
Supplementary Material: Large-scale biophysically detailed model of
somatosensory thalamocortical circuits in NetPyNE

1 Comparison of cells with StochKv channels in NetPyNE and BBP implementations

The NetPyNE implementation employs a deterministic version of the stochastic potassium channel
(StochKv) channel. Neurons with the deterministic StochKv channel exhibited lower spiking
irregularity (Fig. S1). This occurred primarily when the neurons received a weak stimulus (Figs.
S1A,C,D), since in that case the StochKv channel has a stronger effect. However, for
moderate-strong stimulation, the neuronal responses using the stochastic vs the deterministic version
of the channel are very similar (Figs. S1B,E,F). Furthermore, in the context of the full network
simulation, cells with the deterministic version of StochKv exhibit irregular spiking patterns (Fig.
S1G).

Figure S1. Cells with StochKv channels in NetPyNE vs BBP. (A,B) Somatic membrane potential of the
neurons under current clamp with amplitude 0.1 nA and 0.8 nA, respectively. NetPyNE results (red) compared
to the original BBP model results (blue) for the L4_DBC_bIR215_1 cell. The deterministic version of the BBP
stochastic potassium channel (StochKv) best matches the traces in the high current case. (C,D) Comparison of
BBP's and NetPyNE's inter spike interval coefficient of variation (CV) and firing rate (FR) with amplitude 0.1
nA during 2 seconds for each cell type. (E,F) Same comparison as in C,D but using 0.8 nA. (G) Example
traces of cells with the StochKv in the NetPyNE full circuit simulations (Figure 6).
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2 Parameter optimization/exploration

Although most model parameters are constrained by experimental data, it is typically necessary to
perform parameter optimization (also referred to as tuning) to ensure the model reproduces
experimental measures such as population firing rates. Once the model has been optimized and
validated against experimental data, researchers can explore model parameters to ask questions about
the modeled system, gain insights and generate hypotheses and predictions. Parameter optimization
and exploration is typically done by systematically modifying the value of certain parameters (e.g.
ionic channel conductances or synaptic weights). As previously described, NetPyNE automates the
optimization and exploration of parameters. The user can easily define the range of values to explore
and the simulations set up using a simple format based on Python dictionaries and lists, or the
graphical interface. NetPyNE includes built-in customizable set ups for different environments,
multicore machines with MPI, HPCs with SLURM or HPC/Torque workload managers, etc. Once the
user runs the parameter exploration/exploration, NetPyNE will automatically submit all the required
simulation jobs for each of the parameter combinations. The tool includes several other features to
facilitate simulation management, including automatic filename generation, optional user-defined
labels to track model versions and batch simulations, and standardized structure for output files that
includes model version, NetPyNE version, parameters, network instance and simulation output data
(Dura-Bernal et al. 2019).

The parameters optimized for the S1 thalamocortical circuit were the background rate for excitatory
and inhibitory connections. For the intrathalamic projections, we optimized connection weight (range
0 to 2 mV), connection probability (range 0 to 1), y-axis connection radius (1, 2, 5 or 10%) and
connectivity divergence of the HO populations (5, 10, 20 or 40 cells). For the thalamocortical and
corticothalamic projections we optimized connection weight (range 0 to 2 mV) and connection
probability (range 0 to 1).

Although performing a detailed model parameter exploration is out of the scope of this paper, here
we provide an example set up and describe the basic steps to follow. In the example we aim to
explore the effect of inhibitory GABAergic synaptic strength on network dynamics. We therefore
selected the two relevant parameters: IEGain and IIGain, the gain factors for the synaptic strength of
I→E and I→I connections. These parameters were already defined in the cfg.py file, with a default
value of 1.0, and are used in netParams.py to scale the weights of the relevant connections. A
reasonable range of values to explore initially might be [0.5, 0.75, 1.0, 1.25, 1.5] for each parameter –
these can be adjusted iteratively based on simulation results. In order to quantify the robustness and
validate our results statistically, we will simulate each parameter combination using 5 connectivity
and 5 input randomization seeds. The code to set up the described parameter exploration is available
https://github.com/suny-downstate-medical-center/S1_Thal_NetPyNE_Frontiers_2022/sim/batch.py
(inhib() function). After executing the parameter exploration, NetPyNE will run 625 simulations
corresponding to the 5*5*5*5 (IEGain, IIGain, connectivity seed, input seed) parameter value
combinations. Researchers can then analyze and visualize any of the network output measures, from
voltage traces to mean firing rates to LFP power, to study the effect of inhibitory connection strength
on network activity.
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3 Local Field Potential recorded from the in vitro-like S1 circuit

The in vitro-like simulation with bidirectional thalamic connectivity (Fig. 7) exhibits activity with
bursts synchronization. In the same way as the in vivo-like case (Fig. 9), the microcircuit has 1376
morphological, 29,970 S1 spike cells, 7,266 thalamic spike cells, 499,412 connections, and
2,702,107 synapses modeled with STP. LFP recording electrodes were located in the cylinder center
(x=z=210μm) and at a radial distance from the center (x=z=0μm), at 3 different depths (1000, 1200,
and 1400μm). A representation of the network cells, recording electrodes, and the 5-second spiking
raster plot is shown in Figure S2. The corresponding LFP recorded signals are shown in Figure S3,
which also illustrates the observed distance- and frequency-dependent attenuation (Fig. S3A-D) and
the inverse relation of power and frequency (Fig. S3E-F).

Figure S2. Subsampled S1 model used to calculate LFPs. Spiking raster plots of the S1 model related
to Fig. 7. Activity from the 4.4% of neurons simulated using detailed morphological reconstructions (top
panel) and the 95.6% of inputs simulated using spike generators with spike times recorded from a previous
simulation.
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Figure S3. Local field potentials (LFPs) recorded from the in vitro-like S1 circuit. S1 model LFP
signal for the 4.4% neurons simulated using detailed morphological reconstructions recorded from (A)
electrodes located in center of cylinder (bar 0.5 mV), and (B) electrodes located at a radial distance (x=z=210
μm) from cylinder center (bar 0.1 mV). The horizontal bar represents 1000 ms. (C,D) Zoomed in
representation of LFP signal, with the horizontal bar representing 50 ms. The blue traces represent the mean
LFP signal. (E) Periodogram for LFP recorded from deepest electrode at the central (black) and radially distant
(red) locations; corresponding to bottom plots in A and B, respectively. (F) Welch frequency plot for all traces
in A (black and gray lines) and B (red and orange lines).

4 Acronyms

The full name of cells’ m-types, s-types and e-types and their corresponding acronyms are
summarized in Table S1. The full name and acronym of the 207 cell types can be found in the
Neocortical Microcircuit Collaboration (NMCP; https://bbp.epfl.ch/nmc-portal).

m-types

DAC Descending Axon Cell

NGC-DA Neurogliaform Cell with dense axonal arborization

NGC-SA Neurogliaform Cell with slender axonal arborization

HAC Horizontal Axon Cell

LAC Large Axon Cell

SAC Small Axon Cell

MC Martinotti Cell

BTC Bitufted Cell

DBC Double Bouquet Cell

BP Bipolar Cell

NGC Neurogliaform Cell

LBC Large Basket Cell

https://bbp.epfl.ch/nmc-portal
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NBC Nest Basket Cell

SBC Small Basket Cell

ChC Chandelier Cell

PC Pyramidal Cell

SP Star Pyramidal Cell

SS Spiny Stellate Cell

TTPC1 Thick-tufted Pyramidal Cell with a late bifurcating apical tuft

TTPC2 Thick-tufted Pyramidal Cell with an early bifurcating apical tuft

UTPC Untufted Pyramidal Cell

STPC Slender-tufted Pyramidal Cell

TPC Tufted Pyramidal Cell

IPC Pyramidal Cell with inverted apical-like dendrites

BPC Pyramidal Cell with bipolar apical-like dendrites

s-types

I1 Inhibitory facilitating

I2 Inhibitory depressing

I3 Inhibitory pseudo-linear

E1 Excitatory facilitating

E2 Excitatory depressing

E3 Excitatory pseudo-linear

e-types

cADpyr continuous Accommodating (Adapting) for pyramidal cells

cAC continuous Accommodating

bAC burst Accommodating

cNAC continuous Non-accomodating

bNAC burst Non-accomodating

dNAC delayed Non-accomodating

cSTUT continuous Stuttering

bSTUT burst Stuttering

dSTUT delayed Stuttering

cIR continuous Irregular

bIR burst Irregular

Table S1. Glossary. m-type: morphological type; s-type synapse type; e-type: electrical type. Note
that the cell type L1_DLAC refers to the LAC m-type of layer 1.


