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Variant: Ancestral D614G Alpha Beta Delta BA.1 BA.2 BA.2.12.1 BA.5

Figure 1. Neutralisation of SARS-CoV-2 variants by monoclonal antibodies (mAbs). For each combi-
nation of mAb and SARS-CoV-2 variant, 288 independent data points are shown, which were generated 
from 3 independent repeats of 12 independent titrations, each consisting of 2 technical replicates of a 
4-point dilution series against live SARS-CoV-2 virus. EC50 values (solid vertical lines) by were calculated 
fitting a 4-parameter dose-response curve (solid curves) to this data. For each mAb, the mean serum con-
centration at maximum (grey point) and twice its standard deviation (grey error line), and at 28 days 
post-administration (black points) and twice its standard deviation (black error line) was obtained from its 
Summary of Product Characteristics (see Table 3) and plotted here for reference.
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Figure 2. EC
50

 values and confidence intervals for neutralisation of SARS-CoV-2 variants by mono-

clonal antibodies (mAbs). A summary of neutralisation data shown in Figure 1 is presented here. The EC50 
value and its 95% confidence interval (error bars) are shown for each combination of monoclonal antibody 
and SARS-CoV-2 variant as shown in Figure 1. For each mAb, the mean serum concentration at maximum 
(grey point) and twice its standard deviation (grey error line), and at 28 days post-administration (black 
points) and twice its standard deviation (black error line) was obtained from its Summary of Product Charac-
teristics (see Table 3) and plotted here for reference.
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Ancestral D614G Alpha Beta Delta Omicron
Serum 

Concentration (ng/ml)
from PK study)BA.1 BA.2 BA.2.12.1 BA.4/5 Max. 28 d.p.i.

Sotrovimab

EC50 (ng/ml) 82.3 71.3 137.9 236.5 36.0 399.1 1848.6 1211.2 1489.6 117600 24500

95%CI [Lower, 65.4 57.8 133.7 200.4 27.8 308.3 1429.2 844.0 880.9

Upper] 103.6 88.0 167.1 279.1 46.5 516.7 2391.2 1738.2 2516.9

Casirivimab

EC50 (ng/ml) 11.4 13.8 9.0 1680.7 4.6 (No neutr.) (No neutr.) (No neutr.) (No neutr.) 182700 37900

95%CI [Lower, 10.1 12.7 8.1 1290.1 4.2

Upper] 13.0 15.0 9.9 2189.5 5.0

Imdevimab

EC50 (ng/ml) 9.0 10.0 6.9 8.2 4.7 (No neutr.) 839.4 356.8 338.5 181700 31000

95%CI [Lower, 8.0 9.1 6.3 7.5 3.9 594.6 310.4 273.8

Upper] 10.1 11.0 7.5 9.0 5.5 1185.2 410.1 418.6

Ronapreve 
(Casirivimab 
+ Imdevimab)

EC50 (ng/ml) 7.4 10.9 8.6 14.6 4.6 (No neutr.) 1802.1 663.4 534.8 n.r. n.r.

95%CI [Lower, 6.4 10.1 7.8 13.2 4.2 907.2 576.6 430.9

Upper] 8.7 11.7 9.4 16.1 5.1 3579.9 763.4 663.7

Tixagevimab

EC50 (ng/ml) 14.2 14.4 7.7 53.2 9.8 2268.5 8914.9 842.7 (No neutr.) 16500 n.r.

95%CI [Lower, 13.1 12.9 7.1 45.1 8.4 1051.9 n.d. 638.1

Upper] 15.5 15.9 8.4 62.7 61.6 4892.2 n.d. 1130.7

Cilgavimab

EC50 (ng/ml) 34.2 38.0 17.8 37.6 28.0 473.4 32.6 16.6 41.7 15300 n.r.

95%CI [Lower, 30.1 34.6 16.2 31.7 25.0 362.6 29.5 14.8 36.5

Upper] 38.8 41.8 19.5 44.6 31.3 617.9 35.9 18.6 47.6

Evusheld 
(Cilgavimab + 
Tixagevimab)

EC50 (ng/ml) 17.4 18.4 9.1 31.1 9.6 287.2 75.3 33.5 84.3 n.r. 26700

95%CI [Lower, 15.6 16.8 8.4 26.4 8.8 250.5 68.4 30.1 72.7

Upper] 19.5 20.1 9.8 36.3 10.4 329.4 82.9 37.2 97.8

Table 1. EC
50

 values and confidence intervals for neutralisation of SARS-CoV-2 variants by mon-

oclonal antibodies (mAbs). A summary of neutralisation data shown in Figure 1 and Figure 2 is 
shown. For reference, the mean serum concentration at maximum and 28 days post-administration for 
each mAb was obtained from its Summary of Product Characteristics and noted here for reference (see 
Table 3).
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Ancestral D614G Alpha Beta Delta Omicron
Serum 

Concentration (IU/ml)
from PK study)BA.1 BA.2 BA.2.12.1 BA.4/5 Max. 28 d.p.i.

Sotrovimab

EC50 (IU/ml) 3685 4256 2200 1283 8436 760 164 251 204 2.58 12.38

95%CI [Lower, 4637 5253 2668 1514 10900 984 212 359 344

Upper] 2928 3449 1815 1087 6529 587 127 175 121

Casirivimab

EC50 (IU/ml) 26540 22030 33893 181 66378 (No neutr.) (No neutr.) (No neutr.) (No neutr.) 1.66 8.00

95%CI [Lower, 30064 23961 37589 235 72225

Upper] 23406 20250 30549 139 61159

Imdevimab

EC50 (IU/ml) 33856 30274 44027 37129 65096 (No neutr.) 361 850 896 1.67 9.79

95%CI [Lower, 38109 33189 48150 40609 76991 510 977 1108

Upper] 30064 27627 40232 33931 55054 256 740 725

Ronapreve 
(Casirivimab 
+ Imdevimab)

EC50 (IU/ml) 40772 27907 35479 20820 65376 (No neutr.) 168 457 567 n.r. n.r.

95%CI [Lower, 47398 30064 39091 22946 71883 334 526 704

Upper] 35069 25927 32237 18900 59480 85 397 457

Tixagevimab

EC50 (IU/ml) 21317 21139 39345 5703 30828 134 34 360 (No neutr.) 18.38 n.r.

95%CI [Lower, 23209 23461 42725 6722 36070 288 n.d. 483

Upper] 19571 19042 36285 4839 26378 62 n.d. 268

Cilgavimab

EC50 (IU/ml) 8883 7981 17080 8072 10845 641 9319 18307 7280 19.83 n.r.

95%CI [Lower, 10091 8777 18714 9584 12124 837 10269 20496 8320

Upper] 7818 7257 15588 6797 9704 491 8457 16353 6370

Evusheld 
(Cilgavimab + 
Tixagevimab)

EC50 (IU/ml) 17414 16513 33482 9745 31764 1056 4030 9055 3600 n.r. 11.36

95%CI [Lower, 19445 18099 36285 11370 34393 1211 4438 10065 4175

Upper] 15588 15062 30922 8354 29309 921 3660 8148 3103

Table 2. EC
50

 values and confidence intervals (reported in International Units) for neutralisation 

of SARS-CoV-2 variants by monoclonal antibodies (mAbs), calibrated to the First WHO Interna-

tional Standard for anti-SARS-CoV-2 immunoglobulin. A summary of neutralisation data shown in 
Figure 1 and Figure 2 is shown. For reference, the mean serum concentration at maximum and 28 days 
post-administration for each mAb was obtained from its Summary of Product Characteristics and noted 
here for reference (see Table 3).
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mAb Timept. Avg SD CV Unit Source of Information Date Accessed Dose Notes

Sotrovimab c28 24.5 10.388 42.40% µg/mL https://www.medicines.org.uk/emc/product/
13097/smpc#gref

24/06/2022 IV 500mg sotrovimab C29 reported; CV reported 
+ SD back-calculated

Sotrovimab cmax 117.6 54.684 46.50% µg/mL https://www.medicines.org.uk/emc/product/
13097/smpc#gref

24/06/2022 IV 500mg sotrovimab CV reported + SD back-
calculated

Casirivimab c28 37.9 10.33 mg/L https://www.medicines.org.uk/emc/product/
12863#gref

24/06/2022 IV 600 mg casirivimab 
and 600 mg imdevimab

Casirivimab cmax 182.7 81.45 mg/L https://www.medicines.org.uk/emc/product/
12863#gref

24/06/2022 IV 600 mg casirivimab 
and 600 mg imdevimab

Imdevimab c28 31 8.24 mg/L https://www.medicines.org.uk/emc/product/
12863#gref

24/06/2022 IV 600 mg casirivimab 
and 600 mg imdevimab

Imdevimab cmax 181.7 77.78 mg/L https://www.medicines.org.uk/emc/product/
12863#gref

24/06/2022 IV 600 mg casirivimab 
and 600 mg imdevimab

Tixagevimab cmax 16.5 5.874 35.60% µg/mL https://www.gov.uk/government/
publications/regulatory-approval-of-
evusheld-tixagevimabcilgavimab/summary-
of-product-characteristics-for-evusheld

24/06/2022 IM 150mg tixagevimab 
and 150mg cilgavimab

Cmax at 14d; CV reported 
+ SD back-calculated

Cilgavimab cmax 15.3 5.8905 38.50% µg/mL https://www.gov.uk/government/
publications/regulatory-approval-of-
evusheld-tixagevimabcilgavimab/summary-
of-product-characteristics-for-evusheld

24/06/2022 IM 150mg tixagevimab 
and 150mg cilgavimab

Cmax at 14d; CV reported 
+ SD back-calculated

Evusheld c28 26.7 11.2 µg/mL https://www.gov.uk/government/
publications/regulatory-approval-of-
evusheld-tixagevimabcilgavimab/summary-
of-product-characteristics-for-evusheld

24/06/2022 IM 150mg tixagevimab 
and 150mg cilgavimab

C29 reported

Table 3. Sources of data for mean serum concentrations of monoclonal antibodies.
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Supplementary Methods 
 
Monoclonal antibodies 
Sotrovimab, casivirimab and imdevimab (together Ronapreve, Regeneron) were obtained 

from the pharmacy at University College Hospitals NHS Foundation Trust. Tixagevimab and 

cilgavimab (together Evusheld, AstraZeneca), were obtained directly from the manufacturer. 

 
Virus variants and culture 
The Eng02 isolate was obtained from Public Health England and contains an identical spike 

to the ancestral virus first observed in Wuhan, China in 2019. The D614G, Alpha, Beta, Delta, 

and Omicron isolates used were the same as previously, and our viral culture technique is 

unchanged7. The SARS-CoV-2 B.1.1.7 isolate (“Alpha”) was hCoV-19/England/ 

204690005/2020, which carries the D614G, Δ69-70, Δ144, N501Y, A570D, P681H, T716I, 

S982A and D1118H mutations in Spike 25, and was obtained from Public Health England 

(PHE), UK, through Prof. Wendy Barclay, Imperial College London, London, UK via the 

Genotype-to-Phenotype National Virology Consortium (G2P-UK). The B.1.617.2 (“Delta”) 

isolate was MS066352H (GISAID accession number EPI_ISL_1731019), which carries the 

T19R, K77R, G142D, Δ156- 157/R158G, A222V, L452R, T478K, D614G, P681R, D950N 

mutations in Spike, and was kindly provided by Prof. Wendy Barclay, Imperial College London, 

London, UK via G2P-UK. The Omicron BA.1 isolate was M21021166, which carries the A67V, 

Δ69-70, T95I, Δ142-144, Y145D, Δ211, L212I, G339D, S371L, S373P, S375F, K417N, 

N440K, G446S, S477N, T478K, E484A, Q493R, G496S, Q498R, N501Y, Y505H, T547K, 

D614G, H655Y, N679K, P681H, A701V, N764K, D796Y, N856K, Q954H, N969K, and L981F 

mutations in Spike, and was kindly provided by Prof. Gavin Screaton, University of Oxford, 

Oxford, UK via G2P-UK. The Omicron BA.2 isolate carries the T19I, Δ24-26, A27S, G142D, 

V213G, G339D, S371F, S373P, S375F, T376A, D405N, R408S, K417N, N440K, S477N, 

T478K, E484A, Q493R, Q498R, N501Y, Y505H, D614G, H655Y, N679K, P681H, N764K, 

D796Y, Q954H, and N969K mutations in Spike and was obtained from a Legacy study 

participant. The Omicron BA.2.12.1 isolate carries the L452Q and S704L mutations in Spike, 

in addition to the BA.2 mutations listed previously, and was kindly provided by Prof. Gavin 

Screaton, University of Oxford, Oxford, UK. The Omicron BA.5 isolate carries the T19I, Δ24-

26, A27S, Δ69-70, G142D, V213G, G339D, S371F, S373P, S375F, T376A, D405N, R408S, 

K417N, N440K, L452R, S477N, T478K, E484A, F486V, Q498R, N501Y, Y505H, D614G, 

H655Y, N679K, P681H, N764K, D796Y, Q954H, and N969K mutations in Spike was obtained 

from the laboratory of Alex Sigal, Africa Health Research Institute, Durban, South Africa. 
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All viral isolates were propagated in Vero V1 cells. Briefly, 50% confluent monolayers of Vero 

V1 cells were infected with the given SARS CoV-2 strains at an MOI of approx. 0.001. Cells 

were washed once with DMEM (Sigma; D6429), then 5 ml virus inoculum made up in DMEM 

was added to each T175 flask and incubated at room temperature for 30 minutes. DMEM + 

1% FCS (Biosera; FB-1001/500) was added to each flask. Cells were incubated at 37° C, 5% 

CO2 for 4 days until extensive cytopathogenic effect was observed. Supernatant was 

harvested and clarified by centrifugation at 2000 rpm for 10 minutes in a benchtop centrifuge. 

Supernatant was aliquoted and frozen at -80°C, and batches were titrated by plaque assay 

and sequence-validated prior to use. 

 
High-throughput live virus microneutralisation assay  
High-throughput live virus microneutralisation assays were performed as previously 

described26. In brief, Vero E6 cells (Institut Pasteur) at 90-100% confluency were infected with 

given SARS-CoV-2 variants in 384-well format, in the presence of serial dilutions of patient 

serum samples or monoclonal antibodies. 24 hours after infection, cells were fixed with 4% 

final Formaldehyde, permeabilised with 0.2% TritonX-100, 3% BSA in PBS (v/v), and stained 

for SARS-CoV-2 N protein using a Biotin-labelled-CR3009 antibody produced in-house in 

conjunction with a 488-conjugated Streptavidin (Invitrogen S32354), and cellular DNA using 

DAPI27. Whole-well imaging at 5x was carried out using an Opera Phenix (Perkin Elmer) and 

fluorescent areas and intensity calculated using the Phenix-associated software Harmony 

(Perkin Elmer). Infection was estimated from the measured area of infected cells/total area 

occupied by all cells. The maximal infection level was determined experimentally for each 

plate with virus-only control wells (100%). Percentages of maximal infection are reported after 

normalisation to the virus-only control wells. 

 

Data analysis, statistics, and availability 
Data analysis was carried out in R. For each monoclonal:VOC combination a 4 parameter fit 

was modelled, using drm from the drc package28, with the following adjustments: 

- A lower limit of 0 for the bottom of the curve, reflecting 0% of maximal infection 

- An upper limit of 110 for the top of the curve, expecting a y intercept <110% of maximal 

infection. 

- A lower limit of 0.1 and an upper limit of 1.5 was applied to Hill slopes. 

For curve generation, a sequence of 100 points between 10-1 and 105 (evenly in log10-space) 

were used to predict y values (% of maximal infection) with each model, alongside 95% 

confidence intervals, using predict. The function drc was used to calculate EC50 values, with 

95% confidence intervals. Model fitting was simplified using the purrr package to allow a single 

model definition to be applied to all VOC:mAb combinations, via group_by(variant, mAb). 
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Graphs were generated using the ggplot2 package in R. All data and full R code to produce 

all figures are freely-available online on Github: 

https://github.com/davidlvb/Crick-UCLH-Legacy-Monoclonals-2022-10  

Conversion of EC50 values to International Units was carried out using the WHO International 

Standard (IS) for anti-SARS-CoV-2 immunoglobulin8 (human – NIBSC code 20/136) or a pre-

calibrated internal standard, and by dividing the sample titre by the International Standard titre 

then multiplying by 1000 IU/ml (the expected EC50 of the international standard against 

ancestral SARS-CoV-2). 
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