
Appendices

1 Technical model specification

The Bayesian MVP-LC model we proposed assumes that there are S Studies each assessing T ≥ 2
tests with Ns individuals in each study, s ∈ {1, . . . , S}. We assume that all studies report data on all
categories of each test, and each test, t ∈ {1, . . . , T}, has Kt categories (Kt − 1 cutpoints).

1.1 Within-study model

Within each study s, each individual n ∈ {1, ..., Ns} has a vector of observed test responses, ys,n,
equal to

ys,n = {ys,n,1, . . . , ys,n,T }

Assume that each individual has latent disease status d = ds,n ∈ {0 = non-diseased, 1 = diseased}.
Conditional on the disease status of each individual, d = ds,n ∈ {0, 1}, we augment the observed data
with normally distributed latent variables Zs,n,

Zs,n ∼ MVN
(
ν [d]
s ,Ψ[d]

s

)
, (1.1)

Where,

Zs,n =

Zs,n,1
...

Zs,n,T

 ,ν [d]
s =


ν
[d]
s,1
...

ν
[d]
s,T

 ,Ψ[d]
s =


(τ

[d]
s,1)

2 · · · ϵ̇
[d]
s,1,T · τ [d]s,1 · τ

[d]
s,T

...
. . .

...
ϵ̇
[d]
s,T,1 · τ

[d]
s,T · τ [d]s,1 · · · (τ

[d]
s,T )

2


We assume that the study-specific location parameters can be modelled by the unconstrained param-
eters ν

[1]
s,t ∈ R and ν

[0]
s,t ∈ R for the latent diseased and non-diseased populations, respectively. For

the variance-covariance matrices Ψ
[d]
s , for identifiability we need to set some restrictions1,2. In this

paper, we set τ
[d]
s,t = 1, ∀s ∈ {1, . . . , S},∀t ∈ {1, . . . , T}, so that each Ψ

[d]
s is a correlation matrix.

This has the same form to the models proposed in Xu et al 20093 and Xu et al 20134. Note that the
correlations, ϵ̇[d]s,t,t′ , represent the pairwise correlation between the latent variables for tests t and t′ in

study s, conditional on the disease status d. ϵ̇[d]s,t,t′ is referred to as the polychoric correlation2,5. If it is
considered reasonable in a particular setting to assume that tests are conditionally independent given
disease status, the correlations can be set to zero, so that Ψ

[d]
s = diag(1, . . . , 1). For dichotomous test

t, the observed test results of each individual are given by,

ys,n,t =

{
0 if Zs,n,t ≤ 0

1 if Zs,n,t > 0
(1.2)

For ordinal tests, the observed test results of each individual for test t are given by,

ys,n,t =



1 if Zs,n,t ≤ C
[d]
1,s,t

2 if C [d]
1,s,t < Zs,n,t ≤ C

[d]
2,s,t

...
Kt − 1 if C [d]

Kt−2,s,t < Zs,n,t ≤ C
[d]
Kt−1,s,t

Kt if Zs,n,t > C
[d]
Kt−1,s,t

(1.3)

Where C
[d]
k,s,t < C

[d]
k+1,s,t for k ∈ {1, . . . ,Kt− 2} are the latent cutpoint parameters. Conditional on the

true disease status of each individual, d = ds,n ∈ {0, 1}, the probability of observing the test response
vector ys,n is given by,

P
(
ys,n|d = ds,n,ν

[d]
s ,Ψ[d]

s ,C
[d]
k,s

)
=

∫
I
[d]
s,n,1

. . .

∫
I
[d]
s,n,T

ΦT

(
k|ν [d]

s ,Ψ[d]
s

)
dk (1.4)
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where ΦT

(
· |ν [d]

s ,Ψ
[d]
s

)
denotes the cumulative distribution function of a multivariate normal dis-

tribution with dimension equal to the number of tests in each study, T , with mean vector ν
[d]
s and

variance-covariance matrix Ψ
[d]
s . For dichotomous tests, the intervals Is,n,t are defined by,

I
[d]
s,n,t =

{
(−∞, 0] if ys,n,t = 0

(0, ∞) if ys,n,t = 1
(1.5)

This corresponds to a binary latent class multivariate probit model with probability density function,
π(·), is given by,

π(k | ν[d]s,t) =

1− Φ
(
ν
[d]
s,t

)
if k = 0

Φ
(
ν
[d]
s,t

)
if k = 1

(1.6)

Where Φ(·) denotes the cumulative density function of the standard normal distribution. The measures
of test accuracy for each study are given by,

Ses,t = Φ(ν
[1]
s,t)

Sps,t = 1− Φ(ν
[0]
s,t)

(1.7)

For ordinal tests, the intervals, I [d]s,n,t, are defined by,

I
[d]
s,n,t =



(−∞, C
[d]
1,s,t] if ys,n,t = 1

(C
[d]
1,s,t, C

[d]
2,s,t] if ys,n,t = 2

...
(C

[d]
Kt−2,s,t, C

[d]
Kt−1,s,t] if ys,n,t = Kt − 1

(C
[d]
Kt−1,s,t, ∞) if ys,n,t = Kt

(1.8)

This corresponds to an ordered latent class multivariate probit model2, with probability density func-
tion for test t given by,

π(k | ν[d]s,t ,C
[d]
s,t) =


Φ(C

[d]
1,s,t − ν

[d]
s,t) if k = 1,

Φ(C
[d]
k,s,t − ν

[d]
s,t)− Φ(C

[d]
k−1,s,t − ν

[d]
s,t) if 1 < k < Kt,

1− Φ(C
[d]
Kt−1,s,t − ν

[d]
s,t) if k = Kt.

(1.9)

Therefore, for a test which has decreasing sensitivity and increasing specificity with increasing cutpoint,
the measures of test accuracy for test t at a cutpoint of k in study s are given by,

Ses,t,k = 1− Φ(ν
[1]
s,t − C

[1]
k,s,t)

Sps,t,k = Φ(ν
[0]
s,t − C

[0]
k,s,t)

(1.10)

The likelihood contribution from each study s ∈ {1, ..., S} is given by a latent class model with two
classes, where one component corresponds to the diseased group and the other to the non-diseased
group. Using equation (1.4), we can write the likelihood function for each study as the sum of the log
probability terms for each individual study,

logL (θ|ys) =

Ns∑
ns=1

log [ ps · P
(
yn,s|dn = 1,ν [1]

s ,Ψ[1]
s ,C

[1]
k,s

)
+ (1− ps) · P

(
yn,s|dn = 0,ν [0]

s ,Ψ[0]
s ,C

[0]
k,s

)
]

Where ps, s ∈ {1, . . . , S} denotes the disease prevalence in each study and θ denotes the vector of
model parameters.
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Using the augmented latent variables, Zs,n,t, we can write this as,

logL (θ|ys) =

Ns∑
n=1

dn · log(ps) +
Ns∑
n=1

dn · log[ ΦT

(
zs,n|ν [1]

s ,Ψ[1]
s

)
] +

Ns∑
n=1

(1− dn) · log(1− ps) +

Ns∑
n=1

(1− dn) · log[ ΦT

(
zs,n|ν [0]

s ,Ψ[0]
s

)
] +

Ns∑
n=1

[dn ·
T∑
t=1

log(zs,n,t ∈ I
[1]
s,n,t) + (1− dn) ·

T∑
t=1

log(zs,n,t ∈ I
[0]
s,n,t)]

(1.11)

1.2 Between-study model

Recall that ν
[d]
s,t are the location parameters for study s, test t in latent population d. We define a

vector νs,t = (ν
[1]
s,t, ν

[0]
s,t)

′ and assume a partial pooling, bivariate normal population model,

π(νs,t | θ) = MVN(µt,Σt), (1.12)

Where µt = (µ
[1]
t , µ

[0]
t )′ is a vector containing the mean parameters, and

Σt =

 (
σ
[1]
t

)2
ρt · σ[1]

t · σ[0]
t

ρt · σ[1]
t · σ[0]

t

(
σ
[0]
t

)2

 is a variance-covariance matrix, where σ
[1]
t and σ

[0]
t represent the

between-study standard deviations for the sensitivities and specificities, respectively, and ρt represents
the between-study correlation between sensitivities and specificities. We can set a given test, t′, to
be a perfect gold standard (100% sensitive and specific) by setting µ

[0]
t′ = −5 and µ

[1]
t′ = 5, which

correspond to 100% specificity and sensitivity, respectively, and by using a complete pooling model
(in other words, assuming zero between study heterogeneity i.e. σ

[d]
t′ = 0).

1.2.1 Meta-regression

We can incorporate meta-regression covariates into the model. Let X1,t . . .XM,t be M vectors meta-
regression covariates such that each Xm,t = (Xm,1,t, . . . , Xm,S,t) ∈ RS . Let γ1,t . . .γM,t be M vectors
of meta-regression coefficients, such that each flm,t = (γ

[1]
m,t, γ

[0]
m,t)

′ ∈ R2, m ∈ {1 . . .M}. Then we
write (1.12) as,

π(νs,t | θ) = MVN(µt +X1,s,t · γ1,t + . . .+XM,s,t · γM,t,Σt), (1.13)

For the disease prevalence in each study, we implement a no pooling (i.e., independent effects) model,
which does not assume any latent interactions between the individual disease prevalence parame-
ters,

π(p1, . . . , pS) =
S∏

s=1

π(ps) (1.14)

1.2.2 Cutpoint model

The cutpoint parameters can be modelled using an induced Dirichlet model, an approach which
has been proposed by Betancourt6, which we describe in more detail in Appendix 1 section ......
This model applies a Dirichlet model directly to the ordinal probabilities, by mapping the latent
cut point parameters in each study {C [d]

1,s,t, . . . , C
[d]
Kt−1,s,t} to the simplex of ordinal probabilities

{P [d]
1,s,t, . . . , P

[d]
Kt,s,t

} using an injective (i.e. one-to-one) function. The probability density function
for the induced Dirichlet model is given by,

Induced-Dir
(
C

[d]
s,t, | α

[d]
s,t, ϕ

)
= Dir

(
P(C

[d]
s,t, ϕ) | α

[d]
s,t

)
·
∣∣∣J (

C
[d]
s,t

)∣∣∣ , (1.15)
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Where C[d]
s,t =

(
C

[d]
1,s,t, . . . , C

[d]
Kt−1,s,t

)′
is the vector of cutpoints for study s and test t, α[d]

s,t =
(
α
[d]
1,s,t, . . . , α

[d]
Kt,s,t

)′

is the Dirichlet vector for study s and test t, P(C
[d]
s,t, ϕ) represents the induced ordinal probabilities in

terms of the cutpoints C[d]
s,t and an arbitrary anchor point ϕ, and

∣∣∣J (
C

[d]
s,t

)∣∣∣ is the determinant of the
Jacobian matrix of partial derivatives (we need a Jacobian adjustment since we are directly modelling
transformed parameters). We can use the induced Dirichlet model to directly specify a complete pool-
ing model on the cutpoints by setting C

[d]
s,t = C

[d]
t ∀s, and specifying α

[d]
s,t ∀s, t as constants. We can

specify a partial pooling model on the cutpoints by setting α
[d]
s,t = α

[d]
t ∀s as parameters, so that,

π
(
C

[d]
s,t|θ

)
= Induced-Dir

(
C

[d]
s,t|α

[d]
t

)
· π

(
α

[d]
t

)
(1.16)

In this case, we can obtain an ’average’ vector of cutpoints, C[d]
t , by simulating repeatedly from (1.16)

and averaging across draws.

More detail

The induced Dirichlet model allows us to move away from the abstract latent space in which the
cutpoints are defined, and applies a Dirichlet model directly to the ordinal probabilities. We need to
find an injective (i.e. one-to-one) function which maps the latent cut point parameters in each study
{C [d]

1,s,t, . . . , C
[d]
Kt−1,s,t} to the ordinal probabilities {P [d]

1,s,t, . . . , P
[d]
Kt,s,t

}. Let S[d] =
∑K

k=1 P
[d]
k,s,t = 1

and let g : R → (0, 1) be a differentiable, monotonically increasing latent probability density func-
tion, with inverse g−1. We condition on an arbitrary anchor point, ϕ, and then define a map
φ
[d]
|ϕ : {C [d]

1,s,t, . . . , C
[d]
Kt−1,s,t, S

[d]} → {P [d]
1,s,t, . . . , P

[d]
K,s,t}. The induced ordinal probabilities for each

of the latent classes are given by,

φ
[d]
|ϕ (C

[d]
k,s,t, C

[d]
k−1,s,t) = g(C

[d]
k,s,t − ϕ)− g(C

[d]
k−1,s,t − ϕ) = P

[d]
k,s,t, S[d] = 1 (1.17)

with φ
[d]−1

|ϕ given by,

φ
[d]−1

|ϕ (P
[d]
1,s,t) = g−1(P

[d]
1,s,t) + ϕ = C

[d]
1,s,tφ

[d]−1

|ϕ (P
[d]
k,s,t|C

[d]
k−1,s,t) = ϕ+ g−1

(
P

[d]
k,s,t + g[C

[d]
k−1,s,t − ϕ]

)
= C

[d]
k,s,t

(1.18)
The probability density function for the induced Dirichlet model is given by,

Induced-Dir
(
C

[d]
s,t, | α

[d]
t , ϕ

)
= Dir

(
P(C

[d]
s,t, ϕ) | α

[d]
t

)
·
∣∣∣J (

C
[d]
s,t

)∣∣∣ , (1.19)

Where C
[d]
s,t =

(
C

[d]
1,s,t, . . . , C

[d]
Kt−1,s,t

)′
, α

[d]
t =

(
α
[d]
1,t, . . . , α

[d]
Kt,t

)′
and J

(
C

[d]
s,t

)
is the Jacobian matrix

of partial derivatives,

J
[d]
k,1 =

∂P
[d]
k

∂S[d]
= 1, J

[d]
k,k =

∂P
[d]
k

∂C
[d]
k−1

= −g′
(
C

[d]
k−1

)
, J

[d]
k−1,k =

∂P
[d]
k−1

∂C
[d]
k−1

= g′
(
C

[d]
k−1

)
,

and zeros everywhere else. We can use the induced Dirichlet model to directly specify a partial pooling
model for the Dirichlet parameters α

[d]
t , so that,

π
(
C

[d]
s,t|θ

)
= induced-Dir

(
C

[d]
s,t|α

[d]
t

)
· π

(
α

[d]
t

)
(1.20)

Where C
[d]
s,t = (C

[d]
1,s,t, . . . , C

[d]
Kt−1,s,t)

′, and α
[d]
t =

(
α
[d]
1,t, . . . , α

[d]
Kt,t

)′
.

In this paper, we use a normal probability density function so that g(·) = Φ(·) and define the ar-
bitrary anchor point at zero, ϕ = 0. For prior modelling on the Dirichlet population parameters,
we can use a half normal prior π(α

[d]
t ) = N≥0(a

[d],b[d]) s.t. a[d],b[d] ∈ RKt
+ or exponential prior,

π(α
[d]
t ) = exponential(a[d]) s.t. a[d] ∈ RKt

+ .
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We can order the cutpoint parameters for each study, C [d]
k,s,t, k ∈ {1, . . . ,Kt − 1} by reparameterizing

the cutpoints. We define a map C
[d]
k,s,t 7→ ω

[d]
k,s,t such that,

ωk,s,t =

 C
[d]
1,s,tif k = 1,

log
(
C

[d]
k,s,t − C

[d]
k−1,s,t

)
if 1 < k ≤ K.

Then, to ensure C
[d]
k,s,t < C

[d]
k+1,s,t, each C

[d]
k,s,t can be expressed as,

C
[d]
k,s,t = ω

[d]
1,s,t +

k∑
i=2

exp(ω
[d]
i,s,t)

1.2.3 Modelling conditional dependence between tests and joint test accuracy

We can model the within-study correlation matrices, Ψ[d]
s , using a no pooling model so that π(Ψ[d]

1 , . . . ,Ψ
[d]
S ) =∏S

s=1 π(Ψ
[d]
s ). We can also use a partial pooling model; since a convex combination of correlation ma-

trices is also a correlation matrix, as suggested by Goodrich7, the study level correlation matrices can
be specified as a weighted linear combination of a summary correlation matrix across studies, Ψ

[d]
G

,and a matrix of study-level deviations from this Ψ
[d]∆

s , with weight β[d],

Ψ[d]
s =

(
1− β[d]

)
·Ψ[d]

G + β[d] ·Ψ[d]∆

s , β[d] ∈ [0, 1] (1.21)

where Ψ
[d]
G is the summary (i.e. global - hence the G subscript) correlation matrix across studies, and

Ψ
[d]∆

s is the deviation from Ψ
[d]
G in each study. η1, η2 ∈ R+ are constants and π(β) = Beta(a, b) s.t.

a, b ∈ R+. In this case, the population posterior predictive distribution is given by,

Z
[d]
G ∼ MVN

(
µ[d],Ψ

[d]
G

)
, (1.22)

Now we discretize Z
[d]
G at a given cutpoint k. Let,

y
[d]
G,t,k =

{
0 if Z [d]

G,t ≤ k

1 if Z [d]
G,t > k

We simulate from (1.22) repeatedly and hence obtain ordinal data vectors y[d]
G,t,k. Then, we can obtain

a summary estimate of Pearson’s correlation coefficient between tests t and t′ at cutpoints of k and k′,
within each disease class, ρ[d]Gtt′,kk′

= Corr(y[d]
G,t,k,y

[d]
G,t′,k′), where Corr denotes the formula for Pearson’s

correlation coefficient. The summary covariances between tests t and t′ at cutpoints of k and k′ within
each disease class d are given by,

cov
[d]
G,tt′,kk′ = ρ

[d]
G,tt′,kk′

√
SeG,t,kSeG,t′,k(1− SeG,t,k)(1− SeG,t′,k′)

cov
[d]
G,tt′,kk′ = ρ

[d]
G,tt′,kk′

√
SpG,t,kSpG,t′,k′(1− SpG,t,k) ∗ (1− SpG,t′,k′)

(1.23)

We can model the conditional dependence between only certain pairs of tests by setting the relevant
correlations in Ψ

[d]
s to zero. For the partial pooling model (see equation (1.21)), this can be achieved

by setting the relevant terms in Ψ
[d]
G and Ψ

[d]∆

s to zero.

1.2.4 Summary estimates of test accuracy

For dichotomous tests, the summary sensitivity and specificity estimates for test t are given by evalu-
ating equation (1.7) at the means of the partial pooling model (see 1.12),

SeG,t = Φ(µ
[1]
t )

SpG,t = 1− Φ(µ
[0]
t )

(1.24)
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For ordinal tests, the summary measures of test accuracy for test t at a cutpoint of k are given by
equation (1.10) evaluated at the means of the partial pooling model (see 1.12), and, if using a partial
pooling model on the cutpoints, at the ’average’ cutpoints from the induced Dirichlet partial pooling
model (see equation 1.16),

SeG,t,k = 1− Φ
(
C

[1]
k,t − µ

[1]
t

)
SpG,t,k = Φ

(
C

[0]
k,t − µ

[0]
t

) (1.25)

The summary joint test accuracy for tests t and t′ at cutpoints of k and k′ are given by,

SeBTN
G,tt′,kk′ = SeG,t,k ∗ SeG,t′,k′ + cov

[1]
G,tt′,kk′

SpBTN
G,tt′,kk′ = 1− ((1− SpG,t,k) ∗ (1− SpG,t′,k′) + cov

[0]
G,tt′,kk′)

SeBTP
G,tt′,kk′ = 1− ((1− SeG,t,k) ∗ (1− SeG,t′,k′) + cov

[1]
G,tt′,kk′)

SpBTP
G,tt′,kk′ = SpG,t,k ∗ SpG,t′,k′ + cov

[0]
G,tt′,kk′

(1.26)

Where BTP and BTN are ‘believe the positives’ and ‘believe the negatives’ testing strategies, respec-
tively. The former refers to a testing strategy where – as the name implies – all patients undertake a
test, then only that subset of patients who test positive on this test are referred to undertake a second
test. Believe the negatives (BTN) is the opposite – only patients who test negative on the first test go
on to receive the second test.

We can generate predictions for a ’new’ (S+1)-th study by simulating a draw (at each iteration) from
the posterior predictive distributions of the between-study normal hierarchical model, (see (1.12)),
νS+1,t, and, if using a partial pooling model on the cutpoints, a new vector of cutpoints from the
induced Dirichlet cutpoint model (see (1.16)), C[d]

S+1,t. The predicted sensitivities and specificities for

an (S + 1)-th study are given by SeS+1,t = Φ(ν
[1]
S+1,t) and SpS+1,t = 1 − Φ(ν

[0]
S+1,t) for dichotomous

tests, and SeS+1,t,k = 1 − Φ
(
C

[1]
S+1,k,t − ν

[1]
S+1,t

)
and SpS+1,t,k = Φ

(
C

[0]
S+1,k,t − ν

[0]
S+1,t

)
for ordinal

tests.

1.3 Posterior predictive checking and model comparison

For posterior predictive checks, we can re-construct the study-specific 2x2 tables between tests t and
t′ by dichotomising the tests at a given cutpoint. We calculate the probability of observing each test
pattern by applying the TLCM formulae8,9,10,

Pr(+tk,+t′k′)s = ps ∗ (Ses,t,k ∗ Ses,t′,k′ + cov
[1]
s,tt′,kk′) + (1− ps) ∗ ((1− Sps,t,k) ∗ (1− Sps,t′,k′) + cov

[0]
s,tt′,kk′)

Pr(+tk,−t′k′)s = ps ∗ (Ses,t,k ∗ (1− Ses,t′,k′)− cov
[1]
s,tt′,kk′) + (1− ps) ∗ ((1− Sps,t,k) ∗ (Sps,t′,k′)− cov

[0]
s,tt′,kk′)

Pr(−tk,+t′k′)s = ps ∗ ((1− Ses,t,k) ∗ Ses,t′,k′ − cov
[1]
s,tt′,kk′) + (1− ps) ∗ (Sps,t,k ∗ (1− Sps,t′,k′)− cov

[0]
s,tt′,kk′)

Pr(−tk,−t′k′)s = ps ∗ ((1− Ses,t,k) ∗ (1− Ses,t′,k′) + cov
[1]
s,tt′,kk′) + (1− ps) ∗ ((1− Sps,t,k) ∗ (1− Sps,t′,k′) + cov

[0]
s,tt′,kk′)

(1.27)
Where cov

[d]
s,tt′,kk′ represent the study-specific covariances between tests t and t′ at cutpoints k and k′.

Then, we can calculate the model-predicted cell counts by multiplying each probability in (1.27) by
the number of individuals in each study, Ns. We can plot the model-predicted 2x2 tables against the
observed 2x2 tables to inspect the fit. We can also plot the model-predicted correlations against the
observed correlations to assess model fit, using the correlation residual plot proposed by Qu et al11.
The model-predicted correlations are given by,

ρtk,t′k′ =
Pr(+tk,+t′k′)s − Pr(+tk)Pr(+t′k′)√

Pr(+tk)Pr(+t′k′)(1− Pr(+tk))(1− Pr(+t′k′))
,where

Pr(+tk) = Pr(+tk,+t′k′)s + Pr(+tk,−t′k′)s

Pr(+t′k′) = Pr(+tk,+t′k′)s + Pr(−tk,+t′k′)s

(1.28)

For model comparison, we can conduct estimated leave-one-out (LOO) cross-validation12. We used
the ’loo’ package13, which computes the estimated LOO statistic using Pareto-smoothed importance

6



sampling (PSIS-LOO). LOO is superior to both the deviance information criterion (DIC) and the
widely applicable information criterion (WAIC). This is because the DIC is not fully Bayesian, as it
is based on a point estimate14, and the LOO is invariant to parametrisation. Furthermore, both the
DIC and the WAIC lack diagnostics, and the LOO is also more robust than both the DIC and the
WAIC in the face of weak priors or influential observations12.
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2 Detailed description of prior model used for case study

For the imperfect gold standard (ultrasound), we incorporated subject-matter knowledge used informa-
tive priors based on the available literature. More specifically, a systematic review and meta-analysis15

estimated the sensitivity of ultrasound to be 0.94 (95% confidence interval [ConfI] = [0.93, 0.95]) and
0.64 (95% ConfI = [0.60, 0.67]) for proximal and distal DVT, respectively. It estimated the specificity
for either type of DVT to be 0.94 (95% ConfI = [0.93, 0.94]). Another systematic review investigating
the accuracy of various tests specifically for proximal DVT16 found that sensitivity varied from 0.84
(95% ConfI = [0.72, 0.97]) to 0.97 (95% ConfI = [0.90, 1.00]) and the specificity varied from 0.93 (95%
ConfI = [0.80, 1.00]) to 0.96 (95% ConfI = [0.87, 1.00]) for ultrasound. As a result of this, we used
an informative µ

[1]
1 ∼ N(0.75, 0.40) prior, which corresponds to a 95% prior interval of (0.49, 0.94) for

the sensitivity, and µ
[0]
1 ∼ N(−1.70, 0.40) which corresponds to a 95% prior interval of (0.82, 0.99) for

the specificity.

We used N(0, 1) priors for the means of the sensitivities and specificities of the D-Dimer and Well’s
score on the probit scale i.e. µ

[d]
t ∼ N(0, 1) s.t. t ∈ {2, 3}, which correspond to flat priors on the

probability scale. We fit all models using weak N≥0(0, 0.5) priors for the between-study standard
deviations, so that σ

[d]
t ∼ N≥0(0, 0.5) s.t. t ∈ {1 = Reference, 2 = D-Dimer, 3 = Wells}, d ∈ {0,

1}. These are weak priors since they weakly pull the study-specific sensitivities and specificities
towards each other, whilst allowing a large between-study variation in accuracy estimates if the data
demands. This is because a shift of 0.5 on the probit scale represents a large change on the sensitivity
or specificity estimate. For example, if 0.8 is the value found for the summary sensitivity, and if σ
= 1, then we would expect the study-specific estimates would be in the range of (0.63, 0.91) with a
95% probability and if σ = 2 then they would be in the range of (0.44, 0.97) with 95% probability.
We also used weak priors on the between-study correlation parameters (see equation 1.12), so that
Ωt ∼ LKJcorr(2) ∀t. For the conditional dependence models, we used the partial pooling model on
the within-study correlations (see equation 1.21), with prior model β ∼ Beta(2, 2), Ω[d]

G ∼ LKJcorr(4)

and Ω
[d]∆

s ∼ LKJcorr(4).

8



3 Prior and posterior predictive checks for case study analysis

Figure 1: Prior predictive check for κ[d] ∼ N≥0(0, 50) prior. Note that the count is out of a total of
10,000 simulations

Figure 2: Posterior predictive check for model 4; 2x2 table count residual plot
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4 Induced Dirichlet cutpoint model (Betancourt, 2019)

The induced Dirichlet model allows us to move away from the abstract latent space in which the
cutpoints are defined, and applies a Dirichlet model directly to the ordinal probabilities. We need to
find an injective (i.e. one-to-one) function which maps the latent cut point parameters in each study
{C [d]

1,s,t, . . . , C
[d]
Kt−1,s,t} to the ordinal probabilities {P [d]

1,s,t, . . . , P
[d]
Kt,s,t

}. Let S[d] =
∑K

k=1 P
[d]
k,s,t = 1

and let g : R → (0, 1) be a differentiable, monotonically increasing latent probability density func-
tion, with inverse g−1. We condition on an arbitrary anchor point, ϕ, and then define a map
φ
[d]
|ϕ : {C [d]

1,s,t, . . . , C
[d]
Kt−1,s,t, S

[d]} → {P [d]
1,s,t, . . . , P

[d]
K,s,t}. The induced ordinal probabilities for each

of the latent classes are given by,

φ
[d]
|ϕ (C

[d]
k,s,t, C

[d]
k−1,s,t) = g(C

[d]
k,s,t − ϕ)− g(C

[d]
k−1,s,t − ϕ) = P

[d]
k,s,t, S[d] = 1 (4.1)

with φ
[d]−1

|ϕ given by,

φ
[d]−1

|ϕ (P
[d]
1,s,t) = g−1(P

[d]
1,s,t) + ϕ = C

[d]
1,s,t

φ
[d]−1

|ϕ (P
[d]
k,s,t|C

[d]
k−1,s,t) = ϕ+ g−1

(
P

[d]
k,s,t + g[C

[d]
k−1,s,t − ϕ]

)
= C

[d]
k,s,t

(4.2)

The probability density function for the induced Dirichlet model is given by,

Induced-Dir
(
C

[d]
s,t, | α

[d]
t , ϕ

)
= Dir

(
P(C

[d]
s,t, ϕ) | α

[d]
t

)
·
∣∣∣J (

C
[d]
s,t

)∣∣∣ , (4.3)

Where C
[d]
s,t =

(
C

[d]
1,s,t, . . . , C

[d]
Kt−1,s,t

)′
, α

[d]
t =

(
α
[d]
1,t, . . . , α

[d]
Kt,t

)′
and J

(
C

[d]
s,t

)
is the Jacobian matrix

of partial derivatives,

J
[d]
k,1 =

∂P
[d]
k

∂S[d]
= 1, J

[d]
k,k =

∂P
[d]
k

∂C
[d]
k−1

= −g′
(
C

[d]
k−1

)
, J

[d]
k−1,k =

∂P
[d]
k−1

∂C
[d]
k−1

= g′
(
C

[d]
k−1

)
,

and zeros everywhere else. We can use the induced Dirichlet model to directly specify a partial pooling
model for the Dirichlet parameters α

[d]
t , so that,

π
(
C

[d]
s,t|θ

)
= induced-Dir

(
C

[d]
s,t|α

[d]
t

)
· π

(
α

[d]
t

)
(4.4)

Where C
[d]
s,t = (C

[d]
1,s,t, . . . , C

[d]
Kt−1,s,t)

′, and α
[d]
t =

(
α
[d]
1,t, . . . , α

[d]
Kt,t

)′
.

In this paper, we use a normal probability density function so that g(·) = Φ(·) and define the ar-
bitrary anchor point at zero, ϕ = 0. For prior modelling on the Dirichlet population parameters,
we can use a half normal prior π(α

[d]
t ) = N≥0(a

[d],b[d]) s.t. a[d],b[d] ∈ RKt
+ or exponential prior,

π(α
[d]
t ) = exponential(a[d]) s.t. a[d] ∈ RKt

+ .

We can order the cutpoint parameters for each study, C [d]
k,s,t, k ∈ {1, . . . ,Kt − 1} by reparameterizing

the cutpoints. We define a map C
[d]
k,s,t 7→ ω

[d]
k,s,t such that,

ωk,s,t =

{
C

[d]
1,s,t if k = 1,

log
(
C

[d]
k,s,t − C

[d]
k−1,s,t

)
if 1 < k ≤ K.

Then, to ensure C
[d]
k,s,t < C

[d]
k+1,s,t, each C

[d]
k,s,t can be expressed as,

C
[d]
k,s,t = ω

[d]
1,s,t +

k∑
i=2

exp(ω
[d]
i,s,t)
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5 Generating the truncated multivariate normal densities (Geweke,
Hajivassiliou and Keane [1994] algorithm and Goodrich [2017])

Implementing the likelihood for each study requires integrating over truncated multivariate normal
densities. We did this in Stan by using the method from Goodrich 201717, which uses the GHK
algorithm18. We will summarise the method described in Goodrich 201717 below.

We can parametrise the multivariate normal densities to be truncated for each study in terms of its
Cholesky factor. We notional simplicity denote z = Zs,n, ν = νs

[d], and let Ψ = Ψ
[d]
s . We can write

each multivariate normal distribution, z , as

z = ˚+ L · x

Where x ∼ N(0, 1) and L is the Cholesky factor matrix of Ψ = L · LT .

We can write this as,

x1

xk
x3

 =

ν1νk
ν3

+

L11 0 0
Lk1 Lkk 0
L31 L3k L33

 ·

z1zk
z3


Where L11 and L33 are lower triangular submatrices, L31 is a submatrix, Lkk ∈ R+ is a scalar,
Lk1 ∈ R1×(k−1) contains the elements of L to the left of Lkk, and L3k ∈ Rk−1 contains the elements
below Lkk.

Let x(u) = Φ−1(u) where u ∼ Uniform(0, 1) , i.e. x(u) can be generated by the inverse CDF method,
so that we can write z as

z = ˚+ L · x(u)

Suppose that we have a bound, B1, on the first element of z1 = ν1 +L11 · x(u1). Then, the constraint
binds at x∗(u1) = B1−ν1

L11
, and u∗1 = Φ

(
B1−ν1
L11

)
. If B1 = B1 is an upper bound on z1 then v1 =

u1 ·u∗1 ∼ Uniform(0, u∗1) since u1 ∼ Uniform(0, 1), with π(v1) =
1
u∗
1
. If B1 = B1 is a lower bound on z1

then v1 = u∗1 + (1− u∗1) · u1 ∼ Uniform(u∗1, 1) with π(v1) =
1

1−u∗
1
. If we have both an upper and lower

bound, then v1 = u∗1 + (u∗1 − u∗1) · u1 ∼ Uniform(u∗1, u
∗
1) with π(v1) =

1
u∗
1−u∗

1

. Then, given u1 we can

consider a known bound, B2 , on the second element z2 = ν2+L21 ·x1+L22 ·x(u2) of z. Following the
same steps as before, we solve for u∗2 = Φ

(
B2−(ν2+L21·x1)

L22

)
, with π(v2) =

1
u∗
2

if B2 = B2 , π(v2) = 1
1−u∗

2

if B2 = B2, and π(v2) =
1

u∗
2−u∗

2

if we have both an upper and lower bound.

In general, given x1 = Φ−1({u1, . . . , uk−1}) we can consider a known bound Bk on zk = νk+Lk1 ·x1+
Lkk · xk and solve for u∗k = Φ

(
Bk−(νk+Lk1·x1)

Lkk

)
. Then,

π(vk|u∗k) =


1
u∗
k

if we have an upper bound
1

1−u∗
k

if we have a lower bound
1

u∗
k−u∗

k

if we have both an upper and lower bound

Stan only allows bounds on vectors declared in the parameters block, so we need to declare the uk as
nuisance parameters, and construct each vk. Since vk is a transformed parameter, we need a Jacobian
adjustment, i.e. we need to adjust the log-kernel by the log of the absolute value of the derivative of
the transformation function vk → uk ,
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log

(∣∣∣∣dvkduk

∣∣∣∣) =


log(u∗k) if we have an upper bound
log(1− u∗k) if we have a lower bound
log(u∗k − u∗k) if we have both an upper and lower bound
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6 Estimated number of parameters & identifiability

In this section, we will derive general equations for the number of parameters that our proposed MVP-
LC model uses. Since our proposed MVP-LC model is Bayesian, our derivation here assumes improper
prior distributions - that is, the priors for all parameters can take on any value within its defined range
(e.g., between 0 and ∞ for standard deviation parameters). Let S denote the number of studies in
the meta-analysis, and let T = Td + To denote the numbers of tests, where Td and To are the number
of dichotomous and ordinal tests in each study s ∈ {1, ....S}, respectively. We will refer to a given
ordinal test as t = to (to ∈ {1, ..., To}) and dichotomous tests as t = td (td ∈ {1, ..., Td}) Let Kt denote
the number of categories for some ordinal test t = to (t ∈ {1, ..., To}).

For both ordinal and dichotomous tests, our MVP-LC model will need to estimate the following
parameters, which are shared between studies - those for the bivariate between-study partial pooling
model: 2·T summary-level means (µ[d]

t ); 2·T between-study standard deviations (σ[d]
t ); and T between-

study correlations (ρt). For the within-study correlation partial pooling model we have 2 weights (β[d])
and 2 ·

(
T
2

)
= T · (T − 1) study-level polychoric correlation parameters (ϵ[d]s,t,t′).

Each ordinal test t = to requires an additional 2 · Kt − 2 parameters to be estimated, due to the
summary cutpoint parameters

(
C

[d]
1,t, . . . , C

[d]
Kt−1,t

)′
in the Induced Dirichlet partial pooling cutpoint

model6 (see section 4), one of which does not need to be estimated as it is arbitrary. We can now
see that dichotomous tests require 5 · Td + Td · (Td − 1) + 2 = 4 · Td + T 2

d + 2 shared parameters to
be estimated, and ordinal tests require a total of

∑To
t=1 2 · (Kto − 2) +

[
4 · To + T 2

o + 2
]

between-study
parameters to be estimated.

For both ordinal and dichotomous tests, our MVP-LC model will need to estimate the following study-
specific parameters - up to 2 ·T ·S study-specific means (ν[d]s,t), which are drawn from the between-study
bivariate partial pooling model. More specifically, the number of parameters are 2·T ·X with 0 < X < S
- with X being closer to 0 if there is little between-study heterogeneity present, or closer to S if there
is extreme heterogeneity. For the partial pooling model for the within-study correlations (ϵ[d]s,t,t′ , the

elements of Ψ[d]
s ), we need to estimate up to X ·T ·(T−1) study-level polychoric correlation parameters

(0 < X < S). For the no pooling prevalence model, we have to estimate S prevalence parameters (ps)
in each study. Ordinal tests require up to an additional 2 · (Kt−2) ·X (where 0 < X < S) parameters
to be estimated, due to the cutpoints parameters (C

[d]
1,t, . . . , C

[d]
Kt−1,t)

′, one of which does not need to
be estimated as it is arbitrary.

We can now see that dichotomous tests require X · Td + X · T 2
d + S study-specific parameters to be

estimated (0 < X < S), and ordinal tests require a total of
∑To

t=1 2·(Kto−2)·X+
[
X · To +X · T 2

o + S
]

study-specific parameters to be estimated. Overall, we need to estimate: Td · (4 + X) + T 2
d · (1 +

X) + 2 + S parameters for dichotomous tests and
∑To

t=1 2 · (Kto − 2) +
∑To

t=1 2 · (Kto − 2) · X +[
To · (4 +X) + T 2

o · (1 +X) + 2 + S
]

parameters for ordinal tests, making a total number of:

(Td + To)(4 +X) + (1 +X) ·
[
T 2
d + T 2

o + 2 ·
∑To

to=1Kto + 4 · (Kto − To)
]
+ 2 · S + 4

parameters to be estimated. As we mentioned, this does not account for prior distributions.

Dichotomous test accuracy data (i.e. 2x2 tables) contribute 3 degrees of freedom DOFs for each
dichotomous test (td) for each study s, since all studies evaluate the same tests T . However, ordinal
test accuracy data contributes K2

to−1 DOFs for each study and ordinal test to, with the DOF:parameter
ratio increasing as the number of categories Kto increases. This can be shown by using the general
equations that we have derived above.
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