SUPPORTING INFORMATION

Charge-converting nanoemulsions as promising retinal drug and gene delivery systems

Nguyet-Minh Nguyen Le^a, Sarah Zsák^b, Bao Le-Vinh^a, Julian David Friedl^a, Gergely Kali^a, Patrick Knoll^a, Hartwig Wolfram Seitter^b, Alexandra Koschak^{b,*} and Andreas Bernkop-Schnürch^{a,*}

^a Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria

^b Center for Chemistry and Biomedicine, Department of Pharmacology and Toxicology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria

* shared correspondence: Alexandra Koschak, University of Innsbruck, Institute of Pharmacy, Pharmacology and Toxicology, Center for Chemistry and Biomedicine, Innrain 80-82, 6020 Innsbruck Austria, phone: +43-(0)512-507-58807, fax: +43-(0)512-507-58899, email: alexandra.koschak@uibk.ac.at and Andreas Bernkop-Schnürch, University of Innsbruck, Institute of Pharmacy, Pharmaceutical Technology, Center for Chemistry and Biomedicine, Innrain 80-82, 6020 Innsbruck Austria, phone: +43-(0)512-507-58601, fax: +43-(0)512-507-58699, email: andreas.bernkop@uibk.ac.at

Gating strategy for flow cytometry

Figure S.1. Gating strategy for flow cytometry. Cellular uptake profile of Lumogen red loaded NEs. FSC-A: forward scatter-area. SSC-A: side scatter-area. PE-A: phycoerythrin-area channel

used as detection parameter for Lumogen red loaded NEs-positive cells. (A) Pre-selection of main cell populations based on FSC-A and SSC-A followed by doublet-elimination based on FSC-Width (not shown). (B) HBS-treated 661W cells served as control and for setting the gate for fluorescence-positive cells. (C) Control NEs-taken 661W cells show only a small percentage of fluorescence-positive cells within the gate. (D) PLOA NEs-taken 661W cells and (E) PLOA/TPP NEs-taken 661W cells show substantial fractions of fluorescence-positive cells within the gate. (F) PLOA/TPP NEs-taken 661W cells in samples incubated with phosphatase inhibitor cocktail 2 show a small number of fluorescence-positive cells within the gate.

Calculation for transfection study on 661W photoreceptor-like cells

Each well was incubated with 250 μ L of either 0.05% nanoemulsion, pDNA:Lipofectamine[®] 2000 liposome solution, or pDNA solution.

Below is the calculation of the amount of pDNA in each 250 μ L solution of each type:

1. pGFP:DOTAP loaded NE formulation

Molar ratio DOTAP:pGFP ion pair = 2

MW (molecular weight): pGFP = 6100

DOTAP = 698.56

\rightarrow DOTAP-	pGFP ion-	pair ~ 7	7497.12
----------------------	-----------	----------	---------

C	Concentration of loaded DOTAP-pGFP in SEDDS preconcentrate =		:	0.2	%
Amount of pGFP in each 100 mg lipophilic preconcentrate =				0.163	mg
1	L μL lipophilic preconcentrate weighs =			0.97	mg
Each we	ll incubated with 250 μL of 0.05% nanoemulsion				
T	This amount of NE contains =	0.125	μL p	recond	entrate
-	\rightarrow equivalent to:	0.121	mg p	orecon	centrate
-	\rightarrow equivalent to:	196.3	ng p	GFP	
2. pGFP	:Lipofectamine [®] 2000 formulation				

Concentration of Lipofectamine [®] 2000 reagent =	1	μg/μL
Concentration of pGFP solution =	4.30	μg/μL
0.3 μ L of pGFP solution contains =	1290	ng pGFP

Mix 0.75 μ L of Lipofectamine[®] 2000 stock solution and 0.3 μ L of pGFP solution in 100 μ L of buffer. Incubate for 5 min. Dilute pGFP:Lipofectamine[®] 2000 complex with buffer to the final volume of 1500 μ L.

```
Final Lipofectamine<sup>®</sup> 2000 concentration = 0.05 %
```

250 μ L pGFP:Lipofectamine [®] 2000 solution contains =	215	ng pGFP		
3. pGFP solution alone				
Concentration of pGFP solution =	4.30	μg/μL		
0.3 μ L of 4.3 μ g/ μ L pGFP solution contains =	1.29	µg pGFP		
\rightarrow equivalent to =	1290	ng pGFP		
Mix 0.3 μL of pGFP solution with buffer to the final volume of 1500 μL				

 \rightarrow 250 μL of pGFP diluted solution contains = \$215\$ ng pGFP