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1. GENERAL PRODUCT-NORMAL

Let us briefly consider the distribution for xy with x ∼
N (µx, σ

2
x) and y ∼ N (µy, σ

2
y), i.e., the product-normal

for non-standardized Gaussian random variables. The

moment generating function reads [1]

Mx,y(ν) =
e

(µ2
xσ2

y+µ2
yσ2

x−2ϱµxµyσxσy)ν2+2µxµyν

2(1−σxσy(1−ϱ)ν)(1+σxσy(1+ϱ)ν)√
(1− σxσy(1 + ϱ)ν)(1 + σxσy(1− ϱ)ν)

.

(1)

Note that for, either, µx = 0 or µy = 0, the factorization

of the main text still holds. Defining κx = µx

σx
and κy =

µy

σy
, the exponent of the exponential in Mx,y

(
2ν

σxσy

)
can

be split for the general non-correlated case (ϱ = 0) into

(κ2
x + κ2

y + 2κxκy)ν

2(1− 2ν)
−

(κ2
x + κ2

y − 2κxκy)ν

2(1 + 2ν)
.

We deduce that we can still factorize the moment gener-

ating function, such that

xy ∼σxσy

2

[
χ2
1

(
1

2
(κ2

x + κ2
y + 2κxκy)

)]
− σxσy

2

[
χ2
1

(
1

2
(κ2

x + κ2
y − 2κxκy)

)]
,

(2)

with χ2
1(c) the non-central χ2 distribution with one de-

gree of freedom. Hence, the general product-normal can

be expressed as a linear combination of non-central χ2
1

distributions, for ϱ = 0.

2. PROBABILITY DENSITY FUNCTIONS

a. Product-Normal: Making use of the relation (2)

for standardized variables and expressed in terms of

gamma distributions, the pdf, denoted as f , of the

product-normal distribution can be calculated analyti-

cally via convolution (cf., [2])

fξ−ζ(x) =
e

x
1−ϱ

π
√
1− ϱ2

∫ ∞

max(0,x)

dy(y2 − xy)−1/2e
− 2y

1−ϱ2 .

ϱ 0 0.3 0.6 0.9

MSE 3.3× 10−15 3.5× 10−15 4.6× 10−15 2.1× 10−12

Table 1: Mean squared error (MSE) between numerical in-

tegration of (3) and Davies algorithm for various ϱ and 1000

arguments evenly spaced in the range [−4, 4].

Completing the square and invoking a hyperbolic substi-

tution, we arrive at

fξ−ζ(x) =
e

ϱx

1−ϱ2

π
√

1− ϱ2

∫ ∞

0

dt e
− |x|

1−ϱ2
cosh(t)

=
e

ϱx

1−ϱ2

π
√

1− ϱ2
K0

(
|x|

1− ϱ2

)
,

(3)

with K0 the modified Bessel function of the second kind

at zero order. The result above for f agrees with the

previous derivations of [3, 4]. Note that the analytic cal-

culation of the corresponding cdf requires the solution of

an integral of the type
∫∞
x

dt eatK0(t) . We are not aware

of a known closed-form solution.

For illustration, we plot the pdf for ϱ = 1/2 together

with the corresponding histogram sampled from (2) ex-

pressed as a difference of gamma distributions in Fig 1.

We also show the cdf obtained via numerical integra-

tion of (3). We verified that the numerical integration

matches the results obtained via Davies’ algorithm for

the cdf calculation for various ϱ, cf., Table 1.

Note that since the pdf of the non-central χ2 distri-

bution includes a Bessel function, analytic calculation of

the pdf of xy in the more general case of section 1 is more

complicated than in (3), and will not be discussed here.

b. Variance-Gamma: Consider a random variable

X distributed according to

X ∼ [Γ(h/2, g)]− [Γ(h/2, g)] =: V G(h, g) . (4)

The corresponding pdf can be calculated similarly as

above via convolution. We infer

fξ−ζ(x) =
e

x
g

Γ(h/2)2gh

∫ ∞

max(0,x)

dy (y2 − xy)h/2−1e−
2y
g .
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Fig 1: A: Histogram of the dependent product normal distribution with ρ = 0.5 obtained via subtracting 50.000 pairs of random

samples of difference of gamma distributions. The red line marks the pdf given in (3). B: The corresponding cdf obtained via

Davies algorithm. For comparison, the dashed gray lines show the corresponding normal quantities.

Completing the square and using as before hyperbolic

substitution, we arrive at

fξ−ζ(x) =
xh−1

2h−1Γ(h/2)2gh

∫ ∞

0

dt sinh(t)h−1e−
|x|
g cosh(t)

=
Kh−1

2
(|x|/g)

g
√
π Γ(h/2)

(
|x|
2g

)h−1
2

,

(5)

with Kn a modified Bessel function of sec-

ond kind at order n. Using the integral∫∞
0

dt tµ−1Kν(t) = 2µ−2Γ(µ−ν
2 )Γ(µ+ν

2 ), we easily

verify that
∫∞
0

dx fξ−ζ(x) =
1
2 . Hence, due to symmetry

the pdf is well normalized. However, we are not aware

of closed-form solutions for Bessel function integrals of

the type
∫∞
x

dt tνKν(t), which are needed to provide a

closed-form expression for the cdf.

The distribution given by (5) occurred before in the fi-

nance domain as a special case of the variance-gamma

distribution [5]. It can be traced back further to

the distribution of the bivariate correlation. In detail,

the gamma-variance distribution corresponds to the off-

diagonal marginal of a two-dimensional Wishart distribu-

tion, which models the covariance matrix [6]. However,

to the best of our knowledge, what is new is the expres-

sion in terms of the difference distribution in equation

(4).

For h = n and g = 1, we have

X ∼ V G(n, 1) =
1

2
[χ2

n]−
1

2
[χ2

n] . (6)

Hence, for n = 1, we obtain the product-normal distri-

bution with ϱ = 0 as discussed in the previous section.

For general n, we can view V G(n, 1) as the distribution

of a sum of n independently distributed product-normal

random variables. In particular, we can use Davies’ al-

gorithm to calculate the cdf for V G(n, 1) exactly at the

desired precision.

3. SIMULATIONS: N = 2

The importance of correcting for the inter-dependence

between the elements of w and z in the index I =
∑

i wizi
introduced in the main text can be seen easily in the

N = 2 case. Consider the covariance matrices,

Σ = Σw = Σz =

(
1 r

r 1

)
,

such that w ∼ N (0,Σ) and z ∼ N (0,Σ), and with r

varying. In Fig 2 we show various significance thresh-

old curves of I for varying r, as calculated from the to

I corresponding distribution expressed as a linear com-

bination of χ2 distributions, cf., the main text. Clearly,

for increasing inter-element correlation, the significance

threshold level rises. The magnitude of the effect in-

creases with the desired level of significance.

4. ACCOUNTING FOR SAMPLE OVERLAP

For GWAS, the populations used to investigate two

traits for co-significant signals might overlap. In particu-

lar, it may even be that the GWAS for the two traits have

been conducted for the same population (full overlap). If
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Fig 2: Significance threshold curves of I in the two-element

case under variation of the inter-element correlation (y-axis).

The x-axis corresponds to the argument of the tail probability

p = 1− FI(X), with FI the cdf of the distribution of I. The

gray dotted lines mark the minimal value obtained for zero

correlation.

there is in addition a strong phenotypic correlation be-

tween the traits, a danger for a significant biased result

is present, as long as one does not correct for this effect

induced by the sample overlap.

Let us consider for simplicity first the case of full pop-

ulation sample overlap. For same population (and so

genotype matrix X), and for two different traits y(1) and

y(2), we have as multi-variate models

y(1) = Xα(1) + ϵ(1) ,

y(2) = Xα(2) + ϵ(2) ,
(7)

with true effect sizes α(i) and residuals ϵ(i) ∼ N (0,1).

Our test null assumption is that α(i) = 0. Therefore,

cov(y(1), y(2)) = cov(ϵ(1), ϵ(2)) = (ϵ(1))T ϵ(2) := ζ .

We can assume that the residuals are independent for

independent populations but generally ζ ̸= 0 for overlap-

ping populations. This implies(
ϵ(1)

ϵ(2)

)
∼ N

(
0,

(
1 ζ1

ζ1 1

))
. (8)

Recall from the main text that the z-scored null effect

estimates read (as vector over some region)

z =
1√
n
xT ϵ ∼ N (0,Σ),

with Σ := 1
nx

Tx and xi columns of X. It follows that(
z(1)

z(2)

)
=

1√
n

(
xT

xT

)(
ϵ(1)

ϵ(2)

)
∼ N

(
0,

(
Σ ζΣ

ζΣ Σ

))
.

(9)

Using block Gaussian elimination, one can show that(
Σ ζΣ

ζΣ Σ

)
=

(
1

ζ1 1

)(
Σ

(1− ζ2)Σ

)(
1 ζ1

1

)
. (10)

Hence, (
z(1)

z(2)

)
∼

(
1

ζ1 1

)(
x

y

)
=

(
x

y + ζx

)
, (11)

with (
x

y

)
∼ N

(
0,

(
Σ

(1− ζ2)Σ

))
. (12)

We conclude that

cov(z
(1)
i , z

(2)
j ) = cov(xi, yj + ζxj) = ζ cov(xi, xj) = ζΣij .

Consider now a matrix U such that Σ = UΛUT with

Λ the diagonal matrix of eigenvalues. Clearly, UUT = 1.

We then have

z(1) = UT
√
Λw

z(2) = UT
√
Λv

(13)

with w, v ∼ N (0,1). The correlation between the new

variables w and v can be calculated to be given by

corr(wi, vj) =
cov(wi, vj)√

var(wi)
√

var(vj)

=
cov( 1√

λi
(Uz(1))i,

1√
λj

(Uz(2))j)√
var( 1√

λi
(Uz(1))i)

√
var( 1√

λj

(Uz(2))j)

=

∑
k,l U

T
ikUljcov(z

(1)
k , z

(2)
l )√

var((Uz(1))i)
√

var((Uz(2))j)

=

∑
k,l U

T
ikUlicov(z

(1)
k , z

(2)
l )√

λiλj

= ζ

∑
k,l U

T
ikΣklUlj√
λiλj

= ζ
Λij√
λiλj

.

(14)

It follows that

corr(wi, vi) =

{
ζ i = j

0 i ̸= j
. (15)

a. Coherence test Recall from the main text (Meth-

ods, Product-Normal distribution) that the product dis-

tribution for correlated N (0, 1) variables with coefficient

ϱ can be expressed as

wivi ∼
1 + ϱ

2
[χ2

1]−
1− ϱ

2
[χ2

1] .
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We conclude that for the corrected null distribution with

identical populations for the two traits

(z(1))T z(2) ∼
∑
i

λi

(
1 + ζ

2

)
[χ2

1]−
∑
i

λi

(
1− ζ

2

)
[χ2

1] .

(16)

The coefficient ζ is given by the phenotypic correlation.

As one would expect, for identical traits (ζ = 1), the

above turns into the standard χ2 test of Pascal [7]. For

ζ = 0, we end up with the formula (2.2) of the main text.

The generalization to partial sample overlap is

straightforward. We can assume that the samples are

sorted such that the overlapping samples form the first

no rows, followed by the n
(x)
i independent samples with

no+n
(1)
i +n

(2)
i = n. Correspondingly, the residuals read(

ϵ(1)

ϵ(2)

)
∼

N

0,


1no×no

ζ1no×no

1
n
(1)
i ×n

(1)
i

ζ1no×no
1no×no

1
n
(2)
i ×n

(2)
i


 ,

(17)

and the z-scored null effect estimates(
z(1)

z(2)

)
=

 1√
no+n

(1)
i

(x(1))T

1√
no+n

(2)
i

(x(2))T

(ϵ(1)
ϵ(2)

)
,

(18)

with the first no rows of x(1) identical to x(2).

We assume that the population covariance matrix Σ

is well approximated by the sub-populations of both

GWAS, i.e.,

1

no + n
(k)
i

(x(k))T 1
(no+n

(k)
i )×(no+n

(k)
i )

x(k) ≈ Σ .

For the off-diagonal parts, we have

(
x(k)

)T (1no×no

) (
x(l)
)

√
n
(1)
i + no

√
n
(2)
i + no

≈ Σ√
1 +

n
(1)
i

no

√
1 +

n
(2)
i

no

,

under the assumption that the overlapping sub-

population also approximates the population covariance

structure well.

It follows that the sample overlap calculation proceeds

as for the full overlap case discussed above, but with

ζ → no√
n(1)

√
n(2)

ζ , (19)

with n(k) = no+n
(k)
i the individual GWAS sample sizes.

Note that for no sufficiently small the correction factor

vanishes, as it should be.

The calculation of ζ requires knowledge of the phe-

notypic correlation. However, often only public GWAS

summary statistics are at hand. Fortunately, in this case,

one can use LD score regression [8] to obtain an estima-

tion, as the intercept term thereof precisely corresponds

to the correction factor (19).

In order to illustrate the impact of such a non-zero cor-

rection factor, we consider a multivariate normal distri-

bution with correlation matrix Σ of dimension 100. Σ is

taken to be glued together from two 50-dimensional cor-

relation matrices with off-diagonal elements set identical

to 0.2 and two off-diagonal block matrices with elements

of 0.2 multiplied by various ζ. This setup simulates (9).

We calculate p-values for the index (z(1))T z(2) given in

equation (16) for 1000 random samples with and without

correction factor ζ. Corresponding QQ-plots are shown

in Fig 3 and Fig 4. We observe that inclusion of ζ indeed

removes the bias.

b. Ratio test The index of the ratio test reads (see

Results, section Ratio test of the main text)

R =
(z(1))T z(2)

(z(1))T z(1)
, (20)

with z(i) defined as above. (Similarly for interchanged

indices.) We have

Pr(R ≤ r) = Pr
(
(z(1))T z(2) ≤ r(z(1))T z(1)

)
= Pr

(
(z(1))T (z(2) − r z(1)) ≤ 0 .

) (21)

We can linearly transform variables such that

Pr(R ≤ r) = Pr(wTΛ(v − r w) ≤ 0) .

Under the re-definition u := v − r w we arrive at

Pr(R ≤ r) = Pr(wTΛu ≤ 0) = Fw̄ū(0) ,

as in the main text. However, because of the non-

vanishing correlation (15), we now have instead w̄ ∼
N (0,Λ) and ū ∼ N (0, (1 + r2 − 2ζr)Λ). In particular,

cov(wi, uj) = cov(wi, vj)− rδij = (ζ − r)δij .

With Var(wi) = 1 and Var(uj) = (1+r2−2ζr) we obtain

for the corresponding correlation

corr(wi, uj) =
(ζ − r)δij√

(1 + r2 − 2ζr)
.

Therefore, we deduce similar as in the main text that

w̄ū ∼
∑
i

λi

√
1 + r2 − 2ζr(1 + t)

2
[χ2

1]

− λi

√
1 + r2 − 2ζr(1− t)

2
[χ2

1] ,

(22)
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Fig 3: QQ plot for simulation of the index (16) without applied correction for ζ for various values of ζ. The control factor λ

is taken to be the median of observed − log10 transformed p-values divided by − log10(0.5). An observed λ < 1.1 is commonly

viewed as acceptable.
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Fig 4: QQ plot for simulation of the index (16) with applied correction for ζ for same values of ζ as in Fig 3. λ is defined as in

Fig 3. After applying the correction, the p-values are indeed well calibrated and λ close to one.
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with

t :=
ζ − r√

1 + r2 − 2ζr
.

Similar to the main text, a consistency check can be

performed against the Cauchy distribution. We know

that for two normal distributed random variables x ∼
N (0, σ2

x) and y ∼ N (0, σ2
y) with correlation ζ,

x

y
∼ C

(
σx

σy
ζ,

σx

σy

√
1− ζ2

)
,

with C the general Cauchy distribution. The correspond-

ing cumulative distribution function for our case reads

F =
1

2
+

1

π
arctan

(
r − ζ√
1− ζ2

)
.

Explicit evaluation shows agreement with the χ2 based

calculation via equation (22).

For partial sample overlap, the previous discussion for

the coherence test applies one to one to the ratio test, and

therefore the phenotypic correlation ζ has to be adjusted

as well according to equation (19). As for the coherence,

we calculate p-values for the index R defined in equation

(20) for 1000 random samples with and without correc-

tion factor ζ. Corresponding QQ-plots are shown in Fig

5 and Fig 6. We observe that the correction indeed

improves the calibration of p-values.
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