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1 Randomisation algorithm

The random surrogate networks are constructed, in the case of a binary SC
matrix, via an algorithm presented in [1]. At each iteration of the algorithm,
two pairs of connected nodes, B → A and D → C, are chosen such that no
edges exist from D → A and B → C. The connections within the chosen
pairs are then removed and new connections are added to the pairs D → A
and B → C. This has previously been used in the related studies of [2] and
[3] to provide random surrogate networks for binary, directed SC matrices of
the macaque monkey. Here, we make amendments to this algorithm in order
to treat weighted structural networks (both all-to-all and thresholded). In the
following, we describe the randomisation procedure at each iteration of the
algorithm, which is generalised for directed networks. This easily extends to
preserve symmetry (such that the random matrix is equal to its transpose),
by repeating the procedure at each step with subscript indices reversed, i.e
wAB → wBA. A schematic of the algorithm for (for each network type) provided
in Figure 1.

In the threshold case, we again choose two pairs of connected nodes, where
A→ B has the smaller of the two connection weights, but enforce the condition
that an edge exists from D → A, but not from B → C. Furthermore, we require
wAB < 1−wAD, in order to keep all edge weights within [0, 1]. If this is satisfied,
we assign new edge weights w?

AB = 0, w?
CD = wCD−wAB , w?

AD = wAD +wAB ,
w?

CB = wAB . This ensures that in the 4-node sub-network we have chosen, we
have 3 edges pre- and post-randomisation to preserve connection density.

For all-to-all weighted networks, we can alter the algorithm further. Again
selecting four random nodes (we are now guaranteed that edges exist between all
pairs), we can choose a value X selected (randomly) from a uniform distribution
[0,min{wAB , 1−wAD, 1−wCB , wCD}] and again assign new node weights w?

AB =
wAB −X, w?

CD = wCD −X, w?
AD = wAD + X, w?

CB = wCB + X.
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Figure 1: Randomisation algorithm schematics. An illustration of how
connections and associated weights change at each iteration of the randomisation
procedure for (a) binary thresholded, with aij = 1 if an edge exists from j → i
and 0 if not; (b) weighted thresholded, where wij is the weight of the edge from
j → i and w?

CD = wCD −wAB , w?
AD = wAD + wAB , w?

CB = wAB ; (c) weighted
all-to-all networks, with w?

AB = wAB −X, w?
CD = wCD −X, w?

AD = wAD +X,
w?

CB = wCB + X, X ∈ [0,min{wAB , 1− wAD, 1− wCB , wCD}].

2 Jaccard Index

Jaccard similarity provides a method for assessing similarity between structural
and functional layers. In the binary case it is computed as the following ratio

J(A[1], A[2]) =
|A[1] ∩A[2]|
|A[1] ∪A[2]|

, (1)

where, A[1], A[2] are the adjacency matrices for the structural and functional
layers, respectively. This measures the relative number of common SC, FC
edges with respect to the total number of edges present in at least one of the
adjacency matrices.

For matrices with non-negative real entries the above Jaccard index gener-
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Figure 2: Left: Jaccard index; and Right: multiplex clustering for the ran-
domised binary multiplex. Results averaged over 100 instances.

alises as follows

J(A[1], A[2]) =

∑
i,j min

(
a
[1]
ij , a

[2]
ij

)
∑

i,j max
(
a
[1]
ij , a

[2]
ij

) .
Note that the above formulation reduces to that in (1) when the matrices
A[1], A[2] are binary.

3 Results

Null models were generated using the algorithm described above for each of
the three multiplex brain networks, i.e. (i) a fully binarised network; (ii) a
thresholded network; and (iii) a fully weighted network. We ran 10,000 iterations
of the algorithm to randomise the structural layers and simulated dynamics
using equations (11), (12) (numbered as in the main manuscript) to produce
time-series describing neural dynamics at each node. The functional layer was
obtained using Pearson correlation between these time series and thesholded
such that the two layers had equal densities. (See the main manuscript for
further details.)

3.1 Jaccard and SF Clustering

Jaccard index and structure-function clustering were computed within the same
parameter space as in Figure 3 (main manuscript) and averaged over 100 reali-
sations in each instance. The results are shown in figures 2, 3 and 4.

The picture is broadly the same for random networks for which the topology
is known in that structure-function similarity is relatively high for all points
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Figure 3: Left: Jaccard index; and Right: multiplex clustering for the ran-
domised thresholded multiplex. Results averaged over 100 instances.
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Figure 4: Left: Jaccard index; and Right: multiplex clustering for the ran-
domised weighted multiplex. Results averaged over 100 instances.
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within the region bounded by the critical branches; whilst we observe a sig-
nificant decrease in structure-function clustering throughout. Together these
results suggest less flexibility in the randomised structures with function more
closely aligning with structure. (See figures 2 and 3.)

For the randomised weighted multiplex, we observe increased structure-
function similarity close to the critical boundaries, although not along all of
them. Structure-function clustering is increased with a large curved region
emanating from the upper critical branch. It is worth noting that the region
of increased structure-function clustering observed for the empirical networks
is contained within this region. However, unlike the empirical networks, for
which increased structure-function clustering is associated with a variety of
spatio-temporal patterns akin to experimentally observed resting state networks
(RSN), the observed increases in Figure 4 are due to excessive synchronisation.

3.2 Functional connectivity plots

Figure 5 shows representative plots of the functional layer for parameter values
chosen from the high structure-function clustering region in Figure 4 (RHS
plot). Specifically, we choose (P,Q) = (−1.83,−3.94) which are the same as
those chosen in Figure 5 of the main manuscript. As detailed in the previous
section, we find that high values of atructure-function clustering are a result
of excessive synchrony, in contrast to the empirical multiplex which exhibits a
variety of RSN-like patterns.
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Figure 5: Simulated functional connectivity matrices (layer 2) deploying the ran-
domised weighted structural network with specific parameter values (P,Q) =
(−1.83,−3.94), which are the same as those used in Figure 5 of the main
manuscript.
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