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S1. Overview 35 

The supplement is organized in two sections of supplement material (figures and table) with a 36 
final text section that elaborates upon methods used in the paper. We first present all filtered 37 
topographies, surface elevation and surface velocity data used in each model experiment 38 
(Figures S1-S3). We then show inversions for all inferred friction coefficient fields (Figures S4-39 
S5) determined from the Tikhonov regularization procedure outlined in Figure S6. Model 40 
parameters are detailed in Table S1. We also describe the power-law fitting procedure used to 41 
analytically glacier derive slip length from the topography. 42 
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 86 

S4. Analytic Slip Length Calculation 87 

In glacier sliding theory, slip length (𝐿) is defined as:  88 
 89 𝐿 = 𝜂𝛽 (1)

where 𝜂 is ice viscosity and 𝛽 is the basal drag coefficient. If the slip length is larger than the 90 
ice thickness, the basal drag is too small to induce shear in the ice column, and ice slides over 91 
the substrate at a uniform velocity with depth (plug flow). If the slip length is smaller than the 92 
ice thickness, then basal drag can induce substantial shearing through the ice column, 93 
resulting in a depth-variable velocity profile. Slip length is thus a useful metric for 94 
distinguishing the ice-flow regime. 95 
  96 
We compare slip lengths calculated from our modeled parameter fields to slip lengths 97 
calculated using analytic theory for form drag for ice flow over an undulating bed that requires 98 
only bed roughness power spectra as an input (Schoof, 2002). Similar to Hogan et al. (2020), 99 
we approximate one-sided periodograms of the along-flow bed roughness profiles derived 100 
from the radar swath topographies (Holschuh et al., 2020) using an inverse square power law 101 
(equivalent to a random-walk elevation profile), where the periodogram component (𝑃௡) 102 
associated with each frequency band can be fit by:  103 
 104 𝑃௡ = 𝐴𝑓௡ି ଶ (2)

where 𝐴 is a fit coefficient with units of length and 𝑓௡ = 𝑛/𝑎 is the center frequency of a 105 
frequency band of width 1/𝑎, 𝑎 is the length of the fit window, and 𝑛 = 1 … 𝑁 with 𝑁 being 106 
the total number of components in the periodogram (here N=256). Following Schoof (2002) 107 
and Hogan et al. (2020), for sufficiently high wavenumbers (𝑘௡ ≫ 1/𝐻 where 𝐻 is ice 108 
thickness) the basal drag components are given by:  109 
 110 𝛽௡ = 16𝜂𝜋ଷ𝐴𝑎ିଵ𝑓௡. (3)

 

The total form drag coefficient can then be approximated by: 111 
 112 𝛽 = ෍ 𝛽௡ே

௡ୀଵ = 16𝜂𝜋ଷ𝐴𝑎ିଶ ෍ 𝑛ே
௡ୀଵ = 8𝜂𝜋ଷ𝐴𝑎ିଶ𝑁ሺ𝑁 + 1ሻ 

(4)

 113 
and if 𝜆௡ ≪ 𝑎 so 𝑁 ≫ 1, then 114 
 115 𝛽 = 8𝜂𝜋ଷ𝐴𝜆ேିଶ. (5)

 116 
Applying the definition of slip length then gives:  117 
 118 
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𝐿 = ఒమಿ଼గయ஺. 
 

(6)

We apply this analytic theory to our swath topographies to calculate the slip lengths 119 
associated with form drag. First, we extract bed topography at 25m posting from the radar 120 
swath topography point cloud (Holschuh et al., 2020) at each point in the point cloud along 121 
6.4km long flowlines (distance chosen to be similar to Hogan et al. (2020)) determined using 122 
the simulation reference surface velocity field. After removing the linear trend from the bed 123 
elevation profile and applying a Hamming window, we calculate the one-sided periodogram 124 
using Welch’s method (Welch, 1967). The inverse square power law coefficient 𝐴 was 125 
calculated using non-linear least squares fitting. The slip length calculated following Equation 126 
6 is plotted at the center point of each flowline.  127 
 128 

S5. Consistency with observed subglacial lake activity?  129 

An active subglacial lake boundary (lake Thw124; Smith et al., 2017) identified from satellite 130 
altimetry lies partially within the lower Thwaites grid. The inferred shear stress inside the lake 131 
boundary is nonzero. Satellite observations suggest variability in the lake fill-drain levels on 132 
Thwaites Glacier (Hoffman et al., 2020), so volume change estimates of lakes on Thwaites 133 
Glacier derived from satellite altimetry are difficult to relate to changes in lake geometry. 134 
Because the lake geometry is unknown for the observational period used to constrain the 135 
snap-shot inversions, we do not know how much of the lake is buoyantly supporting the 136 
overlying ice. This lake had drained prior to the epoch of the surface observations used to 137 
constrain the inversion, so the non-zero drag may be evidence of ice regrounding; however, 138 
independent GNSS observations suggest that ice velocity is insensitive to lake fill-drain cycles, 139 
which would predict low shear stress values in the vicinity of the Thwaites lakes independent 140 
of whether the lake is full or empty (Hoffman et al., 2020). The nonzero drag inside the lake 141 
could also represent resistance from topographic pinning points that may always protrude 142 
above the reported lake depth (Smith et al., 2017; Hoffman et al., 2020), which at ~20 m, is 143 
below the root mean square amplitude of subglacial roughness in the boundary of the lake 144 
and motivates further study of lake influence on ice-sheet mechanics and glacier sliding. 145 
In the two-dimensional spectral variance of 6.0 km windowed bed topography, we see the first 146 
indication from independent subglacial datasets of spatial changes in bed properties 147 
consistent with the Thw124 lake position. Over the lake outline boundary, the bed appears to 148 
be substantially smoother than the surrounding topography (Figure 3A). The SAR focused 149 
radargrams, however, show no unambiguous evidence of an ice-lake interface. This suggests 150 
that there may not be dielectric contrast across the lake interface that is distinguishable from a 151 
wet sediment interface and/or that this interface is very rough. 152 

S6. Simulations over a uniformly sloped bed topogaphy 153 

Fitting a plane to the high-resolution topographies, we can simulate ice flow over a flat bed for 154 
each grid. From these simulations we can relate the basal drag to the more the more 155 
traditional horizontal shear stress (a global variable) and compare again the resistance and 156 
normal pressure fields. The patterns of the inferred resistance fields are similar to the 157 
smoothed topographies. The cost per node for each grid is substantially higher than the 158 
isotropically smoothed experiments.  159 
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