitless
Injection volume	2 μL
Carrier gas (He) flow rate	1 mL/min
Column	CP-Wax 57 CB, 25 m, 0.25 mm, 0.20 μm (Agilent J&W)
Oven program	
Time (min)	Temperature (°C)
0.0	60
3.0	60
13.0	85

Table S8. Surrogate standards (SS) and internal standards (IS) used to calculate PFAS concentrations.
Surrogates were used as general indicators of overall analytical quality (i.e., recoveries) during the entire
analytical process, and internal standards were used for quantitation for both SS and targeted compounds

190 190

Native	SS for	IS for	SS for	IS for
PFASs	QA/QC	quantitation	QA/QC	quantitation
PFPrA	M3PFBA	MPFBA	M3PFBA	MPFBA
PFBA	M3PFBA	MPFBA	MPFHxA	M8PFOA
PFPeA	M3PFBA	MPFBA	MPFOA	M8PFOA
PFHxA	MPFHxA	M8PFOA	MPFUnDA	M7PFUnDA
PFHpA	MPFHxA	M8PFOA	M2PFTeDA	M7PFUnDA
PFOA	MPFOA	M8PFOA	M3PFBS	M3PFHxS
PFNA	MPFOA	M8PFOA	MPFHxS	M3PFHxS
PFDA	MPFUnDA	M7PFUnDA	MPFOS	M8PFOS
PFUnDA	MPFUnDA	M7PFUnDA	M2-8:2 FTSA	M8PFOS
PFDoDA	M2PFTeDA	M7PFUnDA	dMeFOSA	M8PFOS
PFTrDA	M2PFTeDA	M7PFUnDA	M4-4:2 FTOH	M4-8:2 FTOH
PFTeDA	M2PFTeDA	M7PFUnDA	M2-8:2 FTOH	M4-8:2 FTOH
PFHxDA	M2PFTeDA	M7PFUnDA	dMeFOSE	M4-8:2 FTOH
PFPrS	M3PFBS	M3PFHxS	M2-8:2 PAP	M4-6:2 diPAP
PFBS	M3PFBS	M3PFHxS		
PFPeS	MPFHxS	M3PFHxS		
PFHxS	MPFHxS	M3PFHxS		

PFHpS	MPFOS	M3PFHxS
PFOS	MPFOS	M8PFOS
PFNS	MPFOS	M8PFOS
PFDS	MPFOS	M8PFOS
PFECHS	MPFOS	M8PFOS
Cl-PFOS	MPFOS	M8PFOS
FBSA	M3PFBS	M3PFHxS
FHxSA	MPFHxS	M3PFHxS
FOSA	MPFOS	M8PFOS
MeFOSA	dMeFOSA	M8PFOS
EtFOSA	dMeFOSA	M8PFOS
4:2 FTSA	M2-8:2 FTSA	M3PFHxS
6:2 FTSA	M2-8:2 FTSA	M3PFHxS
8:2 FTSA	M2-8:2 FTSA	M8PFOS
6:2 PAP	M2-8:2 PAP	M4-6:2 diPAP
8:2 PAP	M2-8:2 PAP	M4-6:2 diPAP
6:2 diPAP	M2-8:2 PAP	M4-6:2 diPAP
6:2/8:2 diPAP	M2-8:2 PAP	M4-6:2 diPAP
8:2 diPAP	M2-8:2 PAP	M4-6:2 diPAP
4:2 FTOH	M4-4:2 FTOH	M4-8:2 FTOH
6:2 FTOH	M2-8:2 FTOH	M4-8:2 FTOH
8:2 FTOH	M2-8:2 FTOH	M4-8:2 FTOH
10:2 FTOH	M2-8:2 FTOH	M4-8:2 FTOH
6:2 FTAC	M4-4:2 FTOH	M4-8:2 FTOH
8:2 FTAC	M2-8:2 FTOH	M4-8:2 FTOH
10:2 FTAC	M2-8:2 FTOH	M4-8:2 FTOH
6:2 FTMAC	M2-8:2 FTOH	M4-8:2 FTOH
8:2 FTMAC	M2-8:2 FTOH	M4-8:2 FTOH
MeFOSE	dMeFOSE	M4-8:2 FTOH
EtFOSE	dMeFOSE	M4-8:2 FTOH

Abbr.	Compound Name	CAS #	Formula	Retention time (min)	Mol. Wt.	Precursor ion [M-H/D]-	Fragmentor (volts)	Product ions (m/z)	Collision energy (volts)
PFPrA	Perfluoropropanotic acid	422-64-0	$C_3HF_5O_2$	0.738	163.99	162.9	64	119	5
PFBA	Perfluorobutanoic acid	375-22-4	C4HF7O2	2.243	214.04	213.0	64	169 /	5 /
PFPeA	Perfluoropentanoic acid	2706-90-3	C5HF9O2	3.518	264.05	263.0	64	218.9 140.8	5 5
PFHxA	Perfluoro-n-hexanoic acid	307-24-4	C6HF11O2	5.008	314.05	313.0	73	268.9 119	5 21
РҒНрА	Perfluoro-n-heptanoic acid	375-85-9	C7HF13O2	6.646	364.06	363.0	78	319 169	5 17
PFOA	Perfluoro-n-octanoic acid	335-67-1	C ₈ HF ₁₅ O ₂	8.186	414.07	413.1	83	369 169	5 17
PFNA	Perfluoro-n-nonanoic acid	375-95-1	C9HF17O2	9.542	464.08	463.1	83	419 218.9	5 17
PFDA	Perfluoro-n-decanoic acid	335-76-2	C10HF19O2	10.712	514.08	513.0	93	468.9 269	5 17
PFUnDA	Perfluoro-n-undecanoic acid	2058-94-8	C11HF21O2	11.725	564.09	563.0	102	518.9 268.9	5 17
PFDoDA	Perfluoro-n-dodecanoic acid	307-55-1	C12HF23O2	12.601	614.10	613.0	102	569 269	9 21

Table S9. Ionic PFAS compounds analyzed by LC-MS/MS under ESI (-) mode
--

	Perfluoro-n-tridecanoic	72629-94-		10.047	664.11	663.1	105	619	9
PFIrDA	acid	8	C13HF25O2	13.347	664.11		107	169	29
	Perfluoro-n-tetradecanoic	276.06.7	C HE O	12.009	71411	712.1	112	668.9	13
PFIEDA	acid	370-00-7	C14HF27O2	13.998	/14.11	/15.1	112	169	29
	Perfluoro-n-hexadecanoic	67905-19-	C. HE. O.	15 041	014 12	912 1	121	768.9	13
PFHXDA	acid	5	C16HF31O2	15.041	814.13	815.1	121	168.9	37
DED-S	Perfluoro-1-	422 41 6	C HE SO	2 748	250.00	240.1	140	80	37
PPPIS	propanesulfonic acid	423-41-0	C3HF75O3	2.748	230.09	249.1	140	98.9	33
DEDS	Perfluoro-1-	275 72 5	C HE SO	2 976	200.10	200.0	140	80	37
PFBS	butanesulfonic acid	3/5-/3-5	C4HF9SO3	5.870	500.10	299.0	149	98.9	37
DEDaS	Perfluoro-1-	2706 01 4	CHERSO	5 226	250 11	240.0	175	80	45
PPPes	pentanesulfonic acid	2700-91-4	C5HF115O3	5.550	550.11	349.0	175	98.9	37
DELL	Perfluoro-1-	255 16 1	CHERSO	2 99 5	400.11	200.0	170	80	45
FFRAS	hexanesulfonic acid	555-40-4	C6HF135O3	0.885	400.11	399.0	179	98.9	41
DEUnS	Perfluoro-1-	275 02 8	C-HE-SO	9 257	450 12	440.0	192	80	49
ггпро	heptanesulfonic acid	575-92-8	C/HF15503	0.337	430.12	449.0	165	98.9	45
DEOS	Perfluoro-1-	1762 02 1	C-HE-SO	0.647	500.12	400.0	208	80	101
FF05	octanesulfonic acid	1703-23-1	C8HF175O3	9.047	500.15	499.0	208	98.9	49
DENS	Perfluoro-1-	68259-12-	CollEcosOc	10 776	540.02	540.0	219	80	105
reing	nonanesulfonic acid	1	C9NF195U3	10.770	349.93	349.0	210	98.9	49
PFDS	Perfluoro-1- decanesulfonic acid	335-77-3	C10HF21SO3	11.764	600.14	598.9	232	80	137

								98.9	53
DEECUS	Perfluoro-4-	646 82 2		0.007	460.12	461.0	150	380.9	29
Freens	acid	040-85-5	C8HF155O3	8.090	402.13	401.0	150	98.9	29
CLPEOS	8-Chloroperfluoro-1-	777011-	CoHErcuson	0 807	516 58	515.0	203	80	105
011105	octanesulfonic acid	38-8	C8111 10C1505	9.091	510.50	515.0	205	98.9	49
Per	Perfluoro-1-	30334-69-		5 9 5 9	200.12	200.0	0.0	78	25
FBSA	butanesulfonamide	1	C ₄ H ₂ F ₉ NO ₂ S	5.272	299.12	298.0	98	48.1	93
	Perfluoro-1-	41997-13-	CHE NO S	0.77.0	200.12	207.0	117	78	29
FHXSA	hexanesulfonamide	1	C6H2F13INO2S	8.778	399.13	397.9	11/	48.1	100
FOSA I	Perfluoro-1- octanesulfonamide	754-91-6	$C_8H_2F_{17}NO_2S$	11.159	400.14	498 0	160	78	37
		754-91-0			477.14	490.0	107	48.1	150
MEOGA	N-methylperfluoro-1-	31506-32-		12 000	510.17	512.0	1.00	169	29
MEFOSA	octanesulfonamide	8	C9H4F17INO25	12.000	515.17	512.0	100	218.9	25
E/EOG A	N-ethylperfluoro-1-		C ₁₀ H ₆ F ₁₇ NO ₂ S	13.375	527.20	526.0	165	169	29
EIFOSA	octanesulfonamide	4151-50-2						219	29
	1H,1H,2H,2H-	757124-	CHEOG	4.970	229.15	227.1	126	306.9	21
4:2 F15A	acid (4:2)	72-4	C6H5F9O3S	4.870	328.15	327.1	130	81	33
	1H,1H,2H,2H-	27619-97-		0.001	100.17	105.0	164	406.9	25
6:2 F1SA	acid (6:2)	2	$C_8H_5F_{13}O_3S$	8.091	428.17	427.0	164	81	41
	1H,1H,2H,2H-	39108-34-	C UE O C	10 676		507.0	1=0	506.9	29
8:2 F1SA	acid (8:2)	4	C ₁₀ H ₅ F ₁₇ O ₃ S	10.676	528.18	527.0	1/9	81	41

M3PFBA (surrogate standard, SS)	Perfluoro-n-[2,3,4- ¹³ C ₃]butanoic acid	$CHF_{7}O_{2} + {}^{13}C_{3}$	2.242	217.04	216.0	64	172	5
MPFHxA (SS)	Perfluoro-n-[1,2- ¹³ C ₂]hexanoic acid	$C_4HF_{11}O_2 + {}^{13}C_2$	4.999	316.05	315.1	78	270	5
MPFOA (SS)	Perfluoro-n-[1,2,3,4- ¹³ C ₄]octanoic acid	$C_4HF_{15}O_2 + {}^{13}C_4$	8.185	418.07	417.1	83	372	5
MPFUnDA (SS)	Perfluoro-n-[1,2- ¹³ C ₂]undecanoic acid	$C_9HF_{21}O_2 + {}^{13}C_2$	11.725	566.09	565.1	97	520	9
M2PFTeDA (SS)	Perfluoro-n-[1,2- ¹³ C ₂]tetradecanoic acid	$C_{12}HF_{27}O_2 + {}^{13}C_2$	13.997	716.11	715.1	116	669.9	13
M3PFBS (SS)	Perfluoro-1-[2,3,4- ¹³ C ₃]butanesulfonic acid	$CHF_9SO_3 + {}^{13}C_3$	3.874	303.10	302.0	149	80	45
MPFHxS (SS)	Perfluoro-1- hexane[¹⁸ O ₂]sulfonic acid	$C_{6}HF_{13}SO + {}^{18}O_{2}$	6.882	404.11	403.0	169	84	49
MPFOS (SS)	Perfluoro-1-[1,2,3,4- ¹³ C ₄]octanesulfonic acid	$C_4HF_{17}SO_3 + {}^{13}C_4$	9.646	504.13	503.0	198	80	93
dMeFOSA (SS)	N-methyl-d3-perfluoro-1- octanesulfonamide	$C_9HF_{17}NO_2S$ + D_3	12.799	516.17	515.0	160	169	29
M2-8:2 FTCA (SS)	2-Perfluorooctyl-[1,2- ¹³ C ₂]-ethanoic acid(8:2)	${C_8}{H_3}{F_{17}}{O_2} + \\ {^{13}}{C_2}$	9.926	480.10	479.0	215	394	11
M2-8:2 FTSA (SS)	1H,1H,2H,2H-perfluoro- 1-[1,2- ¹³ C ₂]-decane sulfonic acid (8:2)	${C_8}{H_5}{F_{17}}{O_3}S + \\ {^{13}}{C_2}$	10.675	530.18	529.0	195	509	33
MPFBA (internal standard, IS)	Perfluoro-n-[1,2,3,4- ¹³ C4]butanoic acid	$HF_7O_2 + {}^{13}C_4$	2.240	218.04	217.0	64	172	5
M8PFOA (IS)	Perfluoro-n- [¹³ C ₈]octanoic acid	$HF_{15}O_2 + {}^{13}C_8$	8.184	422.07	421.1	83	376	5
M7PFUnD A (IS)	Perfluoro-n- [1,2,3,4,5,6,7- ¹³ C7]undecanoic acid	$C_{4}HF_{21}O_{2} + {}^{13}C_{7}$	11.724	571.09	570.0	97	525	9
M3PFHxS (IS)	Perfluoro-1-[1,2,3- $^{13}C_3$]hexanesulfonic acid	$C_{3}HF_{13}SO_{3} + {}^{13}C_{3}$	6.883	403.11	402.0	184	80	45
M8PFOS (IS)	Perfluoro- [¹³ C ₈]octanesulfonic acid	$HF_{17}SO_3 + {}^{13}C_8$	9.637	508.13	507.0	203	79.9	97

Abbr.	Compound Name	CAS #	Formula	Retention time (min)	Mol. Wt.	Precursor ion [M-H/D]-	Fragmentor (volts)	Product ions (m/z)	Collision energy (volts)
6:2 PAP	1H,1H,2H,2H-	57678-	C8H6F13O4P	3.513	443.98	443	108	97	17
0.2111	perfluorooctylphosphate	01-0	0010115042	0.010			100	79	100
8:2 PAP	1H,1H,2H,2H-	57678-	C10H6F17O4P	4.306	543.97	543	108	97	21
	perfluorodecylphosphate	03-2						79	93
6:2 diPAP	diPAP Bis(1H,1H,2H,2H- perfluorooctyl)phosphate		C16 H9F26 O4P	5 289	789.98	789	132	442.9	17
			- 10 - 20 - 4					97	37
6:2/8:2	(1H,1H,2H,2H-perfluorooctyl- 1H,1H,2H,2H-	943913	C ₁₈ H ₉ F ₃₀ O ₄ P	5.478	889.98	889	156	443	21
diPAP	perfluorodecyl)phosphate	-15-3						96.9	33
8:2 diPAP	Bis(1H,1H,2H,2H- perfluorodecyl)phosphate	678-41- 1	$C_{20}H_9F_{34}O_4P$	5.622	989.97	989	151	542.9	25
M2-8:2	1H,1H,2H,2H-[1,2- 12C2)		C8H6F17O4P[13C]	4.305	545.98	545	113	97	17
PAP (55)	13C2 jper nuorodecy ipnosphate		2						
M4-6:2	Bis(1H,1H,2H,2H-[1,2-		C12H9F26O4P						
diPAP (IS) 6:2 PAP	13C2]perfluorooctyl)phosphat e		[13C]4	5.288	794.00	793	137	445	21
0.2111									

Table S10. PAPs compounds analyzed by LC-MS/MS under ESI (-) mode.

Abbr.	Compound Name	CAS #	Formula	Mol. Wt.	Retention time (min)	Quantifier	Qualifier
4:2 FTOH	2-Perfluorobutyl ethanol (4:2)	2043-47-2	C ₆ H ₅ F ₉ O	264.09	5.840	265	227
6:2 FTOH	2-Perfluorohexyl ethanol (6:2)	647-42-7	C8H5F13O	364.10	7.569	365	327
8:2 FTOH	2-Perfluorooctyl ethanol (8:2)	678-39-7	C10H5F17O	464.12	9.993	465	427
10:2 FTOH	2-Perfluorodecyl ethanol (10:2)	865-86-1	$C_{12}H_5F_{21}O$	564.13	12.460	565	527
6:2 FTAcr	1H,1H,2H,2H-perfluorooctyl acrylate	17527-29-6	C11H7F13O2	418.15	6.450	419	399
8:2 FTAcr	1H,1H,2H,2H-Perfluorodecyl acrylate	27905-45-9	C13H7F17O2	518.17	9.100	519	499
10:2FTAcr	1H,1H,2H,2H-Perfluorododecyl acrylate	17741-60-5	$C_{15}H_7F_{21}O_2$	618.18	11.916	619	599
6:2 FTMAcr	1H,1H,2H,2H-perfluorooctyl methacrylate	2144-53-8	C12H9F13O2	432.18	7.672	433	413
8:2 FTMAcr	1H,1H,2H,2H-heptadecafluorodecyl methacrylate	1996-88-9	C14H9F17O2	532.19	10.413	533	513
MeFOSE	2-(N-methylperfluoro-1-octanesulfonamido)- ethanol	24448-09-7	C11H8F17NO3S	557.22	19.068	558	540
EtFOSE	2-(N-ethylperfluoro-1-octanesulfonamido)- ethanol	1691-99-2	C12H10F17NO3	571.25	19.194	572	554
M4-4:2 FTOH (SS)	2-Perfluorobutyl-[1,1,2,2- ² H ₄]-ethanol(4:2)		$C_6HF_9O+D_4\\$	268.09	5.776	269	230
M2-8:2 FTOH (SS)	2-Perfluorooctyl-[1,2- ¹³ C ₂]-ethanol(8:2)		$C_8H_5F_{17}O + {}^{13}C_2$	466.12	9.985	467	429
dMeFOSE (SS)	2-(N-methyl-d3-perfluoro-1- octanesulfonamido)ethan-d4-ol		$\begin{array}{l} C_{11}H_1F_{17}NO_3S\\ + D_7 \end{array}$	564.22	19.028	565	547
M4-8:2 FTOH (IS)	2-Perfluorooctyl-[1,1- ² H ₂]-[1,2- ¹³ C ₂]- ethanol(8:2)		$C_8H_3F_{17}O + {}^{13}C_2D_2$	468.12	9.946	469	431

Table S11. PFASs analyzed by GC-MS under positive chemical ionization (PCI) mode.

Table S12. Field, and procedural blanks for target analysis and for TOP and hydrolysis assay (ng, average \pm standard error), matrix spike recoveries (MS%, mean \pm standard error) and method detection limits (MDLs, after blank correction, ng/g) of individual PFAS analytes from the MS analyses. ORG, FBK, PBK, TOP and HYD represent original extraction, field blank, procedural blank, the TOP assay blank, and hydrolysis blank samples, respectively.

		Blanks	(ng)		MS rec		MDL (ng/g)				
	FBK (n=5)	PBK (n = 11)	TOP (n = 2)	HYD (n = 2)	ORG (n=9)	TOP (n=3)	FBK	PBK	TOP	HYD	
PFPrA	0.15 ± 0.02	0.23 ± 0.02	1.01 ± 0.34		104 ± 14.3	67.4±1.17	1.16	1.78	14.4		
PFBA	0.32 ± 0.03	0.33 ± 0.04	0.77 ± 0.32		93.8±3.09	86.4±0.39	2.09	3.49	13.7		
PFPeA					98.7±7.11	144 ± 4.29	0.09	0.09	0.09		
PFHxA					69.4±3.53	80.6±0.92	0.11	0.14	0.07		
PFHpA					72.3±5.23	75.0±1.18	0.05	0.05	0.05		
PFOA	0.01 ± 0.00	0.01 ± 0.00			88.9±4.01	77.1±3.11	0.11	0.24	0.04		
PFNA					81.5±5.20	68.1 ± 1.80	0.07	0.06	0.07		
PFDA			0.10 ± 0.03		102 ± 3.25		0.05	0.11	1.16		
PFUnDA					94.7±3.96		0.16	0.04	0.06		
PFDoDA			0.15 ± 0.01		91.2±6.12		0.08	0.08	0.31		
PFTrDA					108 ± 8.83		0.05	0.05	0.06		
PFTeDA					94.0 ± 4.04		0.07	0.07	0.07		
PFHxDA	0.02 ± 0.00	0.02 ± 0.00			111±9.23		0.24	0.21	0.10		
PFPrS					80.1±2.81	117±1.53	0.07	0.07	0.07		
PFBS					80.5±2.41	123 ± 1.94	0.02	0.02	0.01		
PFPeS					82.2±1.91	116 ± 3.48	0.01	0.01	0.01		
PFHxS					88.5±1.47	99.4±2.81	0.01	0.11	0.02		
PFHpS					94.8±1.93	92.7±2.67	0.05	0.05	0.05		
PFOS					92.5±3.21	94.8±3.57	0.02	0.05	0.05		
PFNS					93.8±2.22	81.8±4.30	0.02	0.02	0.02		
PFDS					90.5±3.18		0.08	0.08	0.08		
PFECHS					85.9±2.61		0.03	0.03	0.03		
Cl-PFOS					91.6±2.47		0.05	0.05	0.05		
4:2 FTSA					87.4±3.26		0.03	0.03	0.03		
6:2 FTSA	0.01 ± 0.01	0.02 ± 0.01	0.98 ± 0.16		156±12.3		0.32	0.95	6.84		
8:2 FTSA					119 ± 4.73		0.02	0.03	0.03		
FBSA					74.8 ± 1.40		0.02	0.02	0.05		
FHxSA					91.2±2.83		0.02	0.02	0.02		

FOSA					108±3.20	0.08	0.03	0.03	
MeFOSA					89.4±3.08	0.03	0.03	0.03	
EtFOSA					96.7±3.40	0.01	0.04	0.04	
4:2 FTOH					63.5±3.46	3.70	3.70	3.70	3.70
6:2 FTOH	0.59±0.15	0.26±0.12			67.7±5.02	9.19	7.03	2.20	2.20
8:2 FTOH	1.21±0.09	1.11 ± 0.08	0.65 ± 0.11	0.23±0.23	86.4±1.95	5.72	7.99	4.79	7.45
10:2 FTOH	0.02 ± 0.03			0.08 ± 0.23	91.2±7.91	1.99	2.18	2.20	2.65
MeFOSE		0.03 ± 0.02		0.03 ± 0.03	72.6±6.53	2.26	2.23	2.30	1.78
EtFOSE				0.02 ± 0.02	70.6±7.31	2.18	2.20	2.20	1.81
6:2 FTAc				0.05 ± 0.05	63.7±4.02	0.24	0.32	0.32	1.48
8:2 FTAc				0.03 ± 0.03	86.4±12.8	0.39	0.39	0.39	0.90
10:2 FTAc	0.01 ± 0.00			0.02 ± 0.02	101±11.0	0.33	0.36	0.41	0.78
6:2 FTMAc				0.06 ± 0.06	70.6±4.34	0.31	0.03	0.31	1.82
8:2 FTMAc		0.03 ± 0.03		0.01 ± 0.01	83.4 ± 5.00	0.34	0.03	0.34	0.34
6:2 PAP		0.02 ± 0.01	0.15 ± 0.01		58.3±10.3	0.39	0.27	0.35	
8:2 PAP	0.02 ± 0.04	0.04 ± 0.02	0.11±0.07		97.0±3.84	1.04	2.12	2.92	
6:2 diPAP			0.01 ± 0.00		91.8±2.75	0.14	0.08	0.02	
6:2/8:2 diPAP	0.01 ± 0.01		0.01 ± 0.00		144±8.70	0.33	0.05	0.16	
8:2 diPAP			0.01 ± 0.00		99.2±7.76	 0.16	0.05	0.11	

	ORI	ТОР
M3PFBA	92.5±1.7	51.4±6.6
M3PFBS	85.9±0.7	82.1±12.1
MPFHxA	74.5±1.5	83.5±2.8
MPFHxS	92.5±0.8	92.3±2.6
MPFOA	95.8±1.2	62.1±5.6
MPFOS	90.5±0.9	94.8±9.1
MPFUdA	97.8±1.7	
M2PFTeDA	104±2.5	
M2-8:2 FTSA	137±7.2	89.8±9.7
dMeFOSA	98.7±3.2	
M4-4:2 FTOH	57.8±1.3	
M2-8:2 FTOH	75.1±1.4	52.0±10.1
dMeFOSE	76.1±2.5	115±15.6
M2-8-2_PAP	112±10.5	41.8±7.1

Table S13. Surrogate recoveries (%, average \pm standard error) for original extraction (ORI) and TOP assay (TOP) procedure.

	Field Du	plicates		Lab duplica	ates
	UOT-IP- 5a/2-IP- 19a	UOT-IP- 16c/2-IP- 7c	UOT-IP- 19a/20a	UOT-2- IP- 20a/21a	UOT-IP-US- 34/35
PFCAs					
PFPrA	6.95	12.2	16.1	4.1	
PFBA	5.50	26.3		4.0	
PFPeA				16.8	12.8
PFHxA	10.4	17.9	19.4		
PFHpA	21.8		43.3	41.2	
PFOA		38.4			
PFSAs					
PFHxS					
PFOS	25.9				
C1-PFOS					
PAPs					
6-2_diPAP					
Neutral					
PFAS					
6:2 FTOH	7.90	17.9	11.6	5.7	
8:2 FTOH	3.63			15.0	
10:2 FTOH				13.9	
6:2 FTAcr					
8:2 FTAcr				21.8	
6:2 FTMAcr	19.8	1.3	12.7	19.1	
ΣPFAS	12.2	11.4	12.2	10.9	12.8

Table S14. Relative Standard Deviation (RSD, %) of individual PFAS in field and lab duplicates

Table S15: School uniforms marketed as "stain resistant" as reported by major school uniform retailer websites.

Retailer number	Website country (CAN or US)	Number of uniforms marketed as "stain resistant"	Total number of uniform items	Percent of uniforms marketed as "stain resistant"	Date of data collection
1	US	65	338	19.23	Aug-2021
2	CAN	1	59	1.69	Aug-2021
3	CAN	52	365	14.25	Aug-2021
4	US	2	95	2.11	Oct-2021
5	US	5	62	8.06	Oct-2021

		Total targete d											6:2	6:2	6:2
ng/g		PFAS	PFPrA	PFBA	PFPeA	PFHxA	PFHpA	PFNA	PFBS	PFPeS	PFHxS	6:2 FTS	<u>5 FTOI</u>	H FTAc	FTMAc
Befor TOP	e df	100		20.0		100	80.0		20.0			20.0	80.0	60.0	60.0
	min	40.6		ND		0.539	ND		ND			ND	ND	ND	ND
	max	72000		22.6		4.20	0.32		6.47			1.03	72000) 36.6	371
	median	16200		3.19		1.59	0.15		0.01			0.50	16200) 2.58	4.15
	mean	21600		6.99		1.85	0.17		1.30			0.61	21500) 13.5	108
After TOP	df	100	100	100	100	100	100	100	100	60.0	60.0	60.0	100		
	min	3520	176	579	878	7.99	0.743	2.35	0.357	ND	ND	ND	143		
	max	308000	35300	154000	167000	40900	2120	5.24	19400	6.97	11.9	80.4	550		
	median	105000	6900	21200	16800	6140	446	4.32	2.45	0.947	0.566	52.7	225		
	mean	126000	12200	48600	49300	10900	853	4.02	3890	1.79	3.77	40.4	282		
	ng/g		4:2 FTOH	6: [FT	2 OH	8:2 FTOH	10:2 FTOH	6:2 FTAC	8:2 FTAC	10: 5 FT/	2 AC F	6:2 ГМАС I	8:2 FTMAC	MeFOSE	EtFOSE
ŀ	Before ydrolysis	df	20.0	80	0.0	20.0	20.0	60.0	20.0	20.	.0	60.0	~	20.0	
		min	ND	Ν	D	ND	ND	ND	ND	NI)	ND		ND	
		Max	5.25	720	000	29.0	16.1	36.6	7.70	8.5	0	371		5.78	
		Median	1.81	162	200	9.49	1.08	2.58	0.19	0.3	8	4.15		1.12	
		Mean	2.46	215	500	13.2	4.05	13.5	1.69	2.0	0	108		2.03	
H	After Iydrolysis	Df	40.0	80	0.0	20.0	80.0	20.0	40.0	80.	.0	20.0	40.0	100.0	60.0
		Min	ND	Ν	D	ND	ND	ND	ND	NI)	ND	ND	22.0	ND
		Max	777	3160	0000	132	53.7	7.87	50.7	24.	.2	35.7	21.5	641	29.8
		Median	6.17	1220	0000	19.6	28.0	3.89	2.41	10.	.6	4.80	0.93	62.2	10.8
		Mean	183	1450	0000	42.2	28.7	4.68	18.2	12.	.5	11.0	7.83	178	12.1

Table S16. Detection Frequencies (df, %), min, max, median and mean concentration (ng/g) of PFAS in five selected school uniforms analyzed before and after oxidization by the total oxidizable precursor (TOP) assay and before and after hydrolysis.

		US-16			US-24			US-25			US-27			US-29	
Concentration,							Origina			Origina					
ng/g	Original	TOP	HYD	Original	TOP	HYD	1	TOP	HYD	1	TOP	HYD	Original	TOP	HYD
PFCAs															
PFPrA		6900			176			35300			15600			2970	
PFBA	22.6	154000			579			62400			21200			4740	
PFPeA		878			1630			167000			60900			16800	
PFHxA	4.21	7.99		1.32	885		1.62	40900		0.542	6520		1.59	6140	
PFHpA	0.151	0.743		0.070	42.5		0.258	2120			446		0.324	1650	
PFOA	0.330												0.287	4.97	
PFNA		2.35			5.11			4.32			3.08			5.24	
PFDA	0.381			0.160											
PFUdA	0.084						0.0591								
PFDoA	0.127												0.106		
PFTrDA	0.186												0.274		
PFTeDA		1.69			1.51			1.63			1.25			1.61	
PFSAs															
PFPrS		1.67													
PFBS	6.47	19400			0.774			2.88			2.45			0.357	
PFPeS								6.97			1.01			0.947	
PFHxS					0.566			11.9						6.34	
PFHpS								0.318							
PFDS				0.386											
FTSs															
4:2 FTS	0.028										0.431				
6:2 FTS		68.8		1.06	52.7			80.4							
8:2 FTS										0.038					
PAPs															

Table S17 Concentration (ng/g) of individual PFAS in five selected school uniforms analyzed before and after oxidization by the total oxidizable
precursor (TOP) assay and before and after hydrolysis. Original, TOP and HYD represent original extraction, TOP assay, and hydrolysis.

-

S31

6-2_PAP		5.72					0.478	17.0							
6-2_diPAP					0.278			0.178					1.12		
Neutral PFAS															
FBSA	0.284	91.7													
4:2 FTOH						122			777				5.25		
6:2 FTOH		225		445	143	1270000	72000	550	1580000	16200	220	609000	18800	272	172000
8:2 FTOH			62.6										29.03		
10:2 FTOH			25.6			26.8					25.9	28.0	16.1		28.0
6:2 FTAcr			7.87				28.2			36.6			2.58		
8:2 FTAcr						50.7			33.4				7.70		
10:2 FTAcr			10.6						24.2			15.1	8.50		10.4
6:2 FTMAcr				371			4.15			1.47			161		35.7
8:2 FTMAcr						21.5			14.9						
MeFOSE	5.78		641			22.0			59.6			105			62.2
EtFOSE			12.9									29.8			10.8

Table S18. Comparison of PFAS concentrations in earlier studies and this study	1
--	---

Year of PFAS analysis, sampling location	Year of products purchased	Type of products	Ionic PFAS, μg/m ²	FTOHs and FT(M)ACs, µg/m ²	Total targeted PFAS, μg/m ²	Ref.
2006, Scandinavia	2006*	Outdoor clothing (16)	2.33 to 453 (median:18.0)	Total FTOHs: ND-10700 (median: 94.4) predominate: 8:2 FTOH, followed by 10:2 FTOH		16
2009, US	2007-2008	Children's uniform (4)	PFCAs: 90.3-672.ng/g (median: 134 ng/g)	N/A	PFCAs: 90.3- 672.ng/g (median: 134 ng/g)	17
2014, US	2007-2011	Children's uniform (13)	PFCAs + PFSAs: ND- 976 ng/g (median: 116 ng/g)	N/A	PFCAs + PFSAs: ND-976 ng/g (median: 116 ng/g)	18
2015, Denmark	2015*	Children products (15) prescreening with total fluorine	PFCAs: 0.10-45.30	6:2 FTOH: 0.02-83.05 8:2 FTOH: 6.52-264.99 10:2 FTOH: 1.83-54.54 ΣFT(M)AC: 0.06-6.46		14
2016 Thailand	2016*	Body contact Textile (17)	PFOA:0.02-0.61 (mean: 0.18) PFOS:0.31-14.14 (mean: 2.74)	N/A		19
2017, US	2015	Children clothing (2)	ND	6:2 FTOH: ND-7.0 8:2 FTOH: 72-130 10:2FTOH: 37-42		20
2017, US	2015	Outdoor clothing (5)	0.66-55.92	6:2 FTOH: ND-14000 8:2 FTOH: 22-990 10:2 FTOH: ND -490		20
2020, Sweden	2020*	Outdoor clothing (13)	ND-82.9	6:2 FTOH: ND-120 6:2 FTMAC: 4.1-180		21

2020, US	2016-2020	Infant clothing (59)	ND- 63.7 (ND -285	N/A		22
		and functional	ng/g) (mean: 3.18 (14.2			
		textiles (101)	ng/g))			
2020, US	2020	Infant clothing (86)	Median: 3.42 ng/g	6:2 FTOH (Median: 27.1 ng/g)		23
2021, US &	2020 & 2021	Children's products	0.004-8.18 (0.021-48.8	6:2 FTOH: ND - 38100(ND -	0.250-153000	This
Canada		(57)	ng/g) (mean: 0.67 (2.99	153000 ng/g) (median: 55.31	ng/g (median:117	stud
			ng/g))	(355 ng/g))	ng/g)	У
				6:2 FTMAc: ND – 343.2 (ND –	0.0272-38100	
				1020.0 ng/g) (median: 28.2 (219	median: 24.0	
				ng/g))	incutan: 24.0)	
2021, US &	2020 & 2021	School uniform (25)	0.10-34.6 ng/g (median:	6:2 FTOH ND-153000 ng/g	0.283-153000	This
Canada			2.30 ng/g)	(median:445 ng/g) ND-38100	ng/g (median:728	stud
			0.014-7.98	(median: 78.0)	ng/g)	У
			(median:0.544)	6:2 FTMAc: ND-1020 ng/g	0.041-38100,	
				(median: 132 ng/g) ND-340	(median: 178)	
				(median: 48.2)		

Table S19. Input data for Substance Flow Analysis of PFAS found in school uniforms purchased with description, and estimates of low, middle, and high values, and source of information.

Parameter	Description	P	arameter Values Used	Samuel	
	Description	Low	Middle	High	Source
C _{functional} polymeric	Concentration of functional polymeric PFAS in school uniforms	0.15%	0.30%	0.45%	Audenaert et al. ¹⁰ , Sayed & Dabhi, ¹¹ Choudhury ¹²
C _{no PFAS} polymeric	Concentration of polymeric PFAS in untreated school uniforms	0%	0%	0%	N/A
C _{functional} non- polymeric	Concentration of functional non- polymeric PFAS in school uniforms	3.52E-03%	1.05E-02%	1.25E-02%	TOP Assay, Table 15
C _{no PFAS} non- polymeric	Concentration of non-polymeric PFAS in untreated school uniforms	0%	0%	0%	N/A
% functional	Percent of school uniforms with functional PFAS	1%	6%	16%	Calculated
% no PFAS	Percent of school uniforms with no PFAS	99%	94%	84%	Calculated

Country	Decomintion	Values Used			Unita	Courses
Country	Description	Low	Middle	High	Units	Source
	% _{children}	16	26	36	Percent	Coresight Research ⁴
	Population		62,377,000		Persons	United Nations ⁵
US	Number of items	2	6	10	Number of items purchased/person/year	Assumed
	Weight of garment	125	166	202	Grams	This study
	M _{school} uniform	249	1,610	4,521	Tonnes	Calculated
	% children	16	26	36	Percent	Assume same as US
	Population	6,217,568			Persons	Government of Canada ⁶
Canada	Number of items	2	6	10	Number of items purchased/person/year	Assumed
	Weight of garment	125	166	202	Grams	This study
	M _{school} uniform	249	1,610	4,521	Tonnes	Calculated

Table S20. Values used to estimate the mass of school uniforms purchased in a given year between 2019 and 2021.

Flow Designation	Description			
F ₁	Flow of PFAS in children's school uniform sales.			
F ₂	Flow of PFAS in discarded school uniforms			
F ₃	Flow of PFAS in littered infants' textiles			
F ₄	Flow of PFAS in recycled children's school uniforms			
F _{4.1}	Flow of PFAS from recycled children's school uniforms that are recycled back into			
	uniforms			
F _{4.2}	Flow of PFAS from recycled children's school uniforms that are recycled into other			
	materials			
F _{4.3}	Flow of PFAS from used children's school uniforms that are resold locally at			
	secondhand shops			
F4.4	Flow of PFAS from used children's school uniforms that are exported			
F _{4.5}	Flow of PFAS from recycled children's school uniforms intended for recycling but			
	ultimately landfilled			
F _{4.6}	Flow of PFAS from children's school uniforms which is released to the environment			
	during the recycling process			
F ₅	Flow of PFAS from incinerated children's school uniforms			
F ₆	Flow of PFAS in landfilled children's school uniforms			
F _{6 Michigan}	Flow of PFAS in landfilled children's school uniforms sent to Michigan from Canada			
F _{SU}	Flow of PFAS produced which are used in children's school uniforms			
Fsu storage	Flow of PFAS from children's school uniforms stored for long periods			
F _{Production}	Flow of PFAS released during the production of children's school uniforms			
F _{shedding}	Flow of PFAS from children's school uniform fiber shedding directly into environment			
FIntake	Flow of PFAS from children's school uniforms ingested or absorbed into the skin			
F _{drying}	Flow of PFAS released to the environment during machine drying			
F _{Human Storage}	Flow of PFAS bioaccumulated due to children's school uniforms			
$F_{Human WWTP}$	Flow of PFAS from children's school uniforms eliminated in feces and urine by humans			
	and sent to WWTP			
F _{Bio}	Flow of PFAS from WWTP biosolids			
F _{WWTP}	Flow of PFAS in WWTP effluent from children's school uniforms			
Finfluent	Flow of PFAS from washing to WWTP			
F _{Bio to env}	Flow of PFAS from biosolids into the environment			
F _{litter}	Flow of PFAS contained in littered children's school uniforms			
FIncineration	Flow of PFAS released to environment via incineration of children's school uniforms			
FDestruction	Flow of PFAS permanently destroyed via incineration			
FLeachate	Flow of PFAS from landfill leachate sent to WWTP			

Table S21: Additional PFAS Flows illustrated in Figure S3

Flow Designatio **Motivation/Description** n PFAS may be added to textiles intentionally for stain, water, dirt, and/or grease resistance or F_1 unintentionally through contamination.^{3, 24,} We assumed that a portion of PFAS remain in textiles after use and will enter the end of life F_2 pathway. We assumed that PFAS in littered school uniforms is likely a negligible flow. F₃ F_4 We assumed that PFAS can remain in textiles sent for recycling. 20% of recyclable textiles are reprocessed into fiber and used in the manufacturing of new F_{4.1} products.^{25, 26} 30% of recyclable textiles are reprocessed into industrial polishing/wiping cloths.^{25, 26} F_{4.2} 20% of recyclable textiles are resold at local (i.e. within the same country) second-hand F_{4.3} stores.^{25, 26} 25% of recyclable textiles are exported and sold abroad.^{25, 26} F_{4.4} 5% of recyclable textiles are intended for recycling but are ultimately sent to landfill.^{25, 26} F_{4.5} Textiles are either pulled into fibers or shredded during the recycling process.²⁷³¹ Air $F_{4.6}$ emissions during the shredding process can lead to airborne PFAS release.²⁸²⁸ In Canada, approximately 3% of waste requiring final disposal is incinerated.²⁹ In the U.S., F₅ the EPA reported that the total municipal solid waste combusted with energy recovery by material for clothing and footwear was 2,004,878 tonnes in 2018.³⁰ We assumed that a portion of PFAS-treated textiles are sent to incineration. The Canadian government estimates that 9,475,471 tonnes of waste was landfilled in Ontario F₆ in 2016, and that textiles account of 1.4% of overall Canadian residual municipal solid waste disposal.³¹ In 2018, the U.S. estimate of the total municipal solid waste landfill by material for clothing and footwear was 82,28,166 tonnes, and that textiles in general accounted for 7.7% of all municipal solid waste landfilled.³² Michigan estimates that textiles and leather constituted 4.7% (3.8-5.5%) of municipal solid waste. A portion of waste generated in Canada is sent to Michigan for landfilling.³³ We assumed that F_{6 Michigan} a portion of PFAS-treated textiles are sent to Michigan landfills. F_{SU} A portion of PFAS production is used in the textile industry. In fact, the US EPA reported that textiles and apparel accounted for 50% of fluorotelomer and associated side-chain fluoropolymer use in 2006.28, 34 We assumed that a portion of school uniforms are kept in storage prior to use, whether in FSU storage warehouses, department stores, etc. PFAS may be released to the environment during PFAS production, whether to air, water, F_{Production} and/or land.13,35 Microfiber shedding can occur during wearing and washing processes^{36, 37}. PFAS thus may $F_{shedding}$ enter the environment through fiber shedding processes. Direct contact of clothing with skin is a route of chemical exposure through dermal FIntake absorption, and has been identified as a critical human exposure pathway for PFAS.^{23, 3840,41} Fdrying Microfibers shed during the electric drying process can be released directly to the environment through dryer vents.^{39, 40} PFAS thus may enter the environment through fiber shedding during clothing drying. Numerous species of PFAS have been identified as bioaccumulative in humans and other F_{Human Storage} organisms.41

Table S22. Description of relevance of each flow to understanding the movement of PFAS added to school uniforms through the environment.

$F_{Human WWTP}$	PFAS contained in the human body can be excreted via urine, ^{42, 43} which may be a minor				
	flow to wastewater treatment plants, given that fluorochemicals have previously been				
	identified in wastewater influent. ^{44, 45}				
F_{Bio}	Biosolids produced during the wastewater treatment process may contain residual PFAS. ⁴⁶				
F _{WWTP}	Wastewater treatment plants are well-known sources of PFAS emissions directly to the				
	environment, as they are inefficiently removed during treatment processes. ^{35, 37}				
Finfluent	Microfibers released during machine washing can enter wastewater influent ^{36, 37} and thus				
	present a flow for PFAS originating in school uniforms.				
FBio to env	Biosolids applied to agricultural lands as fertilizer may present an exposure of PFAS to the				
	environment. ⁴⁶				
Flitter	We assume that PFAS originating from littered school uniforms is likely a negligible flow,				
	and therefore exposure to the environment is also likely minimal.				
FIncineration	Incomplete destruction of PFAS during incineration processes can result in emission of				
	smaller PFAS and other volatile compounds, leading to environmental contamination. ^{47, 48}				
F _{Destruction}	Incineration at high enough temperatures is used to "thermally mineralize" fluorinated				
	polymers in textiles. ²⁸ However, the effectiveness of employing incineration (high				
	temperature chemical breakdown) as a final destruction pathway for PFAS is not well				
	understood. ^{48, 49}				
FLeachate	Landfill leachate is a known source of PFAS, as they are routinely detected with short-chain				
	PFAS being the most abundant. ²⁸				

	EDI derm,
Sample ID	ng/kg bw/ day
UOT-IP-4b	2.32
UOT-IP-5a	5.56
UOT-IP-6b	0.61
UOT-2-IP-12a	2.80
UOT-2-IP-13a	2.91
UOT-IP-US-15	0.23
UOT-IP-US-16	0.05
UOT-IP-US-17	0.0005
UOT-IP-US-18	0.0002
UOT-IP-US-19	0.0009
UOT-IP-US-20	0.74
UOT-IP-US-21	2.57
UOT-IP-US-22	1.54
UOT-IP-US-23	1.85
UOT-IP-US-24	1.20
UOT-IP-US-25	95.3
UOT-IP-US-26	0.0004
UOT-IP-US-27	23.4
UOT-IP-US-28	1.03
UOT-IP-US-29	26.9
UOT-IP-US-30	0.39
UOT-IP-US-31	0.42
UOT-IP-US-32	0.14
UOT-IP-US-33	222
UOT-IP-US-34	0.003
Median	1.03

Table S23. Estimate Daily Intake of PFAS via dermal absorption based on the total targeted PFAS concentration measured in these products.

Figure S1. Summary of sampling scheme identifying the number of products purchased, the number of samples generated from the products and the total number of samples analyzed with each technique.

Figure S2 Relationship between material thickness and the slope of a calibration curve generated using that material (left) and the relationship between material thickness and the LoD determined from a calibration curve generated using that material (right).

Figure S3. Substance flow analysis flow chart.

Type of Fabric (n) for School Uniform

Figure S4. Mean (with standard errors) total targeted PFAS concentrations (ng/g) in different fabric types for school uniforms. Numbers in the bracket represent the number of samples. The letters represent the results of Kruskal-Wallis ANOVA; the concentrations are ranked from high to low in alphabetic order; the bars sharing the same letters are not significantly different at p<0.05.

Figure S5. Correlation between total fluorine ($\mu g F/m^2$) by PIGE and total targeted PFAS ($\mu g/m^2$) by MS

References

(1) Van der Voet, E. Substance flow analysis methodology. In *A handbook of industrial ecology*, Ayres, R. U.; Ayres, L. W., Eds. Edward Elgar Publishing: Cheltenham, UK: 2002; pp 91-101.

(2) Minet, L.; Wang, Z.; Shalin, A.; Bruton, T. A.; Blum, A.; Peaslee, G. F.; Schwartz-Narbonne, H.; Venier, M.; Whitehead, H.; Wu, Y.; Diamond, M. L. Use and Release of Per- And Polyfluoroalkyl Substances (PFAS) in Consumer Food Packaging in U.S. and Canada (submitted). *J. Hazard. Mater. Lett,* **2022**.

(3) Gluge, J.; Scheringer, M.; Cousins, I. T.; DeWitt, J. C.; Goldenman, G.; Herzke, D.; Lohmann, R.; Ng, C. A.; Trier, X.; Wang, Z. An overview of the uses of per- and polyfluoroalkyl substances (PFAS). *Environ. Sci. Process Impacts* **2020**, *22*, (12), 2345-2373.

(4) Coresight Research. Back-to-School: Share of Children Wearing School Uniforms in the United States from 2008 to 2018. <u>https://www.statista.com/statistics/896612/share-of-children-wearing-school-uniforms-us/</u> (accessed October 05, 2021).

(5) UN (United Nations). World Population Prospects 2019; 2019,

<u>https://population.un.org/wpp/Download/Standard/Population/</u> (accessed October 15, 2021).
(6) Statistics Canada. Population estimates on July 1st, by age and sex.

https://www150.statcan.gc.ca/t1/tb11/en/tv.action?pid=1710000501 (accessed Access Date) (7) Mumtaz, M.; Bao, Y.; Li, W.; Kong, L.; Huang, J.; Yu, G. Screening of textile finishing agents available on the Chinese market: An important source of per- and polyfluoroalkyl substances to the environment. *Front. Environ. Sci. Eng.* **2019**, *13*, (5).

(8) Lassen, C.; Jensen, A. A.; Warming, M. *Alternatives to Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS) in Textiles.* The Danish Environmental Protection Agency 2015, https://www2.mst.dk/Udgiv/publications/2015/05/978-87-93352-16-2.pdf

(9) Sullivan, H. Dyeing, Printing & Finishing: PFAS - A Textile Perspective. <u>https://www.textileworld.com/textile-world/features/2021/05/dyeing-printing-finishing-pfas-a-textile-perspective/</u> (accessed August 18, 2021).

(10) Audenaert, F.; Lens, H.; Rolly, D.; Vander Elst, P. Fluorochemical Textile Repellents—Synthesis and Applications: A 3M Perspective. *The Journal of The Textile Institute* **1999**, *90*, (3), 76-94.

(11) Sayed, U.; Dabhi, P. 6 - Finishing of textiles with fluorocarbons. In *Waterproof and Water Repellent Textiles and Clothing*, Williams, J., Ed. Woodhead Publishing: 2014; pp 139-152. https://doi.org/10.1016/B978-0-08-101212-3.00006-X.

(12) Roy Choudhury, A. K. 7 - *Repellent finishes*. Woodhead Publishing: 2017; https://doi.org/10.1016/B978-0-08-100646-7.00007-2p 149-194. https://doi.org/10.1016/B978-0-08-100646-7.00007-2.

(13) Lohmann, R.; Cousins, I. T.; DeWitt, J. C.; Gluge, J.; Goldenman, G.; Herzke, D.; Lindstrom, A. B.; Miller, M. F.; Ng, C. A.; Patton, S.; Scheringer, M.; Trier, X.; Wang, Z. Are Fluoropolymers Really of Low Concern for Human and Environmental Health and Separate from Other PFAS? *Environ. Sci. Technol.* **2020**, *54*, (20), 12820-12828.

(14) Danish ministry of the Environment. *Polyfluoroalkyl substances (PFASs) in textiles for children-Survey of chemical substances in consumer products No. 136, 2015*; Danish Environmental Protection Agency: Copenhagen, Denmark, 2015, <u>https://www2.mst.dk/Udgiv/publications/2015/04/978-87-93352-12-4.pdf</u> (accessed October 20, 2021).

(15) Hill, P. J.; Taylor, M.; Goswami, P.; Blackburn, R. S. Substitution of PFAS chemistry in outdoor apparel and the impact on repellency performance. *Chemosphere* **2017**, *181*, 500-507.

(16) Berger, U.; Herzke, D. Per-and polyfluorinated alkyl substances (PFAS) extracted from textile samples. *Organohalogen Compounds* **2006**, *68*, 2023-2026.

(17) Guo, Z.; Liu, X.; Krebs, K. A.; Roache, N. F. *Perfluorocarboxylic acid content in 116 articles of commerce*; US Environmental Protection Agency: Washington, DC, 2009,

https://cfpub.epa.gov/si/si_public_record_report.cfm?Lab=NRMRL&dirEntryId=206124 (accessed June 15, 2021).

(18) Liu, X.; Guo, Z.; Krebs, K. A.; Pope, R. H.; Roache, N. F. Concentrations and trends of perfluorinated chemicals in potential indoor sources from 2007 through 2011 in the US. *Chemosphere* **2014**, *98*, 51-7.

(19) Supreeyasunthorn, P.; Boontanon, S. K.; Boontanon, N. Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) contamination from textiles. *Journal of Environmental Science and Health, Part A* **2016**, *51*, (6), 472-477.

(20) Robel, A. E.; Marshall, K.; Dickinson, M.; Lunderberg, D.; Butt, C.; Peaslee, G.; Stapleton, H. M.; Field, J. A. Closing the Mass Balance on Fluorine on Papers and Textiles. *Environ. Sci. Technol.* **2017**, *51*, (16), 9022-9032.

(21) van der Veen, I.; Hanning, A. C.; Stare, A.; Leonards, P. E. G.; de Boer, J.; Weiss, J. M. The effect of weathering on per- and polyfluoroalkyl substances (PFASs) from durable water repellent (DWR) clothing. *Chemosphere* **2020**, *249*, 126100.

(22) Zhu, H.; Kannan, K. Total oxidizable precursor assay in the determination of perfluoroalkyl acids in textiles collected from the United States. *Environ. Pollut.* **2020**, *265*, (Pt B), 114940.

(23) Zheng, G.; Salamova, A. Are Melamine and Its Derivatives the Alternatives for Per- and Polyfluoroalkyl Substance (PFAS) Fabric Treatments in Infant Clothes? *Environ. Sci. Technol.* 2020, *54*, (16), 10207-10216.

(24) CEC (Commission for Environmental Cooperation). *Furthering the Understanding of the Migration of Chemicals from Consumer Products – A Study of Per- and Polyfluoroalkyl Substances* (*PFASs*) *in Clothing, Apparel, and Children's Items*; Montreal, Canada: Commission for Environmental Cooperation, 2017, (accessed January 11, 2021).

(25) Jay, P. Here's where your donated clothing really ends up.

https://www.cbc.ca/news/canada/ottawa/donated-clothing-where-it-ends-up-1.4662023 (accessed June 28, 2021).

(26) SMART (Secondary Material and Recycled Textiles Association). How are textiles recycled? <u>https://www.smartasn.org/resources/frequently-asked-questions/</u> (accessed June 25, 2021).

(27) LeBlanc, R. The Basics of Textile Recycling. <u>https://www.thebalancesmb.com/the-basics-of-recycling-clothing-and-other-textiles-2877780</u> (accessed October 19, 2021).

(28) Thorpe, B. Scoping Per-and Polyfluoroalkyl Substances Releases from the Recycling of Paper and Textiles and their Implications for the Great Lakes-St Lawrence River Ecosystem: Identifying Opportunities to Address Toxicity of Products in a Circular Economy; Canadian Environmental Law Association: 2019, <u>https://cela.ca/wp-content/uploads/2019/10/Report-PFAS-Sept-2019.pdf</u> (accessed June 23, 2021).

(29) Government of Canada. Municipal solid waste management in Canada; 2021,

https://www.canada.ca/en/environment-climate-change/services/managing-reducing-waste/municipal-solid/environment.html (accessed.

(30) US EPA (U.S. Environmental Protection Agency). Sustainable Materials Management (SMM) - Materials and Waste Management in the United States Key Facts and Figures; 2020,

https://edg.epa.gov/metadata/catalog/search/resource/details.page?uuid=C9310A59-16D2-4002-B36B-2B0A1C637D4E (accessed March 11, 2021).

(31) Government of Canada. *National waste characterization report : the composition of Canadian residual municipal solid waste.*; 2020, <u>https://publications.gc.ca/site/eng/9.884760/publication.html</u> (accessed March 11, 2021).

(32) US EPA (U.S. Environmental Protection Agency). *Textiles: Material-Specific Data*; 2018, <u>https://www.epa.gov/facts-and-figures-about-materials-waste-and-recycling/textiles-material-specific-data</u> (accessed June 28, 2021).

(33) Michigan Department of Environment, G. L., and Energy, *Report of Solid Waste Landfilled in Michigan 2020*; 2021, <u>https://www.michigan.gov/egle/0,9429,7-135-3312_4123-47581--,00.html</u> (accessed June 28, 2021).

(34) US EPA (U.S. Environmental Protection Agency). *Long-chain perfluorinated chemicals (PFCs) action plan*; 2009, <u>https://www.epa.gov/sites/default/files/2016-</u>

<u>01/documents/pfcs_action_plan1230_09.pdf</u> (accessed June 23, 2021).

(35) OECD (Organisation for Economic Cooperation and Development). *PFCs: outcome of the 2009* survey survey on the production, use and release of PFOS, PFAS, PFOA PFCA, their related substances products/mixtures containing these substances; 2011, (accessed October 10, 2021).

(36) Athey, S. N.; Adams, J. K.; Erdle, L. M.; Jantunen, L. M.; Helm, P. A.; Finkelstein, S. A.; Diamond, M. L. The Widespread Environmental Footprint of Indigo Denim Microfibers from Blue Jeans. *Environ. Sci. Technol. Lett.* **2020**, *7*, (11), 840-847.

(37) Carney Almroth, B. M.; Astrom, L.; Roslund, S.; Petersson, H.; Johansson, M.; Persson, N. K. Quantifying shedding of synthetic fibers from textiles; a source of microplastics released into the environment. *Environ. Sci. and Pollut. Res.* **2018**, *25*, (2), 1191-1199.

(38) Rovira, J.; Domingo, J. L. Human health risks due to exposure to inorganic and organic chemicals from textiles: A review. *Environ. Res.* **2019**, *168*, 62-69.

(39) Kapp, K. J.; Miller, R. Z. Electric clothes dryers: An underestimated source of microfiber pollution. *PLoS One* **2020**, *15*, (10), e0239165.

(40) Pirc, U.; Vidmar, M.; Mozer, A.; Krzan, A. Emissions of microplastic fibers from microfiber fleece during domestic washing. *Environ. Sci. and Pollut. Res.* **2016**, *23*, (21), 22206-22211.

(41) Sunderland, E. M.; Hu, X. C.; Dassuncao, C.; Tokranov, A. K.; Wagner, C. C.; Allen, J. G. A review of the pathways of human exposure to poly- and perfluoroalkyl substances (PFASs) and present understanding of health effects. *J. Expo. Sci. Environ. Epidemiol.* **2019**, *29*, (2), 131-147.

(42) Perez, F.; Nadal, M.; Navarro-Ortega, A.; Fabrega, F.; Domingo, J. L.; Barcelo, D.; Farre, M. Accumulation of perfluoroalkyl substances in human tissues. *Environ. Int.* **2013**, *59*, 354-62.

(43) Worley, R. R.; Moore, S. M.; Tierney, B. C.; Ye, X.; Calafat, A. M.; Campbell, S.; Woudneh, M. B.; Fisher, J. Per- and polyfluoroalkyl substances in human serum and urine samples from a residentially exposed community. *Environ. Int.* **2017**, *106*, 135-143.

(44) Schultz, M. M.; Higgins, C. P.; Huset, C. A.; Luthy, R. G.; Barofsky, D. F.; Field, J. A. Fluorochemical Mass Flows in a Municipal Wastewater Treatment Facility. *Environ. Sci. Technol.* **2006**, *40*, (23), 7350-7357.

(45) Tavasoli, E.; Luek, J. L.; Malley, J. P., Jr.; Mouser, P. J. Distribution and fate of per- and polyfluoroalkyl substances (PFAS) in wastewater treatment facilities. *Environ. Sci. Process Impacts* **2021**, *23*, (6), 903-913.

(46) Sepulvado, J. G.; Blaine, A. C.; Hundal, L. S.; Higgins, C. P. Occurrence and fate of perfluorochemicals in soil following the land application of municipal biosolids. *Environ. Sci. Technol.* **2011**, *45*, (19), 8106-12.

(47) California Environmental Protection Agency. *Product-Chemical Profile for Carpets and Rugs Containing Perfluoroalkyl or Polyfluoroalkyl Substances*; 2019, <u>https://dtsc.ca.gov/wp-content/uploads/sites/31/2020/02/Final_Product-Chemical_Profile_Carpets_Rugs_PFASs_a.pdf</u> (accessed October 19, 2021).

(48) Environmental Working Group. Feeding the Waste Cycle: How PFAS 'Disposal' Perpetuates Contamination. <u>https://www.ewg.org/news-insights/news/feeding-waste-cycle-how-pfas-disposal-perpetuates-contamination</u> (accessed October 19, 2021).

(49) Gullett, B.; Gillespie, A. *Per- and Polyfluoroalkyl Substances (PFAS): Incineration to Manage PFAS Waste Streams.*; 2020, <u>https://www.epa.gov/chemical-research/technical-brief-and-polyfluoroalkyl-substances-pfas-incineration-manage-pfas</u> (accessed October 19, 2021).