

Supplementary Fig. 1: Manhattan plots showing information obtained with vcftools (using all Midas in CL Xiloá, n=95, shown in log scale) including per site SNP quality (--site-quality, QUAL), depth per site summed across all individuals (--site-depth, SUM_DEPTH) and the mean in depth per site averaged across all individuals (--site-mean-depth, MEAN_DEPTH). Green dots are sites found as private SNPs in hybrids (n=11, frequency cut off = 0.5, see also Supplementary Table 3). Source Data is provided in Source Data file 2.

Supplementary Fig. 2: First two plots on the left are 2D scatter plots using genetic PC1-2 and PC3-4, respectively, based on 175,942 SNPs for all four Midas cichlid species and hybrids in CL Xiloá (3D plots shown in Fig. 1 a-b in the main manuscript). 2D PCA based on only parental species *A. sagittae* and *A. xiloaensis*, hybrids, and backcrosses is presented on the right. IDs of three *A. viridis* that deviate from the species cloud and five backcrosses closer to hybrids are shown. Source data are provided as Source Data file 1.

Supplementary Fig. 3: Scatter plot of LD1 - LD2 (left) and L3 – LD4 (right) scores obtained from a linear discriminant function based on genomic data (175,942 SNPs) including the two parental species and their backcrosses, hybrids and the remaining two Midas cichlid species in CL Xiloá. Source data are provided as Source Data file 1.

Supplementary Fig. 4: Neighbor joining tree based on 88,369 SNPs and 240 alleles (extracted from 120 diploid individuals). Colored circles on the tips represent individuals per species as classified in clade legends, as well as backrosses in white. One haplotype of the xiloeansis backcross 13034 is nested within the hybrid clade, and one haplotype of hybrid 00882 is nested within pure A. xiloaensis. Source Data is provided in Source Data file 2.

0.25 0.25 0.25 (Man_cit,Xil_hyb) (Xil_ama,Xil_xil) (Man_cit, Xil_sag) (Xil_ama,Xil_hyb) (Man_cit,Xil_xil) (Xil_ama,Xil_hyb) (Man_cit,Xil_hyb) (Xil_ama,Xil_vir) (Man_cit, Xil_ama) (Xil_hyb,Xil_sag) (Man_cit,Xil_hyb) (Xil_ama, Xil_sag) (Man_cit, Xil_ama) (Xil_hyb,Xil_vir) (Man_cit,Xil_vir) Xil_ama,Xil_hyb) (Man_cit, Xil_ama) (Xil_hyb,Xil_xil) 0.45 0.45 0.45 0.35 0.35 0.35 0.25 0.25 0.25 (Man_cit,Xil_sag) (Xil_ama,Xil_vir) (Man_cit,Xil_vir) (Xil_ama,Xil_sag) (Man_cit,Xil_vir) (Xil_ama,Xil_xil) (Man_cit,Xil_xil) (Xil_ama,Xil_vir) (Man_cit,Xil_ama) (Xil_sag,Xil_vir) (Man_cit,Xil_sag) (Xil_ama,Xil_xil) (Man_cit, Xil_ama) (Xil_sag,Xil_xil) (Man_cit,Xil_xil) (Xil_ama,Xil_sag) (Man_cit, Xil_ama) (Xil_vir,Xil_xil) 0.45 0.45 0.45 Concordance factor 0.35 0.35 0.35 0.25 0.25 0.25 (Man_cit,Xil_hyb) (Xil_sag,Xil_vir) (Man_cit,Xil_sag) (Xil_hyb,Xil_vir) (Man_cit,Xil_hyb) (Xil_sag,Xil_xil) (Man_cit,Xil_xil) (Xil_hyb,Xil_sag) (Man_cit,Xil_xil) (Xil_hyb,Xil_vir) (Man_cit,Xil_vir) (Xil_hyb,Xil_xil) (Xil_vir,Xil_xil) (Man_cit,Xil_vir) (Xil_hyb,Xil_sag) (Man_cit,Xil_sag) (Xil_hyb,Xil_xil) (Man_cit, Xil_hyb) 0.45 0.45 0.45 0.35 0.35 0.35 0.25 0.25 0.25 (Xil_ama,Xil_sag) (Xil_hyb,Xil_xil) (Xil_ama,Xil_xil) (Xil_hyb,Xil_sag) (Man_cit,Xil_vir) (Xil_sag,Xil_xil) (Man_cit,Xil_xil) (Xil_sag,Xil_vir) (Xil_ama,Xil_vir) (Xil_hyb,Xil_sag) (Xil_ama,Xil_hyb) (Man_cit,Xil_sag) (Xil_vir,Xil_xil) (Xil_sag,Xil_vir) (Xil_ama,Xil_sag) (Xil_ama,Xil_hyb) (Xil_sag,Xil_xil) (Xil_hyb,Xil_vir) 0.45 0.45 0.45 0.35 0.35 0.35 0.25 0.25 0.25 (Xil_ama,Xil_hyb) (Xil_vir,Xil_xil) (Xil_hyb,Xil_sag) (Xil_vir,Xil_xil) (Xil_ama,Xil_vir) (Xil_hyb,Xil_xil) (Xil_ama,Xil_xil) (Xil_hyb,Xil_vir) (Xil_ama,Xil_xil) (Xil_sag,Xil_vir) (Xil_hyb,Xil_vir) (Xil_sag,Xil_xil) (Xil_hyb,Xil_xil) (Xil_sag,Xil_vir) (Xil_ama,Xil_vir) (Xil_sag,Xil_xil) (Xil_ama, Xil_sag) (Xil_vir,Xil_xil) Ξ Supplementary Fig. 5: Mean concordance factors (CF = proportion of genome wide SNPs recovering each of

Supplementary Fig. 5: Mean concordance factors (CF = proportion of genome wide SNPs recovering each of the three possible alternative topologies for a given species quartet) based on 100 individual quartets with 88,369 SNPs for all 15 possible quartets in Midas cichids in CL Xiloá and one outgroup. Individual data points are shown on the bars. Abbreviations: Xil_xil = A. xiloaensis; Xil_sag = A. sagittae; Xil_hyb = hybrids; Xil_vir = A. viridis; Xil_ama = A. amarillo; Man_cit = A. citrinellus (outgroup). Source data are provided as Source Data file 1.

Supplementary information of the article "Early stages of sympatric homoploid hybrid speciation in crater lake cichlid fishes" by M. Olave, A. Nater, A. F. Kautt, A. Meyer. *Nature Communications* (2022).

0.45

0.35

0.45

0.35

0.45

0.35

Supplementary Fig. 6: F_{st} calculation along the genome based on 10-kb windows. The median and 99.9% quantiles are shown by the red and black dotted lines, respectively. Source data are provided in vcf format in Source Data file 2.

Supplementary Fig. 7: Admixture plots constructed using 175,942 SNPs and assuming K=3 (CV=0.1558) and K=4 (CV=0.16514). Source data are provided as Source Data file 1.

 2.9e-02 Deadenylation-dependent decapping of nuclear-transcribed mRNA 2.9e-02 Nuclear-transcribed mRNA catabolic process, deadenylation-dependent decay 2.9e-02 RNA decapping 2.9e-02 RMA decaphing 2.9e-02 RMA destabilization 3.1e-02 RNA destabilization 3.1e-02 Pos. reg. of mRNA catabolic proc. 3.7e-02 Reg. of RNA stability 3.8e-02 Neg. reg. of translation 2.9e-02 Copper ion homeostasis 2.9e-02 Copper ion homeostasis 2.9e-02 Copper ion homeostasis 2.9e-02 Collular copper ion homeostasis 2.9e-02 Copper ion homeostasis 1.0e-01 Votilin tethering 1.0e-01 Votilin tethering 1.0e-01 Votilin tethering
--

Supplementary Fig. 8: Hierarchical clustering tree of gene ontology (GO) terms fore gene annotations in concordance with Supplementary Table 4 and 7. Pathways with many shared genes are clustered together. Bigger dots indicate more significant p-values in false discovery rate (FDR). Left, results based on private alleles in hybrids, involving different GO functions for biological processes, mainly clustering in four groups: (i) respiratory functions, (ii) different pathways for RNA degradation, (iii) response to estrogen stimulus and gene expression and (iv) related to metabolic processes. Right, results for GO enrichment analysis for fixed SNPs in parental species, including several different biological processes associated to them, including pyrimidine and CTP metabolism, as well nervous system processes.

Supplementary Fig. 9: Matrix comparing hybrid genotypes at 615 SNPs under 95% fixation rate frequency between the parental species. Separation of SNP columns is in log-scale according to their physical distance within each chromosome (scale shown in chromosome 1, bottom). Source data is available in Source Data file 1.

Supplemantary Fig. 10: Mean and standard deviation (n = 55 biologically independent individuals) of inbreeding coffecient (F-statistic = 1 – observed heterozygosity / expected heterozygosity) calculated based on different minimum depth filters applied to the genomic data (--minDP 1 to 10 in vcftools, no missing data filter applied in order to explore the impact of low coverage affecting calculated heterozygosyty). No significant difference are found in any comparisons between DP = 2 to 10 (two sided F-test; F = 0.6795 on 8 and 486 DF, p-value 0.7098). Source data are provided as Source Data file 1.

			Chromosome 1				Chro	mosome 2	
XII_BC_01239									
XII_BC_17975									
XII_BC_03841									
XII_BC_19501									
XII_BC_00072									
XII_DC_00001									
hyb_00870									
hyb_00002									
hyb_00002									
hyb_00902									
hyb_07653									
hyb_07033									
hyb_00078									
hyb_13426									
hyb_10420									
hyb_00915									
sag BC 13034									
sag_BC_10004									
sag_BC_17000									
sag BC 13137									
sag BC 19493									
sag BC 07639									
sag BC 13032									
sag BC 07709									
sag_BC_17981									
sag_BC_07710									
sag_BC_19484									
sag_BC_17976									
sag_BC_19488									
sag_BC_07786									
-									
	[1	1				1	
0e	ə+00	1e+07	2e+07	3e+07	4e+07	0e+00	1e+07	2e+07	3e+07

		C	hromosome	ə 3						Chromos	ome 4		
xil_BC_01239													
xil_BC_03841													
xil_BC_19501													
xil_BC_00880													
xil_BC_00872													
xil_BC_00881													
hvb 00870													
hvb 00882													
hvb 07656 📰													
hyb_00902 💳													
hyb_07648 🎫													
hyb_07653 💳													
hyb_00878 🎫													
hyb_13113 📰													
hyb_13426 📰													
hyb_00915 📰													
hyb_13275 🔜													
sag_BC_13034 📰													
sag_BC_17980													
sag_BC_13446 📰													
sag_BC_13137							1						
sag_BC_19493													
sag_BC_07639													
sag_BC_13032													
sag_BC_07709													
sag_BC_17981													
sag_BC_0//10													
sag_BC_19484													
Sag_BC_1/9/6													
Sag_BC_19488													
Say_DU_0//00													
—			1	1	1			1	1	1			
00+00	16+07	26±07	30+07	40+07	50+07	6e+07	0.0e+00	5 00+06	1.00+07	1 50+07	2 0e+07	2 50+07	3 0e±07
06+00	16107	2010/	Positions (bp)	46+07	00107	06107	0.00+00	5.06+00	1.06+07	Positions	(bn)	2.00107	0.00107

		Chromosome	5				Chromosome	6	
vil DC 01000									
XII_BC_01239									
xil_BC_03641									
vil BC 00880									
xil_BC_00872									
xil_BC_00881									
hvb 00870									
hvb 00882									
hyb 07656 🖴									
hyb_00902 📰									
hyb_07648 📒									
hyb_07653 🖬									
hyb_00878 🖴									
hyb_13113 🗮									
hyb_13426 🗮									
hyb_00915 📒									
hyb_13275 📒									
sag_BC_13034 📰									
sag_BC_17980									
sag_BC_13446 📕									
sag_BC_13137 🚟									
sag_BC_19493 =									
sag_BC_07639 =									
sag_BC_13032									
sag_BC_07709									
sag_BC_17981									
sag_BC_07710									
sag_BC_19484									
sag_BC_17976									
sag_BC_19488									
sag_BC_07786									
Г									
		0	007	4 67	000	107	007	007	4 07
0e+00	u 1e+07	2e+07	36+07	4e+07	Ue+00	10+07	20+07 Positions (bp)	36+07	40+07
		rositions (bp)					rusitions (bp)		

		Chromosom	ə 7					С	hromosome	8		
xil BC 01239 💳												
xil BC 17975												
xil BC 03841												
xil BC 19501												
xil BC 00880												
xil BC 00872												
xil BC 00881												
hvb 00870												
hvb 00882												
hvb 07656												
hyb_00902												
hyb_07648 💳												
hyb 07653 💳												
hyb_00878 📰												
hyb_13113 💳												
hyb_13426												
hyb_00915												
hyb_13275												
sag_BC_13034												
sag_BC_17980												
sag_BC_13446												
sag_BC_13137												
sag_BC_19493												
sag_BC_07639												
sag_BC_13032												
sag_BC_07709												
sag_BC_17981												
sag_BC_07710 🔤												
sag_BC_19484												
sag_BC_17976 🔜												
sag_BC_19488												
sag_BC_07786												
											<u> </u>	
I	1 1	I	1	1	I	I	I	I	I	I	I	I
0.0e+00	5.0e+06 1.0e+07	1.5e+07	2.0e+07 2.5e	e+07	3.0e+07	0.0e+00	5.0e+06	1.0e+07	1.5e+07	2.0e+07	2.5e+07	3.0e+07
		Positions (bp)							Positions (bp)			

		(Chromosor	ne 9						Chromo	osome 10			
vil PC 01020														
xil_BC_01239														
xil_BC_17975														
xil_BC_19501														
xil_BC_00880														
xil_BC_00000														
xil_BC_00881														
hvb 00870														
hyb_00882														
hyb_07656														
hvb 00902														
hvb 07648														
hvb 07653														
hyb_00878 📕														
hyb_13113 📕														
hyb_13426 📕														
hyb_00915 🖁														
hyb_13275 📕														
sag_BC_13034														
sag_BC_17980														
sag_BC_13446														
sag_BC_13137														
sag_BC_19493														
sag_BC_07639 🖥														
sag_BC_13032														
sag_BC_07709 🖥														
sag_BC_17981 📕														
sag_BC_07710 🚪														
sag_BC_19484 🚦														
sag_BC_17976 🗏														
sag_BC_19488 🗧														
sag_BC_07786 📕														
Г							Г							
0.00	00 E 00106	1.00+07	1 50+07	2.00+07	2 50107	2.00107	0.00	5.00106	1.00107	1 50:07	200107	2 50 107	2.001.07	2 50 107
0.0e+	00 5.0e+06	1.00+07	Positions (b	2.00+07	2.56+07	3.00+07	0.06+0	5.0e+06	1.00+07	1.50+07 Poeiti	2.0e+07	2.56+07	3.00+07	3.50+07
			i usitions (b)	P)						1 0510				

		Chromosome 11				C	Chromosome 12		
xil_BC_01239									
xil_BC_17975									
xil_BC_03841									
xil_BC_19501									
xil_BC_00880									
xil_BC_00872									
xil_BC_00881									
hyb_00870									
hyb_00882									
hyb_07656									
hyb_00902									
hyb_07648									
hyb_07653									
hyb_00878									
hyb_13113									
hyb_13426									
hyb_00915									1.1
hyb_13275									
sag BC 13034									
sag BC 17980									
sag BC 13446									
sag BC 13137									
sag BC 19493									
sag BC 07639									
sag BC 13032									
sag BC 07709									
sag BC 17981									
sag BC 07710									1.0
sag BC 19484									
sag BC 17976									
sag BC 19488									L
sag_BC_07786									
F									
I	I	I	I	I	I	I	I	I	I
0e+(00 1e+07	2e+07	3e+07	4e+07	0e+00	1e+07	2e+07	3e+07	4e+
		Positions (bp)					Positions (bp)		

				Chromoso	ome 13						Chromosome 1	4	
xil BC 01239													
xil BC 17975													
xil BC 03841													
xil BC 19501													
xil BC 00880													
xil BC 00872													
xil_BC_00881													
hyb_00870													
hyb_00882													
hyb_07656													
hyb_00902													
hyb_07648													
hyb_07653													
hyb_00878													
hyb_13113													
hyb_13426													
hyb_00915													
hyb_13275								- ni					
sag_BC_13034													
sag_BC_17980													
sag_BC_13446													
sag_BC_13137													
sag_BC_19493								- m					
sag_BC_07639													
sag_BC_13032													
sag_BC_07709													
sag_BC_17981													
sag_BC_07710													
sag_BC_19484								111					
sag_BC_17976													
sag_BC_19488													
sag_BC_07786													
		I				I					I		
0.0	e+00 5	.0e+06	1.0e+07	1.5e+07	2.0e+07	2.5e+07	3.0e+07	3.5e+07	0e+00	1e+07	2e+07	3e+07	4e+07
				Positions	(bp)						Positions (bp)		

Chromosome 16

Chromosome 15

xil_BC_01239 xil_BC_17975 xil_BC_03841 xil_BC_19501 xil_BC_00880 xil_BC_00872 xil_BC_00881 hyb_00870 hyb_00882 hyb_07656 hyb_00902 hyb_07648 hyb_07653 hyb_00878 hyb_13113 hyb_13426 hyb_00915 hyb_13275 sag_BC_13034 sag_BC_17980 sag_BC_13446 sag_BC_13137 sag_BC_19493 sag BC 07639 sag_BC_13032 sag BC 07709 sag_BC_17981 sag_BC_07710 sag_BC_19484 sag BC 17976 sag_BC_19488 sag BC 07786 0.0e+00 5.0e+06 1.0e+07 1.5e+07 2.0e+07 2.5e+07 3.0e+07 3.5e+07 0e+00 1e+07 2e+07 3e+07

Positions (bp) Positions (bp) Supplementary Fig. 11 (continuation): Estimate of ancestry with chromopainter for hybrid individuals + backrosses across their 24 chromosomes inferred as A. sagittae (light blue) or A. xiloaensis (dark blue) with probability >0.8. Gray represents uncertain ancestry (probability <0.8). Source data are provided in Source Data file 2. This figure continues below.

15

Chromosome 18

Chromosome 17

xil BC 01239									
xil BC 17975									
xil BC 03841									
xil BC 19501									
xil BC 00880									
xil BC 00872									
xil BC 00881									
hvb 00870									
hyb_00882									
hyb_07656									
hyb_00902									
hyb_00302									
hyb_07653									
hyb_07055									
11yb_00070									
nyb_13113									
nyb_13426									
nyb_00915									
hyb_13275									
sag_BC_13034									
sag_BC_17980									
sag_BC_13446									
sag_BC_13137									
sag_BC_19493									
sag_BC_07639									
sag_BC_13032									
sag_BC_07709									
sag BC 17981									
sag BC 07710									
sag BC 19484									
sag BC 17976									
sag BC 19488									
sag_BC_10100									
000_00.700									
	r								
	I I	I	I	I	I	I	I	I	I
0.04	5 06106	1.00+07	1 50+07	2 00+07	2 50+07	00+00	16+07	20+07	30107
0.06	5100 5.08100	1.00+07	1.36+07	2.00107	2.00+07	00100	1010/	2010/	56707
		Positio	ns (bp)					Positions (bp)	

Supplementary Fig. 11 (continuation): Estimate of ancestry with chromopainter for hybrid individuals + backrosses across their 24 chromosomes inferred as *A. sagittae* (light blue) or *A. xiloaensis* (dark blue) with probability >0.8. Gray represents uncertain ancestry (probability <0.8). Source data are provided in Source Data file 2. This figure continues below.

16

Chromosome 19	Chromosome 20
xil_BC_01239	
xil_BC_17975	
xil_BC_03841	
xil_BC_19501	
xil_BC_00880	
xil_BC_00872	
xil_BC_00881	
hyb_00870	
hyb_00882	
hyb_07656	
hyb_00902	
hyb_07648	
hyb_07653	
hyb_00878	
hyb_13113	
hyb_13426	
hyb_00915	
hyb_13275	
sag_BC_13034	
sag_BC_17980	
sag_BC_13446	
sag_BC_13137	
sag_BC_19493	
sag_BC_07639	
sag_BC_13032	
sag_BC_07709	
sag_BC_17981	
sag_BC_07710	
sag_BC_19484	
sag_BC_17976	
sag_BC_19488	
sag_BC_07786	
0.0e+00 5.0e+06 1.0e+07 1.5e+07 2.0e+07 2.5e+07 3.0e+07	0e+00 1e+07 2e+07 3e+07
Positions (bp)	Positions (bp)

	Chromosome 21	Chromosome 22
xil_BC_01239		
xil BC 17975		
xil BC 03841		
xil BC 19501		
xil BC 00880		
xil BC 00872		
xil BC 00881		
hyb 00870		
hvb 00882		
hvb 07656		
hyb_00902		
hyb 07648		
hyb 07653		
hyb_00878		
hyb_13113		
hyb_13426		
hvb 00915		
hvb 13275		
ag BC 13034		
ag BC 17980		
ag BC 13446		
ag BC 13137		
ag BC 19493		
ag BC 07639		
ag BC 13032		
ag BC 07709		
ag BC 17981		
ag BC 07710		
ag BC 19484		
ag BC 17976		
ag BC 19488		
ag BC 07786		
<u>-</u>		
0.00+00 5.00+00	0 1.00+07 1.30+07 2.00+07 2.30+07 3.00+07 3.30+07	0.00400 0.00400 1.00407 1.00407 2.00407 2.00407 3.00407 3.

Chromosome 23 Chromosome 24 xil BC 01239 xil BC 17975 🖬 xil BC 03841 🗖 xil BC 19501 📕 xil BC 00880 🖬 xil BC 00872 🖥 xil BC 00881 hyb 00870 🖬 hyb_00882 📕 hyb 07656 🗧 hyb 00902 📑 hyb 07648 📰 hyb_07653 🗧 hyb_00878 hyb_13113 hyb_13426 📕 hvb 00915 hyb 13275 📕 sag_BC_13034 sag_BC_17980 🚟 sag_BC_13446 sag_BC_13137 sag_BC_19493 sag BC 07639 🚟 sag_BC_13032 sag BC 07709 sag BC 17981 🖥 sag BC 07710 sag_BC_19484 sag BC 17976 🚟 sag_BC_19488 sag BC 07786 0.0e+00 5.0e+06 1.0e+07 1.5e+07 2.0e+07 2.5e+07 3.0e+07 0e+00 1e+07 2e+07 30+07 Positions (bp) Positions (bp)

Supplementary Fig. 12: Histograms of ancestry tract length (bp) per individual and separated per donor (in log scale). Vertical lines indicate positions of medians. Source data is provided in Source Data file 2.

Supplementary Fig. 13: Violin plots showing: left, acestry tract length (TL) for backcrosses and hybrids and their donors; center, medians of donor TL obtained per individual for bacrosses and hybrids; right, donor ratio of TL medians for backcrosses and hybrids. In the later, horizontal line is indicating log ratio = 0, i.e. equal medians for both donors. Source data are provided as Source Data file 1 and 2.

Supplementary Fig. 14: Left, changes in effective population size through time estimated using MSMC comparing hybrids and pure parental species. Right, changes in effective population size through time and relative cross coalescence rates estimated using MSMC comparing backcrosses and pure parental species. Source data are provided as Source Data file 1.

Supplementary Fig. 15: Landmark, semilandmark and helper point positions for geometric morphometric analyses. Raw Source Data is available in tps format in Source Data file 2.

A. sagittae
 hybrids
 A. xiloaensis
 A. viridis
 A. amarillo

Supplementary Fig. 16: Box plots of different linear measures of all Midas cichlid species in CL Xiloá, displaying 5% and 95% quartile (lower and upper whiskers limits, respectively), 25% and 75% quantile (lower and upper box bounds, respectively) and 50% quantil in centre. For comparision, only pure parental and hybrid samples were included in the plots on the left, and backcrosses were classified as parental species in plots on the right. From the sencond row to the bottom, residuals were obtained after regressing variables with standard length (i.e., size correction). A total of biological independent *A. xiloaensis* n =10, *A. sagittae* n = 13, hybrids n = 11, backcrosses n = 21, *A. viridis* n = 19, *A. amarillo* n=21 IDs of outliers for the two parental species and hybrids are shown. Source data are provided as Source Data file 1.

Supplementary Fig. 17: Scatter plot of LD1 and LD2 axes obtained from a linear discriminant function based on the geometric morphometric data and including all ingroup samples (pure parental species plus backcrosses and hybrids). Source data are provided as Source Data file 1.

Supplementary Fig. 18: Linear correlations and two sided F-test result between LD1 (from dicriminant analysis, Supplementary Fig. 6) and body depth (left), as well as LD2 and caudal penduncle depth (using different LMs), considering only pure *A. sagittae*, *A. xiloaensis*, and hybrids (above) and all samples including backcrosses (below). All linear variables described in the materials and methods section were fitted (shown in Supplementary Fig. 15), but only significant correlations are shown here. Source data are provided as Source Data file 1.

Supplementary Fig. 19: Scatter plots and linear models fit between the caudal peduncle depth (using linear distances between different LM sets (LM7-11 and 8-10); after correcting by standard length) and the genetic PC4. Statistical two sided F-test results: (left) F = 10.46 on 1 and 53 DF, p-value = 0.002105^{**} ; (right) F = 9.55 on 1 and 53 DF, p-value = 0.003184^{**} . Source data are provided as Source Data file 1.

Supplementary Table 1. HyDe result (hybrid detection test, Z-test) based on 88,369 SNPs (sampled every 10 kb along the genome). Samples of *A. citrinellus* from Great Lake Managua were used as outgroup. Source data is available in Source Data file 2.

P1	Hybrid	P2	p-value	Z score	Gamma
A. xiloaensis	hybrids	A. sagittae	0.00560**	2.5362	0.628
A. xiloaensis	hybrids	A. viridis	0.42332	0.3360305	0.966
A. xiloaensis	hybrids	A. amarillo	-0.58179	0.71964605	1.054
A. sagittae	hybrids	A. viridis	-1.42025	0.9222339	1.244
A. sagittae	hybrids	A. amarillo	-0.22096	0.58744054	1.022
A. viridis	hybrids	A. amarillo	1.41714	0.07821995	0.603

Supplementary Table 2: Private SNP counts per species (frequency cutoff = 0.5). A total of 3,745,928 SNPs were considered among 74 individuals in total: 21 *A. amarillo*, 11 hybrids, 19 *A. viridis*, 10 pure *A. xiloaensis* and 13 pure *A. sagittae*. Source data is provided in vcf format in Source Data file 2.

Chromosome	A. amarillo	hybrids	A. viridis	A. xiloaensis	A. sagittae
1	29	5	0	0	1
2	0	0	0	0	0
3	3	0	0	0	1
4	5	7	1	5	0
5	3	0	0	0	0
6	47	0	2	0	0
7	6	0	4	1	0
8	7	0	0	3	0
9	2	0	0	0	0
10	0	2	0	0	0
11	8	0	0	4	0
12	7	1	0	1	0
13	0	0	0	0	0
14	5	0	3	0	0
15	7	0	1	0	0
16	1	2	4	0	0
17	4	1	0	1	0
18	0	18	0	0	0
19	0	0	1	1	0
20	0	2	0	1	0
21	4	0	0	2	0
22	1	0	2	0	0
23	15	0	6	0	0
24	33	0	0	1	0
Total	187	38	24	20	2

Supplementary information of the article "Early stages of sympatric homoploid hybrid speciation in crater lake cichlid fishes" by M. Olave, A. Nater, A. F. Kautt, A. Meyer. *Nature Communications* (2022). Supplementary Table 3: Thirty-eight private SNPs found in eleven hybrids (frequency >= 0.5), their annotations, distance to the annotated gene, and information (using all Midas cichlids in CL Xiloá, n=95) on per-site SNP quality (QUAL), depth per site summed across all individuals (SUM_DEPTH and SUMSQ_DEPTH), and the mean and variation in depth per site averaged across all individuals (MEAN_DEPTH and VAR_DEPTH). These same statistics are shown in reference to all SNPs across the genome in Supplementary Figure 1. Source data are provided in vcf format in Source Data file 2.

CHR	Position	Туре	Annotation	Distance (bp)	QUAL	SUM_DEPTH	SUMSQ_DEPTH	MEAN_DEPTH	VAR_DEPTH
1	30273478	intergenic region	Very long chain 3-oxoacyl-CoA reductase-B	59948	3697.28	1788.00	37262.00	18.82	38.40
1	30274360	intergenic region	Very long chain 3-oxoacyl-CoA reductase-B	60830	38670.20	1809.00	37607.00	19.04	33.62
1	30276999	intergenic region	Very long chain 3-oxoacyl-CoA reductase-B	63469	35817.20	1746.00	35808.00	18.38	39.56
1	30279393	intergenic region	Very long chain 3-oxoacyl-CoA reductase-B	65863	10340.30	1478.00	26950.00	15.56	42.08
1	30280072	intergenic region	Very long chain 3-oxoacyl-CoA reductase-B	66542	7216.31	1297.00	21057.00	13.65	35.63
4	23365900	missense variant	WW domain-binding protein 2	NA	3297.67	2027.00	47559.00	21.34	45.84
4	28266290	intergenic region	NA	17692	4080.26	1647.00	33419.00	17.34	51.76
4	28326507	downstream gene variant	Protein SCO1 homolog, mitochondrial	600	2974.47	1875.00	39841.00	19.74	30.15
4	28385217	intergenic region	Growth arrest-specific protein 7	28157	5120.13	2133.00	51589.00	22.45	39.34
4	28400388	intergenic region	Growth arrest-specific protein 7	12986	6565.44	1966.00	43950.00	20.69	34.73
4	28414990	intron variant	Growth arrest-specific protein 7	1493	7289.90	1814.00	38462.00	19.09	40.68
4	28523641	5 prime UTR variant	Dual specificity mitogen-activated protein kinase kinase 4	6510	15316.10	1980.00	44790.00	20.84	37.47
10	27466499	downstream gene variant	55 kDa erythrocyte membrane protein	2384	3855.22	1935.00	43035.00	20.37	38.53
10	27581197	intergenic region	Gamma-aminobutyric acid receptor subunit beta-4	9040	3664.46	2016.00	45734.00	21.22	31.41
12	1133713	intergenic region	Serologically defined colon cancer antigen 3 homolog	10389	4073.07	2009.00	47189.00	21.15	50.04
16	35299454	intergenic region	Poly [ADP-ribose] polymerase 4	59747	3800.12	1973.00	43387.00	20.77	25.65
16	35405550	intergenic region	Titin	163988	3607.78	1789.00	36347.00	18.83	28.27
17	14118258	intergenic region	mRNA-decapping enzyme 1B	21701	865.17	969.00	11637.00	10.20	18.65
18	12232293	intergenic region	RNA-binding Raly-like protein	9795	4100.28	2060.00	47696.00	21.68	32.20
18	12268414	intron variant	RNA-binding Raly-like protein	1898	4901.34	1923.00	42543.00	20.24	38.48
18	12271855	intron variant	RNA-binding Raly-like protein	5339	6497.46	1947.00	45229.00	20.49	56.66
18	12272707	intron variant	RNA-binding Raly-like protein	6191	169782.00	1519.00	27165.00	15.99	30.61
18	12272820	intron variant	RNA-binding Raly-like protein	6304	4628.54	1716.00	33980.00	18.06	31.74
18	12273625	intron variant	RNA-binding Raly-like protein	7109	6026.96	2008.00	45446.00	21.14	31.95
18	12273685	intron variant	RNA-binding Raly-like protein	7169	6397.05	2072.00	48494.00	21.81	35.13
18	12274867	intron variant	RNA-binding Raly-like protein	8351	27570.70	2124.00	50992.00	22.36	37.27
18	12275000	intron variant	RNA-binding Raly-like protein	8484	26925.20	2026.00	46646.00	21.33	36.58
18	12275314	intron variant	RNA-binding Raly-like protein	8798	24278.70	1913.00	41243.00	20.14	28.95
18	12275436	intron variant	RNA-binding Raly-like protein	8920	6629.32	2115.00	50377.00	22.26	35.00
18	12275475	intron variant	RNA-binding Raly-like protein	8959	24962.80	2079.00	48691.00	21.88	33.98
18	12276063	intron variant	RNA-binding Raly-like protein	9547	5616.11	1791.00	37223.00	18.85	36.79
18	12276106	intron variant	RNA-binding Raly-like protein	9590	18370.10	1949.00	42993.00	20.52	32.00
18	12276671	intron variant	RNA-binding Raly-like protein	10155	25102.60	2007.00	45445.00	21.13	32.39
18	12276760	intron variant	RNA-binding Raly-like protein	10244	6213.81	1981.00	44061.00	20.85	29.28
18	12281200	intron variant	RNA-binding Raly-like protein	302	6512.47	1634.00	31556.00	17.20	36.71
18	12334068	3 prime UTR variant	Leucine-rich repeat and coiled-coil domain-containing protein 1	188	5264.95	1983.00	44141.00	20.87	29.24
20	13306510	intron variant	Cadherin-like protein 26	2602	5296.93	1766.00	36868.00	18.59	42.97
20	13310654	intron variant	Cadherin-like protein 26	6746	5194.84	1813.00	39695.00	19.08	54.21

Supplementary Table 4. Result of gene ontology (GO) enrichment analysis (for the 20 most statistically significant results), for private alleles in hybrids. Annotations used as input are shown in Supplementary Table 3.

Enrichment	N	Pathway	Fold Enrichment	Pathway	Genes
0.029	1	8	390.86	Respiratory chain complex IV assembly	sco1
0.029	2	247	25.32	Pos. reg. of metabolic proc.	dcp1a wbp2
0.029	1	4	781.72	Reg. of gene expression, epigenetic	wbp2
0.029	1	5	625.38	Copper ion homeostasis	sco1
0.029	1	8	390.86	Nuclear-transcribed mRNA catabolic process, deadenylation- dependent decay	dcp1a
0.029	1	5	625.38	Deadenylation-dependent decapping of nuclear-transcribed mRNA	dcp1a
0.029	1	7	446.70	RNA decapping	dcp1a
0.029	1	7	446.70	Methylguanosine-cap decapping	dcp1a
0.029	1	3	1042.30	Cellular copper ion homeostasis	scol
0.031	1	10	312.69	RNA destabilization	dcp1a
0.031	1	10	312.69	MRNA destabilization	dcp1a
0.031	1	12	260.57	Cytochrome complex assembly	sco1
0.031	1	11	284.26	Pos. reg. of mRNA catabolic proc.	dcp1a
0.034	1	14	223.35	Cellular response to estrogen stimulus	wbp2
0.037	3	1305	7.19	Reg. of biosynthetic proc.	dcp1a lrrcc1 wbp2
0.037	3	1270	7.39	Reg. of nucleobase-containing compound metabolic proc.	dcp1a lrrcc1 wbp2
0.037	1	17	183.93	Response to estrogen	wbp2
0.037	1	23	135.95	Reg. of RNA stability	dcp1a
0.038	3	1415	6.63	Reg. of gene expression	dcp1a lrrcc1 wbp2
0.038	1	28	111.67	Neg. reg. of translation	dcp1a

Supplementary information of the article "Early stages of sympatric homoploid hybrid speciation in crater lake cichlid fishes" by M. Olave, A. Nater, A. F. Kautt, A. Meyer. *Nature Communications* (2022). Supplementary Table 5: Frequency of private alleles found in hybrids, compared to all other available Midas cichlid genomes taken from Kautt et al. (2020; Nature). Eight SNPs only found in hybrids and backcrosses are highlighted in grey. Total sampling = 453 individuals. Abbreviations: CHR: chromosome, POS: position, N: Number of individuals samples per species/group shown on right row, xil: *A. xiloaensis*, BC_xil: *A. xiloaensis* backrosses, hyb: hybrids, BC_sag: *A.* sagittae backcross, sag: *A. sagittae*, ama: *A. amarillo*, vir: *A. viridis*, cit: *A. citrinellus*, lab: *A. labiatus*, ast: *A. astorqui*, cha: *A. chancho*, fla: *A. flaveolus*, glo: *A. globosus*, sup: *A. supercilius*, zal: *A. zaliousus*, tol: *A. tolteca*. Source data available in Source Data file 1.

	Lake				CL Xiloá				Man	lagua	Nicar	agua			CL A	роуо			CL As Leon	CL As Managua	CL Apoyeque	CL Masaya	Tiscapa
	Species	xil	BC_xil	hyb	BC_sag	sag	ama	vir	cit	lab	cit	lab	ast	cha	fla	glo	sup	zal	cit	tol	cit	cit	cit
CHR	POS/N	10	7	11	14	13	21	19	25	25	24	24	23	23	17	26	10	21	20	20	40	40	20
	30273478	-	0.14	0.59	0.04	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	30274360	-	0.14	0.59	0.04	-	-	-	0.18	0.10	0.04	0.23	0.43	0.28	0.06	0.06	0.25	0.02	0.63	-	-	0.10	0.03
1	30276999	-	0.07	0.50	0.04	-	-	-	0.18	0.12	0.10	0.21	0.48	0.28	0.12	0.10	0.25	0.07	0.63	-	-	0.10	0.03
	30279393	-	0.14	0.55	0.04	-	-	-	0.06	0.02	0.04	0.15	-	0.04	-	-	-	-	-	-	-	0.10	-
	30280072	-	0.14	0.50	0.04	-	-	-	0.08	0.02	0.04	0.15	-	-	-	-	-	-	-	-	-	0.10	-
	23365900	-	0.07	0.55	-	-	-	-	0.02	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	28266290	-	0.07	0.59	0.04	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	28326507	-	0.07	0.59	0.04	-	-	-	0.04	-	0.04	0.04	0.02	-	0.03	0.04	-	-	-	-	-	0.03	-
4	28385217	-	0.14	0.59	0.04	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	28400388	-	0.14	0.64	0.04	-	-	-	0.02	-	-	0.02	-	-	-	-	-	-	-	0.10	-	-	-
	28414990	-	0.14	0.59	0.04	-	-	-	-	0.06	-	-	-	-	-	-	-	-	-	0.05	-	0.19	-
	28523641	-	0.14	0.68	0.04	-	-	-	0.06	0.08	0.02	0.02	0.04	0.02	0.15	0.19	-	-	-	-	-	0.11	-
10	27466499	-	-	0.59	0.04	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
10	27581197	-	-	0.55	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
12	1133713	-	0.07	0.50	0.18	-	-	-	-	0.02	-	-	-	-	-	-	-	-	-	0.03	-	-	-
16	35299454	-	0.07	0.55	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
10	35405550	-	0.07	0.55	-	-	-	-	0.02	-	0.02	-	-	-	-	-	-	-	-	-	-	-	-
17	14118258	-	-	0.50	0.07	-	-	-	-	-	-	-	-	0.02	-	-	-	-	-	-	-	-	-
	12232293	-	-	0.55	0.04	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	12268414	-	-	0.55	0.04	-	-	-	0.04	-	0.06	0.08	-	-	-	-	-	-	-	-	0.01	-	-
	12271855	-	-	0.55	0.04	-	-	-	0.04	-	0.06	0.08	-	-	-	-	-	-	-	-	-	-	-
	12272707	-	-	0.55	0.07	-	-	-	0.04	-	0.06	0.08	-	-	-	-	-	-	-	-	-	-	-
	12272820	-	-	0.55	0.04	-	-	-	0.04	-	0.06	0.08	-	-	-	-	-	-	-	-	-	-	-
	12273625	-	-	0.50	0.04	-	-	-	0.04	-	0.04	0.08	-	-	-	-	-	-	-	-	-	-	-
	12273685	-	-	0.55	0.04	-	-	-	0.04	-	0.06	0.08	-	-	-	-	-	-	-	-	-	-	-
	12274867	-	-	0.55	0.04	-	-	-	0.04	-	0.08	0.13	-	-	-	-	-	-	-	-	-	0.01	-
10	12275000	-	-	0.55	0.04	-	-	-	0.04	-	0.06	0.13	-	-	-	-	-	-	-	-	-	-	-
18	12275314	-	-	0.55	0.04	-	-	-	0.04	-	0.08	0.15	-	-	-	-	-	-	-	-	-	-	-
	12275436	-	-	0.55	0.04	-	-	-	0.04	-	0.08	0.13	-	-	-	-	-	-	-	-	-	-	-
	12275475	-	-	0.55	0.04	-	-	-	0.04	-	0.08	0.13	-	-	-	-	-	-	-	-	-	-	-
	12276063	-	-	0.55	0.04	-	-	-	0.04	-	0.08	0.10	-	-	-	-	-	-	-	-	-	-	-
	12276106	-	-	0.55	0.04	-	-	-	0.04	-	0.08	0.10	0.02	-	-	-	-	-	-	-	-	-	-
	12276671	-	-	0.50	0.04	-	-	-	0.04	-	0.08	0.13	-	-	-	-	-	-	-	-	-	-	-
	12276760	-	-	0.55	0.04	-	-	-	0.04	-	0.08	0.13	-	-	-	-	-	-	-	-	-	-	-
	12281200	-	-	0.50	0.04	-	-	-	0.06	-	0.17	0.10	-	-	-	-	-	-	-	-	-	-	-
	12334068	-	-	0.55	0.18	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
20	13306510	-	-	0.50	0.14	-	-	-	0.02	-	-	-	-	-	-	-	-	-	-	0.03	0.01	0.04	-
20	13310654	-	0.07	0.50	0.14	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.03	-	0.04	-

Supplementary Table 6. Summary statistics of inbreeding coefficent calculated along the genome (2,510,628 SNPs \pm 31,789.87) on a per-individual basis using vcftools (F-statistic = 1 – observed heterozygosity / expected heterozygosity). Data source is available in Source Data file 1.

Group	Mean F-statistic \pm s.d.				
hybrids (n = 11)	$\textbf{-0.12268} \pm \textbf{0.204}$				
A. sagittae (n=13)	$\textbf{-0.06182} \pm 0.073$				
A. sagittae + backcrosses (n = 27)	$\textbf{-0.0494} \pm \textbf{0.064}$				
A. xiloaensis (n=10)	$\textbf{0.0025} \pm \textbf{0.054}$				
A. xiloaensis + backcrosses (n = 17)	$\textbf{-0.0565} \pm \textbf{0.158}$				

Supplementary Table 7: Fifty-two diagnostic SNPs found in pure the parental species *A. xiloaensis* (n=10) and *A. sagittae* (n=13). Raw data is available in vcf format in Source Data file 2.

Chromosome	Position	Annotation
4	5969572	GTPase IMAP family member 8
4	5976617	GTPase IMAP family member 8
4	5977655	GTPase IMAP family member 8
	5978898	GTPase IMAP family member 8
4	5980671	
	5987109	NA
4	5009204	Rand 2 anion ovchango protoin
4	5009/95	Band 3 anion exchange protein
4	5336465 60004E4	Band 3 anion exchange protein
4	6000454	Band 2 anion exchange protein
4	6001793	Atoxia 7 like wastain 2
4	6019112	Ataxin-7-like protein 3
6	25501645	NA
8	11/3/616	
8	19406239	lumor necrosis factor receptor superfamily member 16
8	19416369	Alpha-tectorin
11	27820225	CTP synthase 1
11	38567601	Activating signal cointegrator 1 complex subunit 3
11	38567605	Activating signal cointegrator 1 complex subunit 3
12	31358111	Semaphorin-6A
14	38750901	FRAS1-related extracellular matrix protein 2
14	38751714	FRAS1-related extracellular matrix protein 2
14	38751885	FRAS1-related extracellular matrix protein 2
14	38763047	Tripartite motif-containing protein 3
14	38983846	T-lymphoma invasion and metastasis-inducing protein 1
14	38986480	T-lymphoma invasion and metastasis-inducing protein 1
14	38996405	T-lymphoma invasion and metastasis-inducing protein 1
14	38997403	T-lymphoma invasion and metastasis-inducing protein 1
14	39003955	T-lymphoma invasion and metastasis-inducing protein 1
14	39004000	T-lymphoma invasion and metastasis-inducing protein 1
16	6809063	Tomoregulin-2
16	6810658	Tomoregulin-2
16	6810686	Tomoregulin-2
16	6812564	Tomoregulin-2
16	6814390	Tomoregulin-2
16	6814819	Tomoregulin-2
16	6818333	Tomoregulin-2
17	13684620	FLKS/Rab6-interacting/CAST family member 1
17	13687285	FLKS/Rab6-interacting/CAST family member 1
17	13690820	ELKS/Rab6-interacting/CAST family member 1
20	28125727	Serine/threonine-protein kinase mTOR
20	28135238	
20	281/18990	Δgrin
20	20140330	Agrin
20	20101099	Phospholinid transporting ATPase IC
24	23949788	Phospholipid-transporting ATPase IC
24	23201201	7 Thospholiplu-transporting ATF doe 10
24	24000033	Transcription factor E2 alpha
24	24098249	Muomogalin
24	32303084	Nuomogalin
24	32009243	wyomegalin Muomogalin
24	32011///	wyomegalin Muemegalin
24	32618410	iviyomegalin
24	32618606	Myomegalin

Enrichment FDR	nGen es	Pathway Genes	Fold Enrichment	Pathway	Genes
0.101	1	4	390.86	Histone deubiquitination	ATXN7L3
0.101	1	5	312.69	Reg. of myelination	mtor
0.101	1	3	521.15	Pos. reg. of myelination	mtor
0.101	1	5	312.69	Reg. of nervous system proc.	mtor
0.101	1	3	521.15	Otolith tethering	tecta
0.101	1	4	390.86	Activation of GTPase activity	tiam1b
0.104	1	6	260.57	Receptor clustering	agrn
0.104	1	9	173.72	Skin development	mtor
0.104	5	1977	3.95	System development	slc4a1a mtor agrn tecta ctps1b
0.104	1	11	142.13	Acetylcholine receptor signaling pathway	agrn
0.104	1	11	142.13	Postsynaptic signal transduction	agrn
0.104	1	11	142.13	Response to acetylcholine	agrn
0.104	1	11	142.13	Cellular response to acetylcholine	agrn
0.104	1	11	142.13	G protein-coupled acetylcholine receptor signaling pathway	agrn
0.104	1	17	91.97	Pyrimidine nucleoside triphosphate metabolic proc.	ctps1b
0.104	1	15	104.23	Pyrimidine ribonucleoside triphosphate biosynthetic proc.	ctps1b
0.104	1	15	104.23	CTP metabolic proc.	ctps1b
0.104	2	246	12.71	Nervous system proc.	mtor tecta
0.104	1	15	104.23	CTP biosynthetic proc.	ctps1b
0.104	1	17	91.97	Glutamine metabolic proc.	ctps1b

Supplementary Table 8: Result of gene ontology (GO) enrichment analysis (20 lowest enrichement FDR), for annotations in fixed SNPs in parental species. Annotation used as input are listed in Supplementary Fig. 3.

Supplementary Table 9: Linear model (two sided F-test) results for ancestry tract length comparisons of hybrids and backcrosses, based on medians obtained per individual and their donors. Model: median ancestry tract lengths ~ group*donor; F = 12.76 on 5 and 58 DF, p-value = $2.24 \times 10^{-8***}$. Source Data is available in Source Date file 1.

	Estimate Std.	Error	t value	p-value						
(Intercept)	21852	2296	9.518	1.8 x10 ⁻¹³ ***						
A. sagittae (backcrosses)	15568	3068	5.074	4.3 x10 ⁻⁶ ***						
A. xiloaensis (backcrosses)	-8786	3682	-2.386	0.02030*						
A. xiloaensis donor	5056	3247	1.557	0.12490						
A. sagittae (backcrosses): A. xiloaensis donor	-20042	4339	-4.619	2.1x10 ⁻⁵ ***						
A. xiloaensis (backcrosses): A. xiloaensis donor	14887	5207	2.859	0.00589**						
Residual standard error: 7615 on 58 degrees of free	Residual standard error: 7615 on 58 degrees of freedom									
Multiple R-squared: 0.5239, Adjusted R-squared: 0.4828										
F-statistic: 12.76 on 5 and 58 DF, p-value 1.24 x10 ⁻¹⁰										

Supplementary Table 10: Two-sided t-test results for standard length (SL) comparisons among hybrids and the two parental species. Source Data is available in Source Data file 1.

Excluding backcrosses	n	t-value	p-value							
A. sagittae	13	1.367	0.181							
A. xiloaensis 10 -0.403 0.689										
Model df = 31; p = 0.1912; F-statistic = 1.74										
Including backcrosses										
A. sagittae + backcrosses	<i>A. sagittae</i> + backcrosses 27 0.415 0.68									
<i>A. xiloaensis</i> + backcrosses 17 0.136 0.892										
Model df = 52; p = 0.9028; F-statistic = 0.1025										

Supplementary Table 11: Linear model (two sided F-test) results for caudal depth (LM6-12, SL corrected) comparisons among hybrids and the two parental species and backcrosses.

Excluding backcrosses		n	t-val	ue	p-value					
A. sagittae		13	-4.60)2	7.15 x10 ⁻⁵ ***					
A. xiloaensis		10	-2.43	37	0.021*					
SL co-variable			10.1	74	3.1 x10 ⁻¹¹ ***					
Model df = 30; p = 2.39 x10 ⁻¹⁰ ***; F-statistic = 38.05										
Pure parental + backcrosses										
A. sagittae + backcrosses		27	-5.77	76	4.6 x10 ⁻⁷ ***					
A. xiloaensis + backcrosses		17	-3.132		0.00288**					
SL co-variable			13.2	22	2.2 x10 ⁻¹⁶ ***					
Model df = 51; p = 2.2 x10 ⁻¹⁶ ***; F-statistic = 66.79										
All as separate groups										
A. sagittae (backcrosses)	14	-4.9	34	9.7	x10 ^{-7***}					
A. xiloaensis (backcrosses)	7	-2.4	19	0.01	193*					
A. sagittae	13	-4.9	334	9.7	x10 ^{-7***}					
A. xiloaensis 10 -2.733 0.0087**										
SL co-variable		12.2	220	2.2	x10 ⁻¹⁶ ***					
Model df = 49; p = 2.2 x10 ⁻¹⁶	; ; ;	F-sta	tistic =	38.	53					