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Tier 1 and Tier 2 ARTMIP projects are provided as figures. ARTMIP ARDTs included in this 31 

study, with associated references and DOIs are provided in table format. Basic state figures for 32 

MOVs are provided for both spatial pattern and timeseries.  33 

 34 

Text S1. 35 

 36 

Standard IVT and IWV calculation 37 

Traditional ARDTs designed for the mid-latitudes typically apply moisture thresholds using the 38 

quantity called integrated vapor transport (IVT), calculated as Eq. (1), which combines specific 39 

humidity with both zonal (u) and meridional (v) as such: 40 

(1) IVT = -
1

𝑔
 ∫

𝑃𝑡

𝑃𝑏
 (q Vh) dp      41 

        42 

where q is the specific humidity, Vh is the horizontal wind vector, Pb is pressure at the bottom of the 43 

atmosphere, typically 1000 hPa, Pt is at the top of the atmosphere, typically 200hPa, and g is the 44 

acceleration due to gravity.  45 

 46 

Identification based solely on moisture stream, or integrated water vapor (IWV) (Eq. 2) is also 47 

commonly used and is expressed as Eq. (2): 48 

 49 

(2)  IWV = -
1

𝑔
 ∫

𝑃𝑡

𝑃𝑏
 q dp 50 

 51 

which integrates the total column water without any wind information (Shields et al., 2018).   52 

 53 

 54 

 55 

Antarctic AR Detection Tool, Wille_vIVT and Wille_IWV 56 

Moisture thresholds for the Wille “vIVT” ARDT, use anomalies of the meridional component to 57 

the integrated water vapor (vIVT) expressed as 58 
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vIVT = -
1

𝑔
 ∫

𝑡𝑜𝑝

𝑠𝑢𝑟𝑓𝑎𝑐𝑒
(q vh) dp 59 

 60 

where vh is the meridional component of the wind, q is the specific humidity, p atmospheric 61 

pressure (hPa). and g is the acceleration due to gravity.  Full reanalysis levels are used.  62 

 63 

The Wille “IWV” ARDT algorithm uses integrated water vapor anomalies similar to the 64 

traditional method with the exception of using full reanalysis model levels. It can be expressed as 65 

 66 

 IWV = -
1

𝑔
 ∫

𝑡𝑜𝑝

𝑠𝑢𝑟𝑓𝑎𝑐𝑒
 q dp 67 

 68 

where q is the specific humidity, p atmospheric pressure (hPa), and g is the acceleration due to 69 

gravity.   70 

 71 

Both Wille_vIVT and Wille_IWV compute moisture thresholds defined as the 98th percentile in 72 

mean monthly climatological IWV or vIVT for all grid cells calculated using reanalysis data. 73 

Geometry requirements focus on the latitudinal footprint. Shapes are tested for a minimum 74 

continuous 20o latitude span between 37.5o S - 80.0o S. More details and application can be found 75 

in Wille et al. 2019 and Wille et al. 2021.   76 

 77 

ARTMIP ARDTs 78 

A summary of all over ARDTs is found in Table S1.  79 

 80 

 81 

 82 

Text S2.  83 

 84 

Decadal Modes of Variability 85 

Decadal modes include both the Southern Annular Mode (SAM) and the Pacific Decadal 86 

Oscillation (PDO). SAM is calculated classically as the leading EOF of the detrended 500 hPa 87 

geopotential anomalies for the southern hemisphere from 20oS to 90oS.   Principle component 88 

(PC) time series are regressed onto precipitation and 850 hPa temperature for AR days to show 89 

correlation of AR characteristics with SAM.  PDO is defined as the leading principal component 90 

of the North Pacific Ocean (20:70°N, 110°E:100°W) of the detrended sea surface temperature 91 

anomalies. Spatial patterns and PC timeseries for both SAM and PDO are shown in 92 

Supplemental Figure S2. 93 

 94 

Interannual Modes of Variability 95 

Interannual modes include the 2nd Pacific South American pattern, (PSA2), and the Indian 96 

Ocean Dipole (IOD), both in and out of phase with El Niño Southern Oscillation (ENSO). The 97 

first pattern of PSA (PSA1) is not shown because it lacks significance with AR days. PSA2 is 98 

defined as the 3rd EOF of detrended 500 hPa geopotential height anomalies, which is the same 99 

domain and approach as SAM.  Not only does EOF3 of 500 hPa geopotential height have 100 

implications for Antarctic ARs, it has also been shown as important for extratropical moisture 101 

transport, especially for western North America (J.P. O’Brien personal communication). The 102 
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IOD is calculated by differencing detrended, area-averaged sea surface temperature anomalies 103 

between 10°S-10°N  and 50-70°E versus 0-10°S and 90-110°E.  For ENSO, we choose to apply 104 

the combined Niño3.4 region to emphasize more centralized equatorial sea surface temperatures. 105 

Area-averaged SST anomalies for Niño3.4 are computed over 5°S-5°N and 120-170°W.  For 106 

MOV analysis, the IOD index, both in and out of phase with ENSO, is regressed onto 107 

precipitation and 850 hPa temperatures for AR days. PSA2 and IOD patterns and timeseries are 108 

shown in Supplemental Figure S2.  109 

 110 

 111 

 112 

 113 

 114 
Figure S1.  Antarctic map with labels identifying regions discussed in the main article. Blue 115 

shading and contours represent topography.  116 

 117 

 118 
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 120 
 121 

Figure S2.  Modes of variability spatial patterns and timeseries for SAM (first row), PSA2 (second 122 

row), PDO (third row), IOD (fourth row). Nino3.4 timeseries is shown with IOD for reference.  123 

 124 

 125 

 126 
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 128 

 129 

 130 

Figure S3. AR frequency ARTMIP Tier 1 and Tier 2 ARDTs (% time relative to analysis period 131 

across longitudinal transect around the continent of Antarctica for all methods Tier 1 (MERRA2 132 

1980-2016) (upper left), and individually, Tier 1 and participating Tier 2 (all other panels) where 133 

ERA5 analysis base period is 2000-2019. Wille_vIVT and TEMPEST, Reid500, Mundhenk, and 134 

Guan_Waliser submitted extended-ERA5 periods, 1980-2019. ARDTs with polar constraints (P-135 

ARTMIP) are noted in individual panel titles. Wille ARDTs capture ARs consistently across all 136 

longitudes where most other ARDTs preferentially detect the Antarctic Peninsula. 137 
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 139 

 140 

 141 

Figure S4. Same as Figure 2 in main text, except for regional locations around Antarctica, 142 

Antarctic Peninsula (a), East Antarctica, Dronning Maud Land (b), and East Antarctica, Princess 143 

Elizabeth and Queen Mary Land (c).  144 

 145 

 146 

 147 
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 149 

ARDT Name/Developer  Type Algorithm Summary DOI Reference 

AR-Connect** Global Object identification; Absolute: IVT 

thresholds used = 700 kg/m/s for seeding, 

300, for region growing; Time stitching, 

minimum 24-hour period; Global weighted 

centroid of AR event must be outside tropics 

(23.25 N - 23.25 S) 

10.1029/2020JD03

3425 

ClimateNet_DL** Global Deep learning based segmentation; Trained 

on ~500 expert labeled images; Threshold 

free; input fields are IWV, U850, V850, 

SLP; Time slice condition 

10.5194/gmd-14-

107-2021 

Guan_Waliser_v2** Global - Polar 

constraints 

Length >2000km and length width ratio >2; 

Coherent IVT direction within 45° of AR 

shape orientation and with a poleward 

component; Relative: 85th percentile IVT; 

Absolute min requirement designed for 

polar locations: 100kg/m/s IVT; Time slice 

condition 

10.1002/2015JD02

4257 

10.1175/JHM-D-

17-0114.1 

Lora_v2** Global - Polar 

constraints 

Length >= 2000km; Relative/Absolute : IVT 

225 kg/m/s above time/latitude dependent 

threshold using 30-day running mean and 

zonal average of IWV; Time slice condition 

10.1016/j.epsl.202

0.116293 

Mundhenk_v3** Global >1400km length, aspect ratio 1:4, lat limit 

>16N/S, axis orientation based on IVT; 

Relative IVT percentiles and/or anomalies 

both temporal and spatial; Time slice 

condition 

10.1175/JCLI-D-

15-0655.1 

PanLu Global 1) Length>2000km; 2) Length-Width 

ratio>2; 3) sum of turning angle<360; 4) 

percentage within tropics < 95%; 5) 50%    

< percentage within tropics < 95% or 

percentage with IVT direction smaller than 

15 degrees <50%; Two relative thresholds. 

Local threshold: smoothed 85% quantile 

IVT field using the Gaussian kernel density 

smoothing technique; regional threshold: the 

80% quantile of IVT for all grids within 

80N and 80S; Time stitching: last for at least 

18 hours 

10.1029/2018WR0

24407 

10.1029/2020GL0

89477 

Reid250 Global Length > 2000km; Length-Width ratio > 2; 

orientation angle >10°; Absolute. IVT > 250 

kg/m/s; IVT > 500 kg/m/s; Time slice 

condition 

10.1029/2020JD03

2897 

Rutz Global Length >= 2000km; Absolute: IVT (surface 

to 100mb) = 250kg/m/s; Time slice 

10.1175/MWR-D-

13-00168.1 
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condition; low value on tropics 

SAIL_v1 Global - Polar 

constraints 

Length >= 250km; Length-to-width >=5; 

Length is estimated along the "ridge" taking 

IVT into account; Width is the median of 

widths estimated in each point of AR ridge; 

Relative: IVT-IVT_RM >_ 100 kg/m/s. 

IVT_RM is climatological IVT running 

mean with 20-day windows; Time slice 

condition 

Experimental 

Teca_Bard_v1 Global Runs 1,024 AR detectors simultaneously. 

Percentile threshold, minimum area, and 

filter latitude width are all sampled from a 

posterior distribution that is designed to 

optimize global AR counts relative to a 

dataset of AR counts from a set of experts.; 

Relative threshold (based on spatial 

percentile for each timestep); An inverted 

Gaussian filter is applied at the equator to 

damp out the ITCZ; Time slice condition 

10.5194/gmd-13-

6131-2020 

TEMPEST (IVT 

threshold 250) 

Global Contains both an absolute threshold 

(typically set at IVT>250 kg/m/s) and a 

relative threshold (which uses a local 

Laplacian of IVT, typically set at del^2 IVT 

< -50k); Laplacian IVT thresholds most 

effective for widths >1000km; cluster size 

minimum = 120000km2; Time stitching 

condition, Global, but latitude >=15° 

 

10.5194/gmd-10-

1069-2017 

Wille_IWV Antarctic 

Specific 

Length > 20° (2000 km) equatorward with 

no breaks; Defined as AR landfall if AR 

shape overlaps a land grid cell; Relative > 

98th percentile IWV based on monthly 

climatological means; Time slice condition 

10.1038/s41561-

019-0460-1 

10.1029/2020JD03

3788 

Wille_vIVT** Antarctic 

Specific  

Length > 20° (2000 km) equatorward with 

no breaks; Defined as AR landfall if AR 

shape overlaps a land grid cell; Relative > 

98th percentile vIVT based on monthly 

climatological means; Time slice condition 

10.1038/s41561-

019-0460-1 

10.1029/2020JD03

3788 

 150 

Supplemental Table S1.  ARTMIP ARDTs and references are listed. 13 Tier 1 (MERRA2) and 151 

6 Tier 2 (ERA5) ARDTS are included in this study. Selection was determined by including any 152 

catalogue that captured ARs over Antarctica.  Regression and MOV analysis was only performed 153 

on ARDTs with polar constraints (5 ARDTs) to minimize error by only applying ARDTs fit for 154 

purpose. **ARDTs have both Tier 1 (MERRA2) and Tier 2 (ERA5) catalogue entries. 155 

Algorithm summaries are also available on the ARTMIP webpage 156 

(https://www.cgd.ucar.edu/projects/artmip/algorithms.html)  157 

 158 

 159 

 160 

https://www.cgd.ucar.edu/projects/artmip/algorithms.html
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