Supplementary Material for "A structure-based discovery platform for BACE2 and the development of selective BACE inhibitors"

Yu-Chen Yen¹, Annalissa M. Kammeyer¹, Jagannadharao Tirlangi², Arun K. Ghosh^{2,3}, and Andrew D. Mesecar^{1,2,4}*

¹Department of Biological Sciences; ²Department of Chemistry; ³Department of Medicinal Chemistry, ⁴Department of Biochemistry, Purdue University, West Lafayette IN 47907

*Corresponding author: amesecar@purdue.edu

Figure S1. (A) The amino acid sequence and (B) expression construct of BACE2. The catalytic Asp residues and the mutation (E269A) made for crystallization are labelled in red.

Figure S2. SDS-PAGE analysis throughout the purification of BACE2. Lanes: 1, Molecular weight ladder; 2, protein sample after solubilization; 3, BACE2 after refolding where the active protein starts the autocleaving process to remove its pro-domain and the molecular weight begins to drop; 4, BACE2 after ammonium sulfate precipitation with partial completion of the auto-catalytic cleaving process; 5, HIC pool showing complete processing to mature and active BACE2.

Figure S3. Crystal packing of unbound BACE2 (PDB:6UJ0). Molecules colored in green and yellow represent a non-biological, crystallographic dimer in an asymmetric unit. Loop¹⁰²⁻¹¹⁰ is highlighted in magenta in one of the dimer.

Figure S4. Residual electron density is observed in unbound BACE2 structure (PDB:6UJ0) near residues 278 SQLACW²⁸³. (A) The crystal packing interfaces of unbound BACE2 are shown near BACE2 residues 278 SQLACW²⁸³ on each side of the unit cell . Molecules colored in blue and yellow represent nonbiological, crystallographic dimers in an asymmetric unit. The residual electron density that was fit with a poly-alanine peptide is highlighted in orange. (B) and (C) The Fo-Fc residual electron density was fit with a seven (B) or five (C) -residue poly-alanine peptide in separate monomers of the asymmetric unit and the resulting 2Fo-Fc map is show in grey mesh and contoured to 1.0 σ whereas the final resulting Fo-Fc map is show in grey mesh and contoured to 3.0 σ .

Figure S5. (A) Electron density map of inhibitor **3** (shown in stick and colored according to atom types) in the BACE2 active site. The Fo-Fc electron density omit map is contoured to 3.0 σ and shown in grey mesh. (B) Overlay of inhibitor **3** in the active site of BACE1 (green sticks, PDB : 6NV7) and BACE2 (magenta sticks, PDB : 6UJ1).

Figure S6. Ligand interaction plot of inhibitor **3** with (C) BACE1 and (D) BACE2 generating using LIGPLOT. Inhibitor **3** is shown in blue line and the atoms are colored according to the atom types. The polar contacts are indicated by the dash lines with distances shown in angstroms and the interacting residues are represented in orange line. The residues involved in the hydrophobic interactions are labeled and shown in red hashes.

Figure S7. Inhibitor **3** in the active site of (A) BACE1 and (B) BACE2. Inhibitor **3** is shown in green and magenta stick and the atoms are colored according to the atom types. BACE1 and BACE2 are shown in surface presentation and colored in grey. The P_1 - P_3 linkage in the S_1 - S_3 pocket is highlighted in the pink circle.

	Volume (ml)	Total (mg)	Specific activity (µM/min/mg)	Total unit
Inclusion Body Solubilized Fraction	150	525	Not applicable	Not applicable
Refold	40	277	3	837
Ammonium sulfate precipitation	40	28	64	1789
HIC	4.2	5	330	2916

Table S1. BACE2 purification from 2 L E.coli culture

Data Collection	Apo-BACE2	BACE2 in complex with Inhibitor-3			
PDB ID	6UJ0	6UJ1			
V	LRL-CAT	LRL-CAT			
X-ray source and detector	Sector 31 ID-D	Sector 31 ID-D			
Wavelength (Å)	0.9793	0.9793			
Space Group	P1	P3 ₁ 21			
Unit Cell dimensions:					
a, b, c (Å)	46.6, 59.0, 84.6	123.07, 123.07, 118.06			
α, β, γ (°)	113.4, 93.7, 96.4	90, 90, 120			
Data Processing Statistics	Overall	[Last Shell]			
Resolution range (Å)	50-2.15 [2.20-2.15]	29-3.03 [3.14-3.03]			
No. reflection recorded	405,337	40,834			
No. averaged reflections	44,589	20,418			
Average Redundancy	2.2	2.0			
$CC_{1/2}$ (%)	[82.5]	[62.1]			
Rpim ¹	[37.2]	[47.1]			
Ι/σΙ	17.7 [2.5]	11 [1.1]			
% Completeness	97.6 [97.1]	100 [99.9]			
Refinement					
Resolution Range (Å)	50-2.15 [2.20-2.15]	29-3.03 [3.14-3.03]			
No. Reflections in Working Set	43,480	20,418			
No. Reflections in Test Set	2,198	1,016			
R_{work} (%) ²	21.9	24.0			
R_{free} (%)	25.7	29.0			
Average B-factor (Å ²)	46.0	114.7			
RMSD from ideal geometry:					
Bond Lengths (Å)	0.008	0.019			
Bond Angles (degrees)	0.846	1.564			
Ramachandran Plot					
Most Favored (%)	97.78	94.30			
Allowed (%)	2.08	5.27			
Disallowed (%)	0.14	0.43			

Table S2. Data collection and refinement statistics

 ${}^{1}R_{pim} = \sum_{hkl} \sqrt{1/n - 1} \sum_{i} |I_{i}(hkl) - \langle I(hkl) \rangle| / \sum_{hkl} \sum_{i} I_{i}(hkl), \text{ where n is the multiplicity.}$ ${}^{2}R_{work} = \sum_{hkl} ||F_{obs}| - |F_{calc}|| / \sum_{hkl} |F_{obs}|, \text{ where } F_{obs} \text{ and } F_{calc} \text{ are the observed and calculated structure factors, respectively.}$

PDB	Construct	Crystallization Chaperone Protein	inhibitor	Resolution (Å)	Space group	Flap orientation ⁴
2EWY	Wild type	No	Yes	3.1	Н3	Closed
6UJ1	E269A	No	Yes	3.0	P3 ₁ 2 1	Closed
3ZKI	E269A	No	Yes	2.4	P2 ₁	Open
3ZKG	E269A	No	No	1.9	P2 ₁	Open
6UJ0	E269A	No	No	2.1	P1	Closed
3ZKN	Wild type	Fab ¹	Yes	2.0	P2 ₁	Open
3ZKM	Wild type	Fab	No	1.8	$P2_{1}2_{1}2_{1}$	Closed
3ZKQ	Wild type	Xaperone ²	No	1.5	P2 ₁ 2 ₁ 2 ₁	Open
3ZKS	Wild type	Xaperone	Yes	2.1	P2 ₁ 2 ₁ 2 ₁	Open
4BEL	Wild type	Xaperone	No	1.8	P2 ₁	Open
4BFB	Wild type	Xaperone	No	2.2	$P2_{1}2_{1}2_{1}$	Closed
6JSZ	Wild type	Xaperone	Yes	1.5	$P2_{1}2_{1}2_{1}$	Open
3ZKX	E269A	Xaperone	No	2.4	1222	Closed
3ZLQ	E269A	Xaperone	Yes	2.1	P2 ₁	Open
3ZL7	E269A	Fynomer ³	No	3.2	P4 ₃ 2 ₁ 2	Closed

Table S3. Comparison of BACE2 structures crystallized under different conditions and space

 group

¹ BACE2-binding antibody Fab fragments

² Single domain camelid antibody V_HH fragments

³ Fyn-kinase-derived SH3 domains

⁴ Structures were superimposed to the unbound BACE2 (PDB: 2EWY) using pymol and the movement of the flap loop is determined by measuring the distance of Thr88 C α atoms between the structures and unbound BACE2. Structures that move more than 2 Å in the flap loop are defined as open conformations.