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Appendix S1 Motivation of our algorithm for sampling species

We explain here in detail why Eqs. (3) and (4) are plausible approximations for sampling the interaction
strengths of new species entering our model community.

Under quite general conditions it is possible to approximate the dependence of attack rates on the
traits of consumers and resources in the form (Rossberg et al., 2010; Nagelkerke & Rossberg, 2014;
Rossberg, 2013, Ch. 8):

ajk ≈ a0 exp

[
v
(j)
0 + f

(k)
0 −

D∑
k=1

σk
2

(
v
(j)
k − f

(k)
k

)2]
, (S1)

withD denoting the dimensionality of trophic niche space and v
(j)
0 , . . . , v

(j)
D and f

(k)
0 , . . . , f

(k)
D vulnerability-

and foraging traits of resources and consumers, respectively. These trophic traits can be computed as
functions of observable biological traits (Nagelkerke & Rossberg, 2014). A similar representation has been
proposed by Rohr et al. (2010). The constant a0 has dimensions of attack rates and σk = ±1. There
is some ambiguity in how to choose a0, σk and the functions mapping observed traits to trophic traits.

However, when imposing a condition that the mean of (v
(j)
0 )2 over the entire resource pool j is minimised,

these ambiguities are resolved up to rigid geometric transformations of the vectors v(j) = (v
(j)
1 , . . . , v

(j)
D )

and f (k) = (f
(j)
1 , . . . , f

(j)
D ) (Rossberg, 2013, Ch. 8) and the choice of a0. With the mean of (v

(j)
0 )2 thus

minimised, we shall approximate v
(j)
0 = 0.

For large D and sufficient statistical independence of the components of v(j) and f (k) (Rossberg,
2013, Ch. 11), one can approximate the sum in Eq. (S1) for randomly sampled consumer-resource pairs
(j, k) by a normal distribution. Denoting the mean of this normal distribution by µ, its variance by σ2,

and defining ak = a0 exp(f
(k)
0 − µ), this leads to Eq. (4).

All traits of consumers and resources can undergo mutations. However, compared to the evolution

of foraging traits f
(k)
0 , . . . , f

(k)
D , the resulting evolution of vulnerability traits v

(j)
0 , . . . , v

(j)
D is known to

be slow (Rossberg et al., 2006; Bersier & Kehrli, 2008; Eklöf & Stouffer, 2016)—a median of 25 times
slower in an analysis of Rossberg et al. (2006). It shall here be disregarded.

Mutations of any observable biological traits will affect several foraging traits f
(k)
0 , . . . , f

(k)
D . The

question whether this increases of decreases short-term fitness (Goodnight et al., 2008) in a given

community depends not only on all traits f
(k)
0 , . . . , f

(k)
D of the focal consumer k but also on the sets of

resources and competitors in the community. Even when a mutation leads to an increase in short-term

fitness, the change in f
(k)
0 associated with this mutation might be positive or negative, because, provided

niche space dimensionality D is not too low, the associated change in f
(k)
0 is just one of many random

changes in foraging traits resulting from this mutation. Mutants arriving at the focal patch from a source

patch may therefore have f
(k)
0 values that can be higher or lower than the f

(k)
0 of the propagule that

founded the population in the source patch. Because, all else equal, smaller f
(k)
0 correspond to consumers

that, overall, forage less efficiently than consumers with larger f
(k)
0 , and low efficiency is mechanically

easier to achieve than high efficiency, one must plausibly assume that degeneration of traits through
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mutations (Pomiankowski et al., 1991) leads to a decay of f
(k)
0 on average unless this is counteracted by

selection pressure. Recalling that ak = a0 exp(f
(k)
0 − µ), this leads to Eq. (3).

We assume that the relevant species pools are large and diverse, such that different patches have in
effect statistically independent, typically non-overlapping species compositions. The random variables
ξjk in Eq. (4) are therefore sampled anew as a propagule arrives at the focal patch, independent of
a consumer’s interactions with the residents of its source patch. Only the inheritance of ak must be
accounted of.

As a caveat, we note that in reality vulnerability traits do not cover the D-dimensional trophic traits
space evenly, e.g. because these traits carry phylogenetic signal (related species have similar consumers,

Bersier & Kehrli 2008). Then foraging traits other than f
(k)
0 might contribute to long-term fitness as

well. For simplicity, we disregard this complication in our model.
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Appendix S2 Derivation of the sub-models of the deconstructed
formulation

We provide the rationale and outline the derivation of the four criteria Eqs. (13-17) driving invasions
and extirpations in the deconstructed model formulation.

The invasibility criterion, Eq. (13), predicts invasibility when disregarding the presence of all but
the focal consumer in the dimensionless full model, Eq. (2). Formally, it is obtained by computing the
equilibrium state of Eq. (2) for SC = 1 and BC

k = 0 (with k = 1), which is BR
j = 1 for 1 ≤ j ≤ SR, and

then extracting the condition that, by Eq. (2b), this equilibrium is unstable such that the consumer can

invade:
∑SR

j=1HjkB
R
j − 1 =

∑SR

j=1Hjk − 1 > 0.
The condition for the overexploitation of resource j during the expansion phase of an invading

consumer k, Eq. (15), is obtained by analysing the dimensionless full model, Eq. (2), for the case of
only one consumer and one resource: SC = 1, SR = 1 (with j = k = 1). We consider again the situation
where the consumer is initially absent BC

k = 0 and the resource at equilibrium BR
j = 1, dBR

j /dt = 0. Then

the consumer invades at low abundance. To estimate the minimum of BR
j attained during the consumer

invasion, i.e. during the transient before a new equilibrium is reached, we approximate dynamics by
disregarding the density dependence of resource production expressed by the term −BR

j in Eq. (2a).

This approximation is justified because we are interested in situations where BR
j falls below Mmin � 1.

It reduces the model to the classical Lotka-Volterra predator-prey equations

dBR
j

dt
= r

[
1−HjkB

C
k

]
BR
j , (S2a)

dBC
k

dt
= ρk

[
HjkB

R
j − 1

]
BC
k . (S2b)

Evaluating the conservation law known for this system (Lotka, 1920) for the initial conditions BR
j = 1,

dBR
j /dt = 0, one finds that at its minimum BR

j satisfies ln(BR
j ) = −Hjk(1 − BR

j ) (Rossberg, 2013,

Sec. 20.3.3). Since we are interested in situations where the minimum is deep (BR
j < Mmin � 1), this

condition can be approximated as ln(BR
j ) = −Hjk. It follows that BR

j falls below Mmin during consumer
k’s invasion if ln(Mmin) > −Hjk, which is equivalent to Eq. (15).

The conditions for consumer-mediated competitive exclusion, for exploitative competitive exclusion
and for Pyrrhic competition all derive directly from exact equilibrium solutions of the dynamic model.
The general multispecies model, Eq. (2), is well studied (MacArthur, 1970, 1972; Case & Casten, 1979;
Chesson, 1990). To write down its equilibrium solution, let H be the matrix with entries Hjk and define
the competition matrix as the matrix with entries

Ckl =

SR∑
j=1

HjkHjl, that is C = HTH. (S3)

Denote by s the vector of intrinsic consumer growth rates

sk = Rk − 1, (S4)

with Rk =
∑SR

j=1Hjk defined as in the main text. The vector bC of consumer population biomasses BC
j

at equilibrium is then given by

bC = C−1s. (S5)

and that of resource population biomasses BR
j by

bR = 1−HBC. (S6)

In the case of only one consumer (SC = 1, k = 1), the biomass of the resource j is therefore BR
j =

1 − Hjk(Ckk)−1sk. The resource with the lowest biomass is that with the largest Hjk, i.e., the main
resource of k. Its biomass is negative, implying resource extinction (Holt, 1977), if

Ckk < Hjksk. (S7)
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The criterion for consumer-mediated competitive exclusion, Eq. (16), spells out this condition.
For the two-consumer (Sc = 2) problem, we have, with k = 1 and l = 2,

C−1 =
1

CkkCll − C2
kl

(
Cll −Ckl
−Ckl Ckk

)
. (S8)

Combining Eqs. (S5) and (S8), we find that (for Sc = 2) BCk < 0 if

Cllsk − Cklsl < 0 (S9)

or equivalently

sk <
Cklsl
Cll

. (S10)

Our criterion of exploitative competitive exclusion, Eq. (14) spells out this condition.
Now, assume that Eq. (S10) and the corresponding condition with l’s and k’s role reversed both fail

to be satisfied. This alone does not guarantee coexistence of all species. Combining Eqs. (S5), (S6)
and (S8), one can see that the equilibrium abundance of resource BR

i is predicted to be negative if

1 < Hik
Cllsk − Cklsl
CkkCll − C2

kl

+Hil
Ckksl − Cklsk
CkkCll − C2

kl

. (S11)

This can be re-arranged to

CkkCll − C2
kl < sk (HikCll −HilCkl) + sl (HilCkk −HikCkl) , (S12)

and our condition for Pyrrhic competition, Eq. (17), spells out this inequality.
We now outline how these conditions can efficiently be evaluated for large SR and SC. The most

time-consuming step is the computation of C in Eq. (S3), as (for practical purposes) the number of
operations this requires increases as O(S2

CSR) with system size. All remaining calculations can be done
using just O(S2

C) or O(SCSR) operations.
Denote, for any square matrix A, by diag(A) the vector formed by its diagonal elements, and by

Diag(v), for any vector v, the diagonal matrix with v on the diagonal. We can evaluate the SC × SC

matrix Φ with entries Φkl given by the left-hand side of Eq. (S9) as

Φ = s diag(C)T −C Diag(s). (S13)

To test for extirpations, set the diagonal of Φ to exactly zero to remove small numerical errors. Extirpation
of consumer k by our (simplified) criterion follows if row k of Φ constrains negative elements.

The SC×SC matrix D with entriesDkl = CkkCll−C2
kl, containing the determinants of all two-consumer

competition problems (the denominators in Eqs. (S8), (S11)), can be computed as

D = diag(C) diag(C)T −C ◦C, (S14)

with ◦ denoting elementwise multiplication. After finding for each consumer k the index m(k) of its
main resource, one can constructed the SC × SC matrix M with entries

Mkl = Hm(k)l. (S15)

Using this, we obtain the SC × SC matrix ∆ with entries given by the difference between left- and
right-hand side of Eq. (S12) for the main resource of each consumer k as

∆ = D−Diag(diag(M))Φ−M ◦ΦT . (S16)

To test for extirpations, set the diagonal of ∆ to exactly zero to remove small numerical errors.
Extirpation of the main resource of consumer k by our (simplified) criterion follows if row k of ∆
contains negative elements.

By striking a new balance between code complexity, speed, and accuracy in the multi-objective
optimisation problem of finding fast, simple and accurate models, our deconstructed formulation carves
out emergent properties (sensu Rossberg, 2007) of the full model, Eq. (2), e.g., those shown in Figs. 2
and 3.
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Appendix S3 Evolutionary steady-state condition including mutation
bias

We derive the steady state condition for base attack rate, Eq. (6).
To understand the effect of mutation bias, we invoke the Price equation (Price, 1972). It predicts

that the expected rate of evolutionary change of a trait q of a species is given by

dEq/dt = cov[f(q), q] + Eq̇, (S17)

with f(q) denoting the invasion fitness (for a given environment) of lineages of type q, and the last
term representing the mutation bias (the mean inherent rate of change of traits). For trait values q∗

corresponding to evolutionary steady states, both sides of Eq. (S17) must evaluate to zero. Following
Page & Nowak (2002), we expand f(q) to first order at q = q∗. Combined with the population-dynamical
equilibrium condition f(q∗) = 0, this leads to 0 = f ′(q∗) var q + Eq̇, or equivalently

f ′(q∗) = − Eq̇

var q
. (S18)

This condition generalises the conventional criterion for evolutionary singular strategies, f ′(q∗) = 0, to
situations with mutation bias.

To apply this result to our model, we first note that our way of implementing evolution of base attack
rate in our model through Eq. (3) makes the scheme formally analogous to how individual-based models
describe evolution of a trait in a population. In this analogy, (i) coexisting populations of consumers in our
model correspond to individuals in conventional models, (ii) mutations accumulated between successive
invasion events along lineages in our model correspond to mutations between successive generations in
conventional models, and (iii) the community of consumers at the focal patch in our model corresponds
to the evolving population in conventional models.

While this formal analogy does not represent the process our community assembly model actually
describes, it allows us to use Eq. (S18), with q = ln a, to obtain the steady-state condition for mean
logarithmic base attack rate in this model. With the assumed statistical equivalence of all patches in the
metacommunity (mean-field approximation), such a steady state can arise only if the evolution of the
base attack rates of all consumers in the metacommunity has reached a steady state. The steady state
condition for the community mean of ln a therefore implies a steady-state condition for the evolution of
ln ak for all species k in the metacommunity (see also Appendix S6).

To evaluate Eq. (S18) with q = ln a, we set

Eq̇ =
ln γ0
L∗

, (S19)

where L∗ is the mean lifetime of populations in the community. The standing mutational variance
var q = var(ln a) is obtained from the distribution of a over the simulation steady state.

We approximate steady-state invasion fitness, i.e. the mean intrinsic rate of increase (f(q) > 0) or
decrease (f(q) < 0) of the number of populations of type q in the simulation steady state, as f(q) ≈
ln[R(a)]/L(a), where R(a) and L(a) are as defined in the main text. With a∗ representing the geometric
mean of a over the simulation steady state, such that ln a∗ is the arithmetic mean of ln a, we expect that
R(a∗) = 1. This leads to

f ′(q∗) ≈ d{ln[R(a)]/L(a)}
d ln a

∣∣∣∣
a=a∗

=
1

L(a)

d ln[R(a)]

d ln a

∣∣∣∣
a=a∗

≈ 1

L∗
d ln[R(a)]

d ln a

∣∣∣∣
a=a∗

. (S20)

Putting Eqs. (S19) and (S20) into Eq. (S18) and multiplying both sides with L∗ gives

d lnR(a)

d ln a

∣∣∣∣
a=a∗

≈ − ln γ0
var(ln a)

. (S21)

Applying the identity ln(x) = log10(x)/ log10[exp(1)] yields Eq. (6).
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Appendix S4 Mechanisms determining ‘birth rate’

Within the mean-field approximation, the ‘birth rate’ function b(a) is in our model the rate at which
resident populations with base attack rate a give rise to successful invaders into the model community
via Eq. (3). To derive an analytic approximation of b(a), we must account for three model elements,
which are common to both model formulations:

1. The mutation step, Eq. (3), determining the new consumer’s base attack rate from that of the
resident.

2. The sampling of the new consumer’s attack rates according to Eq. (4), and the test whether it can
invade.

3. The fact that time is measured in numbers of successful consumer invasions.

Crucial is the probability of successful invasion in 2. We begin with an analysis of this element, adding
subsequently considerations of 1 and 3.

We first consider the deconstructed model formulation. On one hand, competitive exclusion by a
resident consumer according to Eq. (14) of the algorithm always implies an inability to invade according
to Eq. (13), so that (for SC > 0) only Eq. (14) needs to be considered. On the other hand, Eq. (14)
can be read as just a correction of the invasibility criterion, Eq. (13) to account for the presence of
competitors. To see this, re-arrange Eq. (14) as

SR∑
j=1

Hjk

[
1−Hjl

∑SR

i=1Hil − 1∑SR

i=1H
2
il

]
− 1 < 0. (S22)

The term in square brackets represents the population biomass (in units of K) that resource j would
have if l was the only extant consumer. The deconstructed formulation ensures that, at the end of a
model iteration, no extant resource satisfies the criterion for consumer-mediated competitive exclusion,
Eq. (16) and all extant consumers satisfy the simple invasibility criterion, Eq. (13). These loop invariants
guarantee that the value of the expression in brackets in Eq. (S22) lies between 0 and 1 for all k and l.
Satisfaction of Eq. (S22) therefore implies violation of Eq. (13).

BR

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

Figure S1: Histogram of resource biomasses BR in the steady state of the full model, sampled from community
snapshots after every 200 consumer additions. Neither values close to zero nor values close to one are very
frequent.
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Because there is no mechanism active in the model that would favours values of the expression in
square brackets above that are particularly close to zero (see also Fig. S1), most of the variation among
the addends in the sum over j in Eq. (S22) is due to the log-normal distribution of the invader’s attack
rates Hjk. The presence of competitors merely moderates the effect of this variation. It can therefore be
approximated by substituting the square bracket by a suitable constant 0 < β < 1: the fitting parameter
introduced in the main text.

The sum over j in Eq. (S22) can then be written as α0akβ
∑SR

j=1 e
σξjk . The distribution of the

sum in this last expression is, for a given number of resources SR, often well approximated by a single
log-normal distribution with suitable choices for mean µSR

≈ σ
√

2 lnSR and standard deviation σSR
≈

σ/
√

1 + 2 lnSR of the logarithm (Rossberg et al., 2011). (We estimated µSR
and σSR

numerically form
10,000 samples of log-normal sums, which is more accurate.)

From this log-normal approximation, the invasion probability for species with given base attack rate
ak is obtained as

Pinv(ak) = Φ

(
ln(α0βak) + µSR

σSR

)
, (S23)

with Φ(x) denoting the cumulative standard normal distribution function. For the full model, the same
functional form as in Eq. (S23) can be chosen based on the same rationale: compared to the variation
in link strengths, the variation among the population biomasses of resident resources is small.

Denote by P ∗inv(a) the probability that the “offspring” of a resident species with base attack rate a

can invade the community. The log-normal approximation for the sum in α0akβ
∑SR

j=1 e
σξjk used above

combines seamlessly with the log-normal distribution of ak resulting from the mutation of base attack
rate al of the ‘parent’ population l as per Eq. (3). We can therefore obtain P ∗inv(a) from Eq. (S23) by
correcting µ∗SR

= µSR + ln γ0 and σ∗SR
= [σ2

SR
+ (ln γ1)2]1/2 to account for mutational variance and bias.

Hence

P ∗inv(a) = Φ

(
ln(α0βa) + µ∗SR

σ∗SR

)
. (S24)

Because we measure time in units of consumer invasions, and both variants of our model attempt
consumer invasions until one succeeds, the probability for “offspring” of resident consumer l to invade
in a given time step is P ∗inv(al)/

∑SC

k=1 P
∗
inv(ak) (guaranteeing that the probability for offspring of some

consumer k to invade evaluates to 1). Since species richness and the distribution of the al fluctuate
somewhat through time, we calculated the ‘birth rate’ in Fig. 3c,g as the average of this probability for
a given base attack rate a over the model steady state:

b(a) = Average through time of
P ∗inv(a)∑SC

k=1 P
∗
inv(ak)

. (S25)
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Appendix S5 Serial extinction

We derive Eq. (10), which predicts a consumer’s intrinsic growth rate after serial extinction in the limit
of high base attack rate and species richness.

Note first that, because during serial extinction resources are successively removed in decreasing
order of the consumer’s attack rate (and also in the simplified model, Box 2), the distribution of attack
rates after serial extinction is the same as before, except for being truncated from above at the point
where Eq. (16) gets violated. In situations where the sums in Eq. (16) are not dominated by just a few
resources, the central limit theorem can be invoked and the sums approximated by their expectation
values, which then permits analytic computation of the truncation threshold H∗ and other properties of
the end state.

The calculations simplify by first approximating the relevant section of the upper tail of the log-normal
attack-rate distribution, Eq. (4), by a Pareto distribution, which can be derived in the limit of high
resource richness SR (Rossberg et al., 2011; Rossberg, 2013). By this approximation, the consumer has
on average Z resources with Hjk larger than some “observation threshold” H0, and for these

P [Hjk ≤ x] ≈ 1−
(
H0

x

)ν
, (S26)

with ν = σ−1
√

2 lnSR. Empirically, typical values for ν are in the range 0.5 to 0.6 (Rossberg et al.,
2011; Rossberg, 2013). Values ν ≥ 1 would correspond to extreme omnivory where the proportional
contribution of each resource species to a consumer’s diet scales as 1/SR, i.e. no resource makes a
sizeable contribution to the diet. We are unaware of such a situation occurring in nature, and therefore
assume 0 < ν < 1 in this study.

For a given observation threshold H0 one can define the consumer link density Z, i.e. the mean
over all consumers of the number of resources with scaled attack rate Hjk above the threshold H0. By
choosing Z, we can control the typical strengths Hmax of the strongest attack rate before serial extinction,
specifically the exp(−1)-quantile of the distribution of maxj Hjk. In the limit of large Z, this leads to
the condition

exp(−1) = (P [Hjk ≤ Hmax])
Z

=

[
1−

(
H0

Hmax

)ν]Z
≈ exp

[
−
(

H0

Hmax

)ν
Z

]
(S27)

and so

Z ≈
(
Hmax

H0

)ν
. (S28)

It goes without saying that Hmax is proportional to base attack rate ak and can therefore be use as a
proxy for the latter.

With this preparation, we can now take expectation values on both sides of Eq. (16) for the case of
truncation of the link-strength distribution at H∗, the largest value for which Eq. (16) is not violated.
This leads to a condition

E

Hjk≤H∗∑
j

Hjk − 1

 =H−1∗ E

Hjk≤H∗∑
j

H2
jk

 , (S29)

which can be written as [
Z

ˆ H∗

H0

p(x)xdx− 1

]
=H−1∗ Z

ˆ H∗

H0

p(x)x2dx, (S30)

where p(x) = −(d/dx)P [Hjk ≤ x] is the probability density of the untruncated attack rate distribution.
Evaluation of the integrals after inserting Eq. (S26) leads to

ZνH−ν∗ (H∗H
ν
0 −Hν

∗H0)

1− ν
− 1 =H−1∗

ZνH−ν∗
(
H2
∗H

ν
0 −Hν

∗H
2
0

)
2− ν

(S31)

and, after inserting Eq. (S28) and taking the limit of low observation threshold (H0 → 0),

H−ν∗ [νH∗H
ν
max −Hν

∗ (1− ν)]

1− ν
=
νH1−ν
∗ Hν

max

2− ν
. (S32)
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Figure S2: Dependence of intrinsic growth rate term C = 1−
∑
j Hjk on base attack rate in the course

of repeated serial extinction and resource turnover. Panel (a) shows geometric means of C over 106

replicated runs of the model of Box 2 over 104 iterations, panel (b) arithmetic means. For high base attack
rates ak (dark lines), both geometric and arithmetic means approach the same value ≈ 0.86 (indicating
a near-deterministic outcome) after the first iteration of consumer-mediated competitive exclusion, largely
independent of base attack rate, as predicted by the analytic theory. The value is different from the analytic
prediction 1− σ−1

√
2 logSR ≈ 0.14 valid for large because SR, because SR = 224 is not sufficiently large.

This equation can be solved for H∗, yielding

H∗ =

[
(1− ν)(2− ν)

νHν
max

]1/(1−ν)
. (S33)

The expected intrinsic growth rate of the consumer after serial extinction equals the left-hand sides of
Eqs. (S29)-(S32). When putting Eq. (S33) into the left-hand side of Eq. (S32) it simplifies considerably,
leading to the final result

E

[
Hki≤H∗∑

k

Hki − 1

]
= 1− ν. (S34)

With 0 < ν < 1, this result implies that E
∑Hjk≤H∗
j Hjk attains values between 1 and 2. On the

other hand, the upper cutoff H∗ declines with increasing Hmax (or base attack rates ai) as H
−ν/(1−ν)
max

by Eq. (S33). For large base attack rates and so large Hmax, the sum
∑Hjk≤H∗
j Hjk therefore has

contributions from many small terms, justifying our application of the central limit theorem to approximate
the sums entering Eq. (16) by their expectation values. Figure S2b qualitatively confirms this result.

Interestingly, above considerations imply that, despite having the same niche width in terms of the
spread σ of the log-normal attack-rate distribution, invaders with higher base attack rate will have more
diverse diets post Impact than those with lower attack rates. This might explain why invasive alien
consumers are often found to be ’generalists’.
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Box S1 Algorithm of the evolutionary metapopulation model.

The model state is given by N patches which are either empty or
occupied by a population with base attack rate ai (1 ≤ i ≤ N).
The model is simulated as follows:

1. Occupy a proportion p of patches with populations with identical
initial base attack rates ai.

2. Select an occupied source patch l for dispersal. Sample the base
attack rate ak of a propagule according to Eq. (3).

3. Sample a target patch j.

4. If patch j is occupied:

(a) If aj < ak, replace the new population of patch j with one that
has base attack rate ak, otherwise do nothing.

5. If patch j is not occupied:

(a) With invasion probability Pinv(ak), establish in patch j a
new population with base attack rates ak and then remove
the population from another occupied patch m, sampled at

random from all occupied patches with probability proportional
to 1/L(am). Pinv(a) is our approximation of invasion
probability for the deconstructed community model, Eq. (S23)
with β = 0.45 and SR = 224 (corresponding to the mean
equilibrium richness in Fig. 2b), and L(a) the polynomial
fit to mean population lifetime in Fig. 3h (log10 L =

−0.04105026(log10 a)
2−0.78404937 log10 a−0.77341520).

6. Continue from Step 2 for a predetermined number of iterations.

The values of γ0, γ1, and σ are as in Tab. 1.

The algorithm can be reformulated in such a way that only a list of the
ai value of occupied patches i is kept in memory. In each iteration,
Step 4a is then executed with probability p and otherwise Step 5a.
When invasion is successful in Step 5a, the new ak value is stored in
the memory location where am was previously stored. This formulation
permits us to take the limit p→ 0 while keeping the number of occupied
patches pN fixed.

Appendix S6 The limited impact of cheaters

Cheaters exploit benefits offered by more altruistic conspecifics to their advantage, thus potentially
counteracting the evolution of altruism. To obtain a bound on the impact of cheaters on prudent
predation, we devised a simple evolutionary metapopulation model. For a single species, this model
explicitly describes the kind of evolutionary process that the evolutionary community model, introduced
in the main text, implicitly describes for many species using a mean-field approximation. By comparing
the evolutionary steady states reached by the two models for the special case where cheating is absent,
the plausibility of the mean-field approximation can be tested.

Specifically, the evolutionary metapopulation model describes a landscape of N patches that are either
occupied by the focal species or not. The population occupying patch i (1 ≤ i ≤ N) has an associated
base attack rate ai. We assume that cheating occurs if a population of the focal species disperses to a
patch that is already occupied, and the propagule’s base attack rate is larger than that of the resident in
that patch. The propagule then replaces the resident population. This model disregards that conspecific
propagules will not only differ in their base attack rates from residents, but also in other foraging traits
(Appendix Appendix S1), and therefore have, on average, a reduced likelihood of encountering suitable
resources and establishing themselves. Our metapopulation model is therefore biased to overestimate
the likelihood of cheating. We shall see that the predicted impact of cheating remains limited despite
this.

Contrasting conventional stochastic patch occupancy models in the tradition of Levins (1969), patch
occupancy p, i.e., the proportion of occupied patches, is a parameter in our model. The reason is evidence
that species richness both at patch level (α) and at landscape level (γ) is regulated through ecological
structural stability limits (O’Sullivan et al., 2019), which our metapopulation model cannot explicitly
represent. Mean occupancy is uniquely determined by α and γ as p = α/γ. By fixing p we represent
these limits implicitly.

The model is detailed in Box S1. Crucially, the dependencies on a of invasion probability and of
the mean lifetime of populations are chosen to reproduce those of the deconstructed formulation of our
food-web model (Fig. 3). We chose pN = 1000 over a range of p values, evaluated the algorithm over
4 · 107 iterations, and sampled base attack rates from the last 3/4 of each run to characterise the steady
state (which was reached after less than a 10th of iterations).

In the limit p→ 0, where cheating does not occur, the metapopulation model should recover the mean
base attack rate in the evolutionary steady state of our food-web model. Indeed, the metapopulation
model attained a steady state with mean logarithmic base attack rate log10 a = −5.14, close to the value
of −4.96 obtained with the deconstructed model formulation. We also obtained an approximately normal
distribution of log10 a in the steady state of the metapopulation model similar to that in Fig. 3e. These
results provide evidence that our reconstruction of the fitness landscape in Fig. 3 does indeed represent
the fitness landscape experienced by an evolving metapopulation of a single species.

As shown in Fig. S3, log10 a increases linearly with p for low p. An occupancy of p = 0.3, for
example, leads to an approximate 3-fold increase in geometric mean base attack rates. Hence, cheating
makes consumers somewhat less prudent, but does not fundamentally undermine the evolution of prudent
predation.
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Figure S3: The impact of cheaters on evolutionary stable base attack rate a. Simulation results from
the metapopulation model described in Box S1. The higher the occupancy p of patches by the metapopulation,
the larger the probability that occupied patches are overtaken by invading cheaters with higher base attack
rates. This effect increases steady state base attack rates but does not prevent a steady state from being
reached.
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Appendix S7 Steepness and basic reproduction number

We derive the relation between basic reproduction number and the steepness of stock recruitment
relations given in Eq. (12).

Consider first the following caricature model of a fish stock with standing stock biomass SSB that
feeds on a single resource:

dBR

dt
=

[
s

(
1− BR

K

)
− aSSB

]
BR, (S35a)

dSSB

dt
= εaBRSSB− ρSSB− F SSB. (S35b)

The parameter F denotes the fishing mortality rate, otherwise model structure and parameterization are
as in Eq. (1). If one assumes, for simplicity, that (i) all mature individuals have the same body mass m,
(ii) recruits are produced instantaneously, and (iii) the parameter ρ is dominated by natural mortality
rather than respiration, then recruitment is given by the first term on the right-hand side of Eq. (S35b):

mRec = εaBRSSB = εaK SSB− εa2K

s
SSB2. (S36)

In the second step we eliminatedBR by solving Eq. (S35a) with dBR/dt = 0 forBR > 0. Stock-recruitment
relations of this quadratic form are frequently used in fisheries science and named after Schaefer (1954).
Unfished (F = 0) equilibrium SSB evaluates to

SSB0 = s
εaK − ρ
εa2K

. (S37)

From Eqs. (11), (S36) and (S37) one obtains the steepness

h =
1

25

(
1 +

4εaK

ρ

)
. (S38)

The basic reproduction number R is defined as recruitment per mature individual (of which there are
SSB/m) in units of ρ, in the limit SSB→ 0, which evaluates to

R = lim
SSB→0

mRec

SSB ρ
=
εaK

ρ
. (S39)

Hence Eq. (S38) implies Eq. (12).
We now verify that Eq. (12) remains valid if one generalises Eq. (S35) to a situation with multiple

resources. We assume that the fish stock is initially fully established at SSB0, such that resources
that would not withstand its consumption have been extirpated. By Eq. (S6), the biomass of each
resource is then a linear function of consumer biomass, here SSB. With the linear functional response of
Lotka-Volterra models, this implies

mRec = (c1 − c2 SSB) SSB (S40)

with some positive constants c1 and c2. As above, we can evaluate

R = lim
SSB→0

mRec

SSB ρ
=
c1
ρ
, (S41)

yielding c1 = ρR. Furthermore, recruitment balances mortality for an unfish stock with SSB = SSB0.
So mRec(SSB0) = ρSSB0, which implies

c2 = ρ
R− 1

SSB0
. (S42)

With these values for c1, c2, plugging Eq. (S40) into the definition of steepness, Eq. (11), yields again
Eq. (12).
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Figure S4: Activation frequency of consumer extirpation mechanisms. The classification relates to
different steps in the deconstructed model formulation (Box 1). Exploitative competition refers to Step 5;
Pyrrhic competition to failure to meet the invasibility condition by a consumer losing its main resource, or
by the competitor causing this, in Steps 6, 7; Bust after boom refers to Step 3d; and Invasibility criterion to
failure to satisfy Eq. (13) at any other point in the algorithm. Extirpations through Pyrrhic competition are
very rare, and those through bust after boom contribute just a few percent of cases.
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