
Online Appendix to “Managing Two-Dose COVID-19 Vaccine
Rollouts with Limited Supply”

OA1. Technical Proofs

Proof of Lemma 1

No backlogs exist any time at or before t if and only if

(1−β)y(u)≥ vr1(u−L) for all u≤ t.

The above statement can be rewritten as

(1−β)y(nL+ τ)≥ vr1((n− 1)L+ τ) for n= 1,2, . . . and all τ ∈ [0,L]. (OA1)

We prove (OA1) by induction. First, the case in which n = 1 and n = 2 obviously holds for

all τ ∈ [0,L] given the first two conditions of the lemma. Next, suppose the statement holds for

n= 1, · · · , k. Then, for n= k+ 1, it holds that

vr1(kL+ τ) = y(kL+ τ)− vr2(kL+ τ)

= y(kL+ τ)− vr1((k− 1)L+ τ) (because B(t) = 0 for all t≤ kL+ τ)

= y(kL+ τ)− y((k− 1)L+ τ) + vr1((k− 2)L+ τ)

≤ y(kL+ τ)−βy((k− 1)L+ τ) (by induction assumption).

Because (1−β)y((k+1)L+τ)≥ y(kL+τ)−βy((k−1)L+τ), the statement also holds for n= k+1.

Thus, it holds for any positive integer n by induction, which completes the proof. Q.E.D.

Proof of Lemma 2

The rates of vaccination are given by

vh1 (t) =
1

2
+
α

2
t

vh2 (t) =

{
0 for t∈ [0,L)
1
2

+ α
2
(t−L) otherwise.

The result follows from integrating the vaccination rates with respect to t. Q.E.D.

Proof of Proposition 1

First, in t∈ [0,L), all available supply is released for first-dose appointments:

vr1(t) = 1 +αt

V r
1 (t) = t+

α

2
t2

OA1
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P r
1 (t) =

1

2
t2 +

α

6
t3

vr2(t) = V r
2 (t) = P r

2 (t) = 0.

For t ∈ [L,2L), the demand for the second dose is vr1(t−L) = 1 +α(t−L) and the total supply

available is 1+αt. For no backlogs to exist, all second-dose demand will be fulfilled, that is, vr2(t) =

1+α(t−L), and the supply available for first doses will be y(t)−vr2(t) = αL. To ensure this amount

exceeds the fraction β, we require β ≤ αL
1+αt

for all t∈ [L,2L), that is, β ≤ αL
1+2αL

= 1
2
− 1

2(1+2αL)
.

For t∈ [2L,3L), the demand for the second dose is vr1(t−L) = αL and the supply is y(t) = 1+αt.

Fulfilling all second-dose demand, the capacity available for first doses is given by 1 +α(t−L). For

this amount to exceed a β fraction of available supply, we require β ≤ 1+α(t−L)

1+αt
for all t∈ [2L,3L),

that is, β ≤ 1+αL
1+2αL

, which is implied by the previous necessary condition, β ≤ αL
1+2αL

= 1
2
− 1

2(1+2αL)
.

Continuing this argument, the vaccination rate follows an oscillating pattern:

vr1(t) =

{
1 +α(t−nL) for t∈ [2nL, (2n+ 1)L)

α(n+ 1)L for t∈ [(2n+ 1)L, (2n+ 2)L)
. (OA2)

vr2(t) =

{
αnL for t∈ [2nL, (2n+ 1)L)

1 +α(t−nL) for t∈ [(2n+ 1)L, (2n+ 2)L).
(OA3)

The upper bound on β increases over time. Thus, β ≤ 1
2
− 1

2(1+2αL)
is sufficient. Q.E.D.

Proof of Proposition 2

The stock-release policy increases vaccination rates by:

∆vr1(t) =

{
1 +α(t−nL)− 1

2
(1 +αt) for t∈ [2nL, (2n+ 1)L)

α(n+ 1)L− 1
2
(1 +αt) for t∈ [(2n+ 1)L, (2n+ 2)L)

=

{
1
2

+ α
2
(t− 2nL)> 1

2
for t∈ [2nL, (2n+ 1)L)

− 1
2

+ α
2
[(2n+ 2)L− t]>− 1

2
for t∈ [(2n+ 1)L, (2n+ 2)L).

In the interval [2nL, t) where t ∈ [2nL, (2n+ 1)L), the release policy increases the cumulative

vaccinations by: ∫ t

2nL

∆vr1(τ)dτ =
1

2
(t− 2nL) +

α

2

∫ t

2nL

(τ − 2nL)dτ

=
1

2
(t− 2nL) +

α

4
(t− 2nL)2.

Similarly, in the interval [(2n+1)L, t), where t∈ [(2n+1)L, (2n+2)L), the release policy increases

the cumulative vaccinations by∫ t

(2n+1)L

∆vr1(τ)dτ =−1

2
[t− (2n+ 1)L] +

α

2

∫ t

(2n+1)L

[(2n+ 2)L− τ ]dτ

=−1

2
[t− (2n+ 1)L] +

α

4

{
L2− [2(n+ 1)L− t]2

}
.
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The above implies that over [2nL, (2n+2)L), the gain amounts to α
2
L2. Thus, over the time period

t∈ [0, t), the release policy increases the cumulative vaccinations by:

∆V r
1 (t) =


α
2
nL2 + 1

2
(t− 2nL) + α

4
(t− 2nL)2 for t∈ [2nL, (2n+ 1)L)

α
2
nL2 + 1

2
L+ α

2
L2− 1

2
[t− (2n+ 1)L]

−α
4
[2(n+ 1)L− t]2 for t∈ [(2n+ 1)L, (2n+ 2)L).

Going through similar steps, in the interval [2nL, t), where t∈ [2nL, (2n+1)L), the release policy

increases the cumulative protection by:∫ t

2nL

∆V r
1 (τ)dτ =

α

2
nL2(t− 2nL) +

∫ t

2nL

[
(τ − 2nL) +

α

4
(τ − 2nL)2

]
dτ

=
α

2
nL2(t− 2nL) +

1

4
(t− 2nL)2 +

α

12
(t− 2nL)3

=
1

4
L2 +

α

2
L3

(
n+

1

6

)
(when t= (2n+ 1)L).

In the interval [(2n+ 1)L, t), where t ∈ [(2n+ 1)L, (2n+ 2)L), the release policy increases the

cumulative protection by:∫ t

(2n+1)L

∆V r
1 (τ)dτ =

(
α

2
nL2 +

1

2
L+

α

2
L2

)
[t− (2n+ 1)L]−

∫ t

(2n+1)L

{
[τ − (2n+ 1)L]− α

4
[(2n+ 2)L− τ ]2

}
dτ

=

(
α

2
nL2 +

1

2
L+

α

2
L2

)
[t− (2n+ 1)L]− 1

4
[t− (2n+ 1)]2− α

12

{
L3− [(2n+ 2)L− t]3

}
=

1

4
L2 +

α

2
L3

(
n+

5

6

)
(when t= (2n+ 2)L).

Thus, the gain in cumulative protection over the period [0, t) is given by

∆P r
1 (t) =



n
2
L2 + α

2
L3 (2

∑n

i=0 i)

+α
2
nL2(t− 2nL) + 1

4
(t− 2nL)2 + α

12
(t− 2nL)3 for t∈ [2nL, (2n+ 1)L)

(n
2

+ 1
4
)L2 + α

2
L3
(
2
∑n

i=0 i+n+ 1
6

)
+
(
α
2
nL2 + 1

2
L+ α

2
L2
)

[t− (2n+ 1)L]

− 1
4
[t− (2n+ 1)]2− α

12
[L3− [2(n+ 1)L− t]3] for t∈ [(2n+ 1)L, (2n+ 2)L).

Over a full cycle [0,2nL), the release policy improves the cumulative protection by

∆P r
1 (2nL) =

n

2
L2 +

α

2
L3

(
2

n∑
i=0

i

)
=
n

2
L2 +

α

2
L3n(n+ 1), and

∆P r
2 (2nL) = ∆P r

1 ((2n− 1)L)

=

(
n− 1

2
+

1

4

)
L2 +

α

2
L3

(
2
n−1∑
i=0

i+n− 1 +
1

6

)

=

(
n− 1

2
+

1

4

)
L2 +

α

2
L3

(
n2− 5

6

)
.

Q.E.D.
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Proof of Proposition 3

Following Proposition 2, the cumulative first- and second-dose inoculations under the stock-release

policy are given by:

V r
1 (t) =


t
2

+ αt2

4
+ α

2
nL2 + 1

2
(t− 2nL) + α

4
(t− 2nL)2 for t∈ [2nL, (2n+ 1)L)

t
2

+ αt2

4
+ α

2
nL2 + 1

2
L+ α

2
L2− 1

2
[t− (2n+ 1)L]

−α
4
[2(n+ 1)L− t]2 for t∈ [(2n+ 1)L, (2n+ 2)L)

V r
2 (t) = V r

1 (t−L).

At t= 2mL, we have

V r
1 (2mL) =mL+α

(
m2 +

m

2

)
L2

V r
2 (2mL) =

(2m− 1)L

2
+
α

4
(2m− 1)2L2 +

α

2
(m− 1)L2 +

1

2
L+

α

4
L2

=mL+
3α

4
L2(2m2− 2m+ 1).

For the stretching policy, the same derivation holds with the increased lead time:

V s
1 (2mL) =Ls +α

(
1 +

1

2

)
(Ls)2

=mL+
3αm2L2

2

= V r
1 (2mL) +α · m

2−m
2

·L2

V s
2 (2mL) =Ls +

3α

4
(Ls)2

=mL+
3α

4
L2m2

= V r
2 (2mL)− 3α

4
L2(m2− 2m+ 1).

Similarly, following Proposition 2, the cumulative protection under the stock-release policy is

given by:

P r
1 (2mL) =m2L2 +

2α

3
m3L3 +

m

2
L2 +

α

2
L3m(m+ 1)

=
2m2 +m

2
L2 +αL3

[
2

3
m3 +

1

2
m(m+ 1)

]
P r

2 (2mL) =
1

4
(2m− 1)2L2 +

α

12
(2m− 1)3L3 +

(
m− 1

2
+

1

4

)
L2 +

α

2
L3

(
m2− 5

6

)
=

3

4
(2m2− 2m+ 1)L2 +

αL3

12
(8m3− 6m2 + 6m− 6).

Similarly, under the dose-stretching policy, the cumulative protection can be written as:

P s
1 (2mL) =

3

2
(Ls)2 +

5

3
α(Ls)3
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= P r
1 (2mL) +

m2−m
2

L2 +αL3[2m3−m(m+ 1)]

P s
2 (2mL) =

3

4
m2L2 +

αL3

12
(2m3)

= P r
2 (2mL)− 3

4
(m2− 2m+ 1)L2− αL

3

2
(m3−m2 +m− 1)

= P r
2 (2mL)− 3

4
(m− 1)2L2− αL

3

2
(m− 1)(m2 + 1),

which completes the proof. Q.E.D.

Proof of Proposition 4

Following Proposition 3, dose stretching increases efficacy-weighted protection by:

∆P s(2mL) = λ(1− θ1) [∆P s
1 (2mL) + ζ∆P s

2 (2mL)]

=
L2

4
λ(1− θ1)

[
2m(m− 1)− 3(m− 1)2ζ

]
+
αL3

2
λ(1− θ1)

[
4m3− 2m(m+ 1)− (m− 1)(m2 + 1)ζ

]
=
L2

4
λ(1− θ1)

[
2m(m− 1)− 3(m− 1)2ζ

]
+
αL3

2
λ(1− θ1)

[
2(m− 1)(2m2 +m)− (m− 1)(m2 + 1)ζ

]
.

If m= 1 or ζ ≤ 2m
3(m−1)

, the term [2m(m− 1)− 3(m− 1)2ζ]≥ 0. Also, for any m≥ 1, 2m2 +m)>

m2 + 1. Thus the term [2(m− 1)(2m2 +m)− (m− 1)(m2 + 1)ζ]> 0 if ζ ≤ 2. Because 2m
3(m−1)

< 2 for

all m> 1, ∆P s(2mL)> 0 as long as ζ ≤ 2m
3(m−1)

. Q.E.D.

Proof of Proposition 5

Because vd(t) = 1 + αt, we have V d(t) = t+ α
2
t2 and P d(t) = t2

2
+ α

6
t3. These expressions directly

lead to the comparisons with the hold-back policy.

Comparing against the stock-release policy gives

V d
1 (2nL)−V r

1 (2nL) = 2nL+
α

2
(2nL)2− 2nL

2
− α

4
(2nL)2− α

2
nL2

= nL+
α

2
(2n2−n)

P d
1 (2nL)−P r

1 (2nL) =
1

4
(2nL)2 +

α

12
(2nL)3− n

2
L2− α

2
L3n(n+ 1)

=
n

2
L2 +

α

2
L3

[
4

3
n3−n(n+ 1)

]
,

which completes the proof. Q.E.D.

Proof of Proposition 6

Recall from the proof of Proposition 4 that

P r
1 (2nL) =

2n2 +n

2
L2 +αL3

[
2

3
n3 +

1

2
n(n+ 1)

]
P r

2 (2nL) =
3

4
(2n2− 2n+ 1)L2 +

αL3

12
(8n3− 6n2 + 6n− 6).
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For the single-dose regimen,

P d
1 (2nL) = 2n2L2 +

4α

3
n3L3.

Comparing the efficacy-weighted protection levels,

∆P d(2nL) = λ(1− θ1)ζdP d
1 (2nL)−λ(1− θ1)[P r

1 (2nL) + ζP r
2 (2nL)]

= λ(1− θ1)

{
ζd
(

2n2L2 +
4α

3
n3L3

)
− 2n2 +n

2
L2−αL3

[
2

3
n3 +

1

2
n(n+ 1)

]
−3

4
ζ(2n2− 2n+ 1)L2− ζ αL

3

12
(8n3− 6n2 + 6n− 6)

}
= λ(1− θ1)L2

[
2n2ζd− 2n2 +n

2
− 3ζ

4
(2n2− 2n+ 1)

]
+λ(1− θ1)

αL3

12

[
16n3ζd− 8n3− 6n2− 6n− ζ(8n3− 6n2 + 6n− 6)

]
= λ(1− θ1)L2

[
2n2(ζd− 1) +

n− 1

2
+

(
1

2
− 3ζ

4

)
(2n2− 2n+ 1)

]
+λ(1− θ1)

αL3

12

[
(16ζd− 16)n3− 12n+ 6 + (1− ζ)(8n3− 6n2 + 6n− 6)

]
.

In the above, the L2 term is non-negative if ζd ≥ 1 and ζ ≤ 2
3
. The L3 term is non-negative if ζ ≤ 1

and ζd ≥ 11
8

, which ensures (16ζd − 16)n3 ≥ 6n3. Thus, a sufficient condition for ∆P d(2nL)≥ 0 is

that ζd ≥ 11
8

and ζ ≤ 2
3
.

Q.E.D.

OA2. SEIR Epidemic Model

In this section, we first provide technical details of our SEIR model in Section OA2.1. Next, we

provide the rationale for the parameter values used in our baseline case in Section OA2.2.

OA2.1. SEIR Model Description

We consider a variant of the standard SEIR model to incorporate the effect of vaccination on the

evolution of the pandemic.

• We consider the population to comprise of a high-risk group (age 65 and above) and a low-risk

group (64 or below), indexed by i ∈ {H,L}. The initial population size of group i is denoted by

Ni.
1

• At any time t, following the vaccine rollout policy, the high- and low-risk groups can further be

divided into three subgroups each: those who have received k doses of the vaccine, where k= 0,1,2.

We refer to individuals in risk group i who have received k vaccine doses as type (i, k).

1 We thank the Associate Editor for proposing to use the age as the basis for determining the cutoff between two risk
groups. We note that under the cutoff of 65, the death rate of the elderly is more than 1,000% higher than the younger
group. In addition, the data regarding vaccine efficacy rate, hospitalization, transmission rate, etc. are available for
these two groups.
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• The structure of the compartmental model follows that of Keskinocak et al. (2020). At any

time, a each type (i, k) patient is in one of the following states: susceptible (S), exposed (E),

infectious-presymptomatic (IP ), infectious-asymptomatic (IA), infectious-symptomatic (IS), hos-

pitalized (H), recovered (R), or deceased (D). See Figure 1 in Section 7.1 for a graphical illustration.

• We assume that vaccination reduces susceptibility, infectiousness, probability of symptomatic

disease, probability of hospitalization and probability of death.

Infection. Similar to Bubar et al. (2020) and consistent with the notion of contact discussed by

Diekmann and Heesterbeek (2000), a susceptible person of type (i, k) faces a rate of exposure

expressed by

λEik = uiθk
∑

j∈{H,L}

cij

∑2

l=0 φl(ISjl + δP IPjl + δAIAjl)

Nj −Ωj

,

where ui is the probability of virus transmission given contact with an infectious individual and

cij is the expected number of contacts between a group i and a group j individual (per unit

time). The adjustment factors δP and δA reflects the lower infectiousness of presymptomatic and

asymptomatic patients. The parameters θk and φk reflect susceptibility (of an uninfected individual)

and infectiousness (of an infected individual) after receiving k doses of the vaccine (k ∈ {0,1,2}).

Naturally, 0≤ θ2 ≤ θ1 ≤ θ0 = 1 and 0≤ φ2 ≤ φ1 ≤ φ0 = 1, i.e., vaccination reduces susceptibility and

infectiousness. The variables IPjl, ISjl, and IAjl denote the type (j, l) individuals who are in the

infectious presymptomatic, symptomatic and asymptomatic states, respectively, and Ωj denotes the

cumulative number of deceased individuals in risk group j. We assume that hospitalized individuals

are isolated and do not transmit the virus to others. The term
∑2

l=0 φl(ISjl+δ
P IPjl+δ

AIAjl)

Nj−Ωj
can be

interpreted as the probability that a randomly-encountered group-j person is infectious.

Disease Severity. Let TE and TP be the average time that an infected patient spends in the

exposed and infected-presymptomatic states, respectively.

At the end of the presymptomatic state, a group i patient develops symptoms with probability

ηSi . In this case, the patient spends an average of T Si in the infected-symptomatic state, at the end

of which the patient can either become hospitalized (with probability ηHi ) or recovered.

To reflect how the fatality rate depends on the load of the healthcare system (e.g., ICU uti-

lization), we consider a two-step function of death rates. In particular, if the total number of

hospitalizations remains lower than a threshold K (effective capacity of the healthcare system), a

hospitalized group i patient transitions to the deceased state at the base probability of ηDi ; if the

number of hospitalized individuals exceeds K, the probability becomes κηDi , where κ> 1.

Similar to Keskinocak et al. (2020), we assume that all fatalities go through the hospitalized

(H) state, i.e., a patient cannot transition directly from infected-symptomatic (IS) to deceased
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(D). Thus, one can interpret the H state in our model as cases of severe disease that require

hospitalization, although not all patients in this state may be admitted to hospital in reality due

to factors such as access or capacity. Nevertheless, all such cases constitute the potential load on

the healthcare system and are thus counted toward the capacity threshold for higher death rates.

On the other hand, if a patient becomes asymptomatic (milder disease) following the presymp-

tomatic stage, the patient recovers after an average time of TA.

To reflect the vaccine’s effect on disease severity, we consider that group i patients who have

received the k-th dose will see their probabilities of symptomatic disease, hospitalization and death

(uncapacitated) drop to τkη
S
i , γkη

H
i and ρkη

D
i , respectively. Similarly, once the capacity threshold

for hospitalization is reached, the death probability rises to ρkκη
D
i .

Vaccination Rollout. The external vaccine supply process is specified as follows. The supply rate

y(t) = 0 for t∈ [0,50); thereafter, we have y(t) = y(0) +αt for t≥ 50, where y(0) = 0.001 (supply at

day 50 equals 0.1% of the population) and α= 0.02y(0) (2% increase in supply rate per day).

At time t, following the vaccination rates determined from the chosen rollout policy (as discussed

in Sections 4 to 6), v1(t) and v2(t) doses are made available for first and second doses. We assume

that these are proportionally allocated to the H and L groups; that is, the rate at which type (i, k)

patients are vaccinated is denoted by

vik(t) =

{
π · vk(t) if i=H

(1−π) · vk(t) if i=L
.

With a finite population and the probability of mortality, it is possible that the allocated vaccination

rates exceed the number of remaining eligible individuals (particularly in group H). In such case,

the excess supplies are reallocated to group L.

Consistent with practice, we assume that all individuals without symptoms (i.e., the S, E, IP ,

IA, and R compartments) have uniform probability of receiving the vaccine allocated to the risk

group i. As an approximation, we do not consider a minimum time gap between recovery and

eligibility to receive the vaccine.

Differential Equation Formulation. Based on the assumptions discussed above, the SEIR model

can be formulated as follows (suppressing (t) for brevity):

S′ik = −SikλEik +
vi,k−1Si,k−1

Si,k−1 +Ei,k−1 + IPi,k−1 + IAi,k−1 +Ri,k−1

− vikSik
Sik +Eik + IPi,k + IAi,k +Rik

(OA4)

E′ik = Sikλ
E
ik−Eik

1

TE
+

vi,k−1Ei,k−1

Si,k−1 +Ei,k−1 + IPi,k−1 + IAi,k−1 +Ri,k−1

− vikEik
Si,k +Ei,k + IPi,k + IAi,k +Ri,k

(OA5)
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IP ′ik = Eik
1

TE
− IPik

1

TP
+

vi,k−1IPi,k−1

Si,k−1 +Ei,k−1 + IPi,k−1 + IAi,k−1 +Ri,k−1

− vikIPik
Si,k +Ei,k + IPi,k + IAi,k +Ri,k

(OA6)

IA′ik = IPik
1− τkηSi
TP

− IAik
1

TA
+

vi,k−1IAi,k−1

Si,k−1 +Ei,k−1 + IPi,k−1 + IAi,k−1 +Ri,k−1

− vikIAik
Si,k +Ei,k + IPi,k + IAi,k +Ri,k

(OA7)

IS′ik = IPik
τkη

S
i

TP
− ISik

1

T S
(OA8)

H ′ik = ISik
γkη

H
i

T S
−Hik

1

TH
(OA9)

D′ik =

{
Hik

ρkη
D
i

TH if
∑

i,kHik ≤K
Hik

ρkκη
D
i

TH if
∑

i,kHik >K
(OA10)

Rik =


IAik

1
TA + ISik

1−γkηHi
TS +Hik

1−ρkηDi
TH

+
vi,k−1Ri,k−1

Si,k−1+Ei,k−1+IPi,k−1+IAi,k−1+Ri,k−1
− vikRik

Si,k+Ei,k+IPi,k+IAi,k+Ri,k
if
∑

i,kHik ≤K

IAik
1
TA + ISik

1−γkηHi
TS +Hik

1−ρkκηDi
TH

+
vi,k−1Ri,k−1

Si,k−1+Ei,k−1+IPi,k−1+IAi,k−1+Ri,k−1
− vikRik

Si,k+Ei,k+IPi,k+IAi,k+Ri,k
if
∑

i,kHik >K.

(OA11)

OA2.2. Parameter Calibration for the SEIR model

In Table OA1, we provide the rationale for the choice of parameter values used in the simulation

of our baseline case (Section 7.2).
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Table OA1 Parameter Values Used in the Baseline Case (Section 7.2)

Parameter Value Rationale

[NL,NH ] [87, 13]
In 2019, 13% of the U.S. population (over 20) was age 65 or above
(U.S. Census Bureau 2021). We normalize NL +NH = 100.

Eik(0)
0.01 for i=H,L and
k= 0; 0 otherwise

Eik(t) is the size of infectious group for type (i, k). We assume
the pandemic begins with 0.01% (1 in 10,000) of the population
becoming exposed in each of the two groups.

[uL, uH ] [0.84, 0.84]
ui is the base probability of virus transmission given contact. We
take the mid-point of values calibrated for above-20 age groups in
Bubar et al. (2021).

[
cLL cHL

cLH cHH

] [
0.841 0.071
0.258 0.318

] The number of group-j individuals contacted by an group-i indi-
vidual per day. We first regroup the U.S. contact matrix from
Prem et al. (2017) into the 20-64 (i= L) and 65+ (i=H) bins.
Then, the matrix is rescaled such that the reproductive coefficient
is 1.5.

[δP , δA] [0.48, 0.48]
Transmissibility adjustment factors in pre/asymptomatic states
(Keskinocak et al. 2020).

TE 4.6 days The average duration of exposed state (Keskinocak et al. 2020).

TP 0.5 days
The average duration of presymptomatic state (Keskinocak et al.
2020).

T S 2.9 days
The average duration of symptomatic state (Keskinocak et al.
2020).

TH 10.4 days The average duration of hospitalization (Keskinocak et al. 2020).

TA 1.93 days
The average duration of asymptomatic state, computed using the
symptomatic-asymptomatic duration ratio of 1.5 (Keskinocak et
al. 2020).

[ηSL, η
S
H ] [0.431, 0.653]

The probability of symptomatic given infection (from Israel’s
nationwide rollout, Haas et al. 2021).

[ηHL , η
H
H ] [0.104, 0.593]

The probability of hospitalization given symptomatic (from
Israel’s nationwide rollout, Haas et al. 2021).

[ηDL , η
D
H ] [0.043, 0.303]

The probability of death given hospitalization (from Israel’s
nationwide rollout, Haas et al. 2021).

K 0.108

On average, about 25% of hospitalized patients require ICU admis-
sion (CDC 2021). The U.S. ICU capacity is 0.027 beds per 100
population (Kaiser Family Foundation 2021), which translates
into 0.027/0.25 = 0.108 effective hospitalizations.

κ 1.92
When ICU capacity is reached, fatality rates increase by 92%
(Wilde et al. 2021).

[θ1, θ2]
[0.423, 0.047] for
Pfizer, [0.34, 0.34] for
Johnson & Johnson

One minus the first- and second-dose efficacy rates of the Pfizer
vaccine (from Israel’s nationwide rollout, Haas et al. 2021)

[φ1, φ2] [0.57, 0.57]
The Pfizer vaccine reduces transmissibility by 43% (from study
by Public Health England, Harris et al. 2021).

[τ1, τ2] [0.929, 0.884]
Reduction factors for the conditional probability of symptomatic
disease given infection (from Israel’s nationwide rollout, Haas et
al. 2021) with vaccination.

[γ1, γ2] [0.901 2.477]

Reduction factors for the conditional probability of hospitaliza-
tion given symptomatic disease (from Israel’s nationwide rollout,
Haas et al. 2021) with vaccination. The second dose increases the
conditional probability, despite reducing the overall probability of
hospitalization.

[ρ1, ρ2] [1.077, 1.799]

Reduction factors for the conditional probability of death given
hospitalization (from Israel’s nationwide rollout, Haas et al. 2021)
with vaccination. Vaccine increases the conditional probabilities,
despite reducing the overall probabilities of death.

π
1 (except in Section
7.4, where its value is
0.5)

The fraction of vaccine supply allocated to H group is 100%, fol-
lowing age-based prioritization (e.g., in the U.S. and U.K.). We
consider the effect of prioritization by considering allocating only
half of supplies to H group in Section 7.4.
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