Supplementary Material

A.1 Software code for MV-IVW and MV-IVW-PCA methods

We provide R code to implement the MV-IVW and MV-IVW-PCA methods with three exposure traits. Genetic associations with the exposure are denoted beta_x1, beta_x2, and beta_x3, and their standard errors se_x1, se_x2, and se_x3. Genetic associations with the outcome are denoted beta_y and their standard errors se_y. The variant correlation matrix is denoted rho. Code is supplied both using the *MendelianRandomization* package, and using matrix calculations directly:

```
# MV-IVW method
# note use of fixed-effect model under assumption that all variants in same
# genetic region and hence influence the outcome through same causal pathway
library(MendelianRandomization)
mvivw = mr_mvivw(mr_mvinput(cbind(beta_x1, beta_x2, beta_x3),
  cbind(se_x1, se_x2, se_x3), beta_y, se_y, correl=rho), model="fixed")
mvivw$Estimate; mvivw$StdError
         = cbind(beta_x1, beta_x2, beta_x3)
beta_x
        = se_y%o%se_y*rho
Sigma
mvivw_est = solve(t(beta_x)%*%solve(Sigma)%*%beta_x)%*%t(beta_x)%*%solve(Sigma)%*%beta_y
mvivw_se = sqrt(diag(solve(t(beta_x)%*%solve(Sigma)%*%beta_x)))
# MV-PCA method
Psi = ((abs(beta_x1)+abs(beta_x2)+abs(beta_x3))/se_y)%o%
      ((abs(beta_x1)+abs(beta_x2)+abs(beta_x3))/se_y)*rho
    = which(cumsum(prcomp(Psi, scale=FALSE)$sdev^2/
Κ
               sum((prcomp(Psi, scale=FALSE)$sdev<sup>2</sup>)))>0.99)[1]
      # K is number of principal components to include in analysis
      # this code includes principal components to explain 99% of variance in the risk factor
betaXG1 = as.numeric(beta_x1%*%prcomp(Psi, scale=FALSE)$rotation[,1:K])
betaXG2 = as.numeric(beta_x2%*%prcomp(Psi, scale=FALSE)$rotation[,1:K])
betaXG3 = as.numeric(beta_x3%*%prcomp(Psi, scale=FALSE)$rotation[,1:K])
betaYG0 = as.numeric(beta_y%*%prcomp(Psi, scale=FALSE)$rotation[,1:K])
sebetaYG0 = as.numeric(se_y%*%prcomp(Psi, scale=FALSE)$rotation[,1:K])
Sigma
         = se_y%o%se_y*rho
pcSigma = t(prcomp(Psi, scale=FALSE)$rotation[,1:K])%*%Sigma%*%
             prcomp(Psi, scale=FALSE)$rotation[,1:K]
mvpca
         = mr_mvivw(mr_mvinput(cbind(betaXG1, betaXG2, betaXG3),
  cbind(rep(1, length(betaXG1)), rep(1, length(betaXG1)), rep(1, length(betaXG1))),
                    betaYG0, rep(1, length(betaXG1)), corr=pcSigma), model="fixed")
mvpca$Estimate; mvpca$StdError
# note that the standard errors of the genetic associations with the exposures are
# not used in the calculation, and so are set to 1
mvpca_est = solve(rbind(betaXG1, betaXG2, betaXG3)%*%solve(pcSigma)%*%
                 cbind(betaXG1, betaXG2, betaXG3))%*%
                 rbind(betaXG1, betaXG2, betaXG3)%*%solve(pcSigma)%*%betaYG0
mvpca_se = sqrt(diag(solve(rbind(betaXG1, betaXG2, betaXG3)%*%solve(pcSigma)%*%
                           cbind(betaXG1, betaXG2, betaXG3))))
```

A.2 Software code for MV-LIML and MV-LIML-PCA methods

We provide R code to implement the MV-LIML and MV-LIML-PCA methods. The matrix of genetic associations with the exposure is denoted Bx, and standard errors Sx. The vector of genetic associations with the outcome is denoted By and standard errors Sy. The variant correlation matrix is denoted rho, the trait correlation matrix is denoted Phi, and the number of principal components R; this can be provided by the user, or estimated automatically:

```
# MV-LIML method
mvmr_liml <- function(Bx,By,Sx,Sy,rho,Phi) {</pre>
Bx <- as.matrix(Bx); By <- as.vector(By)</pre>
Sx <- as.matrix(Sx); Sy <- as.vector(Sy)</pre>
rho <- as.matrix(rho); Phi <- as.matrix(Phi)</pre>
J \leq ncol(Bx); K \leq nrow(Bx)
GamY <- (Sy%*%t(Sy))*rho</pre>
gamX <- list()</pre>
for (k in 1:J){
 gamX[[k]] <- (Sx[,k]%*%t(Sx[,k]))</pre>
}
GamX1 <- function(tet){</pre>
gamX.t <- list()</pre>
for (k in 1:J){
  for (1 in 1:J){
    gamX.t[[(((k-1)*J)+1)]] <- sqrt(gamX[[k]])*sqrt(gamX[[1]])*rho*tet[k]*tet[1]*Phi[k,1]</pre>
  }
}
return(gamX.t)
}
GamX <- function(tet){Reduce('+',GamX1(tet))}</pre>
# LIML estimation
g <- function(tet){as.vector(By - (Bx%*%tet))}
Om <- function(tet){as.matrix(GamY + GamX(tet))}</pre>
Q <- function(tet){as.numeric(t(g(tet)))%*%(solve(Om(tet))))%*%g(tet))}</pre>
G <- -as.matrix(Bx)
DQ <- function(tet){2*as.matrix(t(G)%*%(solve(Om(tet)))%*%g(tet))}</pre>
liml <- nlminb(rep(0,J),objective=Q,gradient=DQ)</pre>
est <- as.vector(liml$par)</pre>
var.est <- as.matrix(solve(t(G)%*%(solve(Om(est)))%*%G))</pre>
res.list <- list("est"=est, "var"=var.est)</pre>
return(res.list)
}
```

```
# MV-PCA-LIML method
mv_pca_liml <- function(Bx,By,Sx,Sy,rho,Phi,R=NULL) {</pre>
Bx <- as.matrix(Bx); By <- as.vector(By)</pre>
Sx <- as.matrix(Sx);</pre>
                        Sy <- as.vector(Sy)
rho <- as.matrix(rho); Phi <- as.matrix(Phi)</pre>
J <- ncol(Bx); K <- nrow(Bx)</pre>
Psi = (rowSums(abs(Bx))/Sy)%o%(rowSums(abs(Bx))/Sy)*rho
# estimate number of principal components
if(missing(R)) {
  R=which(cumsum(prcomp(Psi,scale=FALSE)$sdev^2/sum((prcomp(Psi,scale=FALSE)$sdev^2)))>0.99)[1]
} else { R=R }
lambda <- sqrt(K)*(eigen(Psi)$vectors[,1:R])</pre>
evec <- eigen((t(lambda))%*%lambda))$vectors</pre>
eval <- eigen((t(lambda)%*%lambda))$values</pre>
lambda <- lambda%*%(solve(evec%*%diag(sqrt(eval))%*%t(evec)))</pre>
dim(lambda) <- c(K,R)
GamY <- (Sy%*%t(Sy))*rho</pre>
gamX <- list()</pre>
for (k in 1:J){
  gamX[[k]] <- (Sx[,k]%*%t(Sx[,k]))
7
GamX1 <- function(tet){</pre>
gamX.t <- list()</pre>
for (k in 1:J){
  for (1 in 1:J){
    gamX.t[[(((k-1)*J)+1)]] <- sqrt(gamX[[k]])*sqrt(gamX[[1]])*rho*tet[k]*tet[1]*Phi[k,1]</pre>
 }
}
return(gamX.t)
}
GamX <- function(tet){Reduce('+',GamX1(tet))}</pre>
# LIML estimation
g <- function(tet){as.vector(t(lambda)%*%(By - (Bx%*%tet)))}
Om <- function(tet){as.matrix(t(lambda)%*%(GamY + GamX(tet))%*%lambda)}</pre>
Q <- function(tet){as.numeric(t(g(tet))%*%(solve(Om(tet)))%*%g(tet))}</pre>
G <- -as.matrix(t(lambda)%*%Bx)</pre>
DQ <- function(tet){2*as.matrix(t(G)%*%(solve(Om(tet)))%*%g(tet))}</pre>
liml <- nlminb(rep(0,J),objective=Q,gradient=DQ)</pre>
est <- as.vector(liml$par)</pre>
var.est <- as.matrix(solve(t(G)%*%(solve(Om(est)))%*%G))</pre>
res.list <- list("est"=est, "var"=var.est)</pre>
return(res.list)
}
```

A.3 Additional simulation results

In addition to the main simulation study, we also consider the performance of the MV-IVW-PCA and MV-LIML-PCA methods with other parameter settings:

- Supplementary Table A1. Weaker instruments: we generate the α_j parameters from a normal distribution with mean 0.5.
- Supplementary Table A2. Stronger correlations: we generate elements of the A matrix from a uniform distribution on +0.1 to +1.0. Note that as the vast majority of correlations between variants were above +0.6, we did not attempt the methods that rely on pruning in this scenario.
- Supplementary Table A3. Stronger effects: we set $\theta_1 = +0.8$ and $\theta_3 = +1.0$.
- Supplementary Table A4. Alternative approach for generating a correlation matrix 1: the "c-vine" method from the R package *clusterGeneration*. The code is: sig <- cor(genPositiveDefMat(dim=vars, covMethod = "c-vine",

```
eigenvalue=runif(vars, -1, 1))$Sigma).
```

Correlations typically ranged from around -0.5 to +0.5 with an interquartile range from around -0.1 to +0.1.

• Supplementary Table A5. Alternative approach for generating a correlation matrix 2: the "onion" method from the R package *clusterGeneration*. The code is:

```
sig <- cor(genPositiveDefMat(dim=vars, covMethod = "onion",</pre>
```

```
eigenvalue=runif(vars, -1, 1))$Sigma)
```

Correlations typically ranged from around -0.5 to +0.5 with an interquartile range from around -0.1 to +0.1.

- Supplementary Table A6. Correlations were obtained from data on participants of European ancestries from UK Biobank. After pruning at a threshold of $r^2 < 0.95$, we took correlations from the first 100 variants in the chemokine receptor gene cluster considered in the applied analysis.
- Supplementary Table A7. Exposure traits were correlated by adding an additional term U_{i2} to the equation for the generation of X_{i1} to read $X_{i1} = \sum_{j=1}^{5} \alpha_j G_{ij} + U_{i1} + U_{i2} + \epsilon_{Xi1}$. Similarly, we added U_{i3} to X_2 , and U_{i1} to X_3 . This correlation was not accounted for in the MV-LIML method.
- Supplementary Table A8. Exposure traits were correlated as in the previous scenario, except that the equation for the generation of X_{i1} read $X_{i1} = \sum_{j=1}^{5} \alpha_j G_{ij} + U_{i1}/\sqrt{2} + U_{i2}/\sqrt{2} + \epsilon_{Xi1} \times \sqrt{2}$, and similarly for X_2 and X_3 . This ensures that the variances of X_1 , X_2 , and X_3 remained the same as in the previous scenario, but correlations between the exposures were weaker.
- Supplementary Table A9. Exposure traits were correlated as in the previous two scenarios, except that the equation for the generation of X_{i1} read $X_{i1} = \sum_{j=1}^{5} \alpha_j G_{ij} + U_{i1} \times \sqrt{1.4} + U_{i2} \times \sqrt{1.4} + \epsilon_{Xi1} \times \sqrt{0.2}$, and similarly for X_2 and X_3 . This ensures that the variances of X_1, X_2 , and X_3 remained the same as in the previous two scenarios, but correlations between the exposures were stronger.

• Supplementary Table A10. Smaller independent sample for variant correlation matrix: the correlation matrix between genetic variants is estimates based on an independent sample of 1000 individuals.

In each setting, the proposed PCA methods performed well, with close to nominal Type 1 error rates in most scenarios and greater power than for the MV-IVW and MV-LIML methods at pruning thresholds where those methods maintained reasonable Type 1 error rates.

Parameter	Method	Pruning	Mean	SD	Mean SE	Power
θ_1	MV-IVW	Oracle	0.297	0.196	0.180	39.2
		0.4	0.215	0.225	0.204	22.3
		0.6	0.119	0.132	0.119	20.5
		0.8	-0.050	0.505	0.066	71.9
	MV-LIML	Oracle	0.349	0.237	0.201	43.0
		0.4	0.276	0.312	0.229	28.8
		0.6	0.215	0.266	0.128	42.5
		0.8	0.106	2.425	0.234	75.2
	MV-IVW-PCA	-	0.208	0.176	0.164	26.5
	MV-LIML-PCA	-	0.296	0.262	0.182	41.2
θ_2	MV-IVW	Oracle	-0.012	0.197	0.180	6.9
		0.4	-0.022	0.228	0.205	7.0
		0.6	-0.012	0.134	0.119	8.0
		0.8	-0.043	0.499	0.065	72.0
	MV-LIML	Oracle	-0.006	0.238	0.201	7.5
		0.4	-0.015	0.315	0.230	9.9
		0.6	-0.002	0.274	0.128	22.4
		0.8	0.015	2.437	0.234	75.4
	MV-IVW-PCA	-	-0.023	0.176	0.164	6.7
	MV-LIML-PCA	-	-0.014	0.264	0.182	13.9
θ_3	MV-IVW	Oracle	-0.478	0.196	0.180	75.4
		0.4	-0.381	0.233	0.206	50.3
		0.6	-0.204	0.148	0.119	44.3
		0.8	-0.181	0.500	0.066	72.8
	MV-LIML	Oracle	-0.539	0.233	0.202	78.2
		0.4	-0.455	0.317	0.231	56.5
		0.6	-0.326	0.275	0.128	64.4
		0.8	-0.012	2.283	0.233	74.7
	MV-IVW-PCA	-	-0.368	0.179	0.165	61.3
	MV-LIML-PCA	-	-0.475	0.263	0.182	72.3

Supplementary Table A1: Results from simulation study with weaker instruments

Supplementary Table A2: Results from simulation study with stronger correlations

Parameter	Method	Pruning	Mean	SD	Mean SE	Power
θ_1	MV-IVW	Oracle	0.308	0.182	0.166	47.9
	MV-LIML	Oracle	0.345	0.206	0.184	48.9
	MV-IVW-PCA	-	0.217	0.166	0.153	32.2
	MV-LIML-PCA	-	0.273	0.219	0.167	39.6
θ_2	MV-IVW	Oracle	-0.014	0.182	0.166	7.2
	MV-LIML	Oracle	-0.009	0.209	0.185	6.8
	MV-IVW-PCA	-	-0.027	0.165	0.154	7.1
	MV-LIML-PCA	-	-0.020	0.222	0.167	11.1
θ_3	MV-IVW	Oracle	-0.493	0.181	0.166	82.7
	MV-LIML	Oracle	-0.535	0.204	0.185	84.1
	MV-IVW-PCA	-	-0.387	0.167	0.154	70.7
	MV-LIML-PCA	-	-0.452	0.223	0.168	75.6

Mean estimates, standard deviation (SD) of estimates, mean standard error (mean SE) of estimates, and empirical power of the 95% confidence interval to estimate $\theta_1 = 0.4$, $\theta_2 = 0$, and $\theta_3 = -0.6$. Results for different pruning thresholds are omitted as the correlations between variants were typically all above 0.6.

Supplementary	Table	A3:	Results	from	simulation	study	with	stronger
effects								

Parameter	Method	Pruning	Mean	SD	Mean SE	Power
θ_1	MV-IVW	Oracle	0.771	0.214	0.185	96.7
		0.4	0.745	0.265	0.226	87.2
		0.6	0.441	0.341	0.144	81.1
		0.8	-0.565	0.994	0.078	88.5
	MV-LIML	Oracle	0.786	0.230	0.212	94.6
		0.4	0.767	0.312	0.261	82.5
		0.6	0.665	1.787	0.202	81.3
		0.8	0.407	6.488	0.574	87.8
	MV-IVW-PCA	-	0.735	0.209	0.182	95.9
	MV-LIML-PCA	-	0.772	0.257	0.209	92.0
θ_2	MV-IVW	Oracle	0.048	0.209	0.185	9.0
		0.4	0.108	0.265	0.227	11.5
		0.6	0.015	0.295	0.144	28.0
		0.8	-0.353	1.011	0.078	86.7
	MV-LIML	Oracle	0.020	0.220	0.213	5.3
		0.4	0.061	0.306	0.263	8.0
		0.6	-0.355	1.871	0.203	46.0
		0.8	-1.306	6.725	0.575	89.0
	MV-IVW-PCA	-	0.116	0.205	0.182	12.8
	MV-LIML-PCA	-	0.047	0.236	0.209	8.2
θ_3	MV-IVW	Oracle	0.956	0.215	0.185	99.4
		0.4	0.904	0.269	0.228	93.4
		0.6	0.542	0.357	0.144	87.0
		0.8	-0.618	0.987	0.078	87.7
	MV-LIML	Oracle	0.982	0.229	0.213	99.0
		0.4	0.947	0.319	0.263	91.4
		0.6	0.934	1.912	0.202	89.7
		0.8	1.074	6.675	0.575	88.5
	MV-IVW-PCA	-	0.891	0.210	0.183	98.9
	MV-LIML-PCA	-	0.954	0.251	0.210	97.8

Parameter	Method	Pruning	Mean	SD	Mean SE	Power
θ_1	MV-IVW	Oracle	0.371	0.137	0.123	83.2
		0.4	0.274	0.114	0.104	73.1
		0.6	-0.135	0.422	0.055	75.6
		0.8	-0.143	0.432	0.054	76.7
	MV-LIML	Oracle	0.386	0.144	0.137	80.9
		0.4	0.351	0.152	0.115	80.9
		0.6	0.131	1.019	0.114	72.8
		0.8	0.131	1.035	0.115	73.5
	MV-IVW-PCA	-	0.334	0.135	0.122	76.2
	MV-LIML-PCA	-	0.368	0.153	0.135	76.6
θ_2	MV-IVW	Oracle	0.002	0.135	0.123	7.3
		0.4	0.002	0.113	0.104	6.9
		0.6	0.006	0.414	0.055	74.4
		0.8	0.005	0.423	0.054	75.5
	MV-LIML	Oracle	0.001	0.143	0.137	5.6
		0.4	0.001	0.154	0.115	13.5
		0.6	0.002	1.056	0.114	71.7
		0.8	0.007	1.104	0.115	71.9
	MV-IVW-PCA	-	0.001	0.134	0.122	6.8
	MV-LIML-PCA	-	0.000	0.153	0.135	7.6
θ_3	MV-IVW	Oracle	-0.558	0.136	0.123	98.8
		0.4	-0.411	0.115	0.104	95.4
		0.6	0.212	0.419	0.055	77.9
		0.8	-0.226	0.427	0.054	79.2
	MV-LIML	Oracle	-0.581	0.141	0.136	98.7
		0.4	-0.529	0.146	0.115	97.6
		0.6	-0.186	0.934	0.113	75.2
		0.8	-0.190	0.970	0.115	75.5
	MV-IVW-PCA	-	-0.502	0.134	0.122	96.6
	MV-LIML-PCA	-	-0.555	0.147	0.135	97.1

Supplementary Table A4: Results from simulation study with alternative correlation matrix ("c-vine")

Parameter	Method	Pruning	Mean	SD	Mean SE	Power
θ_1	MV-IVW	Oracle	0.374	0.136	0.123	83.6
		0.4	0.276	0.114	0.105	73.6
		0.6	-0.137	0.421	0.055	75.8
		0.8	-0.146	0.434	0.054	77.2
	MV-LIML	Oracle	0.390	0.142	0.137	81.5
		0.4	0.354	0.151	0.115	81.5
		0.6	0.127	1.015	0.114	73.8
		0.8	0.127	1.054	0.115	74.5
	MV-IVW-PCA	-	0.336	0.134	0.122	76.5
	MV-LIML-PCA	-	0.370	0.151	0.135	77.5
θ_2	MV-IVW	Oracle	-0.000	0.137	0.123	7.8
		0.4	-0.000	0.115	0.104	7.5
		0.6	-0.000	0.412	0.055	74.7
		0.8	-0.002	0.423	0.053	75.9
	MV-LIML	Oracle	-0.001	0.145	0.137	6.0
		0.4	-0.001	0.159	0.115	14.6
		0.6	0.004	1.007	0.113	72.0
		0.8	0.005	1.036	0.115	72.8
	MV-IVW-PCA	-	-0.000	0.137	0.122	7.6
	MV-LIML-PCA	-	-0.001	0.158	0.135	8.5
θ_3	MV-IVW	Oracle	-0.556	0.134	0.123	98.7
		0.4	-0.412	0.114	0.104	95.5
		0.6	0.212	0.431	0.055	78.0
		0.8	0.225	0.441	0.053	79.3
	MV-LIML	Oracle	-0.584	0.139	0.137	98.7
		0.4	-0.531	0.146	0.115	97.7
		0.6	-0.189	0.897	0.113	75.2
		0.8	-0.186	0.935	0.115	75.7
	MV-IVW-PCA	-	-0.503	0.133	0.122	96.6
	MV-LIML-PCA	-	-0.556	0.146	0.135	97.2

Supplementary Table A5: Results from simulation study with alternative correlation matrix ("onion")

Parameter	Method	Pruning	Mean	SD	Mean SE	Power
θ_1	MV-IVW	Oracle	0.361	0.135	0.123	81.9
		0.4	0.301	0.134	0.124	67.7
		0.6	0.273	0.120	0.113	67.1
		0.8	0.242	0.113	0.106	63.0
	MV-LIML	Oracle	0.382	0.143	0.137	81.0
		0.4	0.349	0.159	0.136	72.1
		0.6	0.341	0.155	0.123	75.7
		0.8	0.327	0.160	0.115	75.0
	MV-IVW-PCA	-	0.335	0.148	0.137	68.4
	MV-LIML-PCA	-	0.366	0.164	0.151	69.1
θ_2	MV-IVW	Oracle	0.014	0.127	0.116	7.4
		0.4	0.036	0.123	0.115	7.9
		0.6	0.044	0.115	0.108	8.3
		0.8	0.047	0.106	0.100	9.0
	MV-LIML	Oracle	0.005	0.136	0.129	6.1
		0.4	0.019	0.147	0.126	8.9
		0.6	0.027	0.153	0.118	12.7
		0.8	0.031	0.155	0.109	17.1
	MV-IVW-PCA	-	0.022	0.134	0.122	7.3
	MV-LIML-PCA	-	0.008	0.145	0.135	6.2
θ_3	MV-IVW	Oracle	-0.557	0.122	0.112	99.7
		0.4	-0.488	0.118	0.110	99.0
		0.6	-0.454	0.110	0.103	99.0
		0.8	-0.417	0.103	0.097	98.7
	MV-LIML	Oracle	-0.578	0.126	0.124	99.8
		0.4	-0.533	0.132	0.121	99.2
		0.6	-0.523	0.128	0.113	99.3
		0.8	-0.512	0.126	0.106	99.2
	MV-IVW-PCA	-	-0.539	0.126	0.117	99.5
	MV-LIML-PCA	-	-0.565	0.135	0.129	99.5

Supplementary Table A6: Results from simulation study with variant correlations taken from real genetic data.

Parameter	Method	Pruning	Mean	SD	Mean SE	Power
θ_1	MV-IVW	Oracle	0.354	0.128	0.115	84.6
		0.4	0.305	0.160	0.142	60.3
		0.6	0.210	0.113	0.090	64.7
		0.8	-0.085	0.411	0.049	77.0
	MV-LIML	Oracle	0.391	0.145	0.136	84.0
		0.4	0.361	0.198	0.167	62.3
		0.6	0.398	0.385	0.111	82.0
		0.8	0.113	3.199	0.290	80.8
	MV-IVW-PCA	-	0.299	0.125	0.114	73.2
	MV-LIML-PCA	-	0.381	0.168	0.134	79.8
θ_2	MV-IVW	Oracle	-0.003	0.129	0.115	7.8
		0.4	-0.009	0.162	0.142	7.3
		0.6	0.002	0.107	0.090	9.1
		0.8	0.035	0.409	0.049	75.8
	MV-LIML	Oracle	0.001	0.143	0.136	5.5
		0.4	-0.003	0.205	0.168	7.2
		0.6	0.016	0.368	0.110	28.5
		0.8	0.011	3.264	0.291	80.9
	MV-IVW-PCA	-	-0.009	0.125	0.113	7.5
	MV-LIML-PCA	-	0.000	0.173	0.134	10.3
θ_3	MV-IVW	Oracle	-0.544	0.128	0.115	99.0
		0.4	-0.484	0.161	0.142	89.3
		0.6	-0.310	0.136	0.090	88.2
		0.8	0.221	0.410	0.049	78.5
	MV-LIML	Oracle	-0.587	0.140	0.136	99.0
		0.4	-0.550	0.201	0.168	90.4
		0.6	-0.540	0.355	0.111	94.8
		0.8	-0.071	3.047	0.290	80.8
	MV-IVW-PCA	-	-0.474	0.126	0.114	96.7
	MV-LIML-PCA	-	-0.570	0.165	0.135	97.8

Supplementary Table A7: Results from simulation study with moderately correlated exposures.

Parameter	Method	Pruning	Mean	SD	Mean SE	Power
θ_1	MV-IVW	Oracle	0.344	0.135	0.120	79.3
		0.4	0.286	0.163	0.145	53.7
		0.6	0.186	0.112	0.090	55.1
		0.8	-0.081	0.408	0.049	75.7
	MV-LIML	Oracle	0.381	0.150	0.140	79.3
		0.4	0.340	0.207	0.168	56.7
		0.6	0.327	0.281	0.105	74.3
		0.8	0.070	2.896	0.251	80.8
	MV-IVW-PCA	-	0.279	0.129	0.117	66.0
	MV-LIML-PCA	-	0.356	0.173	0.135	74.1
θ_2	MV-IVW	Oracle	-0.005	0.135	0.120	7.9
		0.4	-0.013	0.165	0.145	7.4
		0.6	-0.002	0.108	0.090	9.3
		0.8	0.039	0.404	0.049	74.7
	MV-LIML	Oracle	-0.001	0.153	0.139	6.2
		0.4	-0.007	0.209	0.168	7.9
		0.6	0.010	0.291	0.105	26.4
		0.8	0.054	3.006	0.252	79.0
	MV-IVW-PCA	-	-0.013	0.129	0.117	7.6
	MV-LIML-PCA	-	-0.004	0.174	0.135	10.9
θ_3	MV-IVW	Oracle	-0.533	0.134	0.120	98.3
		0.4	-0.463	0.166	0.146	85.6
		0.6	-0.286	0.133	0.090	83.8
		0.8	0.216	0.408	0.049	78.0
	MV-LIML	Oracle	-0.575	0.147	0.140	98.3
		0.4	-0.526	0.206	0.169	87.2
		0.6	-0.463	0.325	0.105	92.1
		0.8	-0.056	2.827	0.251	80.7
	MV-IVW-PCA	-	-0.452	0.130	0.117	94.7
	MV-LIML-PCA	-	-0.543	0.168	0.135	96.6

Supplementary Table A8: Results from simulation study with weakly correlated exposures.

Parameter	Method	Pruning	Mean	SD	Mean SE	Power
θ_1	MV-IVW	Oracle	0.363	0.123	0.111	88.5
		0.4	0.321	0.155	0.139	65.8
		0.6	0.233	0.114	0.089	72.8
		0.8	-0.089	0.398	0.049	77.1
	MV-LIML	Oracle	0.399	0.135	0.134	87.0
		0.4	0.380	0.196	0.167	66.4
		0.6	0.463	0.508	0.118	87.5
		0.8	0.163	3.379	0.320	82.0
	MV-IVW-PCA	-	0.317	0.122	0.112	79.4
	MV-LIML-PCA	-	0.402	0.164	0.135	84.2
θ_2	MV-IVW	Oracle	-0.002	0.123	0.111	7.4
		0.4	-0.007	0.158	0.139	7.3
		0.6	0.005	0.108	0.089	9.6
		0.8	0.032	0.397	0.049	76.5
	MV-LIML	Oracle	0.003	0.138	0.134	5.1
		0.4	-0.000	0.199	0.168	6.8
		0.6	0.021	0.441	0.117	29.9
		0.8	-0.013	3.492	0.320	80.8
	MV-IVW-PCA	-	-0.006	0.123	0.112	7.5
	MV-LIML-PCA	-	0.004	0.172	0.135	10.0
θ_3	MV-IVW	Oracle	-0.553	0.124	0.112	99.4
		0.4	-0.501	0.159	0.139	91.3
		0.6	-0.334	0.140	0.090	91.4
		0.8	0.227	0.409	0.049	78.5
	MV-LIML	Oracle	-0.596	0.134	0.134	99.5
		0.4	-0.569	0.200	0.168	91.9
		0.6	-0.609	0.423	0.118	96.5
		0.8	-0.134	3.207	0.319	81.9
	MV-IVW-PCA	-	-0.492	0.124	0.112	97.8
	MV-LIML-PCA	-	-0.591	0.158	0.135	98.6

Supplementary Table A9: Results from simulation study with strongly correlated exposures.

Parameter	Method	Pruning	Mean	SD	Mean SE	Power
$ heta_1$	MV-IVW	0.4	0.304	0.170	0.148	56.7
		0.6	0.213	0.135	0.085	65.0
	MV-LIML	0.4	0.339	0.199	0.165	58.0
		0.6	0.297	0.191	0.093	77.1
	MV-IVW-PCA	-	0.297	0.132	0.119	69.3
	MV-LIML-PCA	-	0.347	0.155	0.131	74.1
θ_2	MV-IVW	0.4	-0.013	0.170	0.149	8.0
		0.6	-0.012	0.136	0.085	18.7
	MV-LIML	0.4	-0.009	0.198	0.165	7.8
		0.6	-0.002	0.189	0.093	27.8
	MV-IVW-PCA	-	-0.014	0.134	0.119	7.8
	MV-LIML-PCA	-	-0.007	0.160	0.131	9.6
θ_3	MV-IVW	0.4	-0.487	0.169	0.148	86.8
		0.6	-0.355	0.135	0.085	93.2
	MV-LIML	0.4	-0.529	0.193	0.164	87.5
		0.6	-0.459	0.189	0.093	95.7
	MV-IVW-PCA	-	-0.478	0.132	0.119	95.6
	MV-LIML-PCA	-	-0.538	0.154	0.131	96.7

Supplementary Table A10: Results from the main simulation study with a correlation matrix estimated in an independent sample of 1000 individuals

Mean estimates, standard deviation (SD) of estimates, mean standard error (mean SE) of estimates, and empirical power of the 95% confidence interval to estimate $\theta_1 = 0.4$, $\theta_2 = 0$, and $\theta_3 = -0.6$.