ChemBioChem

Supporting Information

Improved Antibody-Specific Epitope Prediction Using AlphaFold and AbAdapt**

Zichang Xu, Ana Davila, Jan Wilamowski, Shunsuke Teraguchi, and Daron M. Standley*

		CDR-H1	CDR-H2	CDR-H3	CDR-L1	CDR-L2	CDR-L3	Paratope
	Median	0.61	0.64	2.88	0.59	0.49	0.78	1.76
AlphaFold2	Mean	0.93	0.89	3.44	0.84	0.64	1.15	2.08
	Stdev	0.89	0.98	2.42	0.90	0.82	1.08	1.28
Deventeine	Median	0.81	0.81	4.01	0.67	0.57	0.92	2.44
Repertoire	Mean	1.14	1.07	4.38	0.95	0.72	1.37	2.69
Builder	Stdev	0.97	1.03	2.31	0.90	0.79	1.24	1.20

The RMSD of CDRs and paratope in the holdout set

	CDR-H1	CDR-H2	CDR-H3	CDR-L1	CDR-L2	CDR-L3	Paratope
Median	0.67	0.74	2.86	0.62	0.55	0.25	1.80
Mean	1.14	1.04	3.62	0.88	0.60	1.31	2.12
Stdev	1.06	0.86	2.88	1.01	0.41	1.17	1.17
Median	0.85	1.07	4.07	0.72	0.61	0.28	2.59
Mean	1.34	1.31	4.44	1.05	0.74	1.53	2.83
Stdev	1.12	1.01	2.19	1.09	0.79	1.15	1.18
	Mean Stdev Median Mean	Median0.67Mean1.14Stdev1.06Median0.85Mean1.34	Median 0.67 0.74 Mean 1.14 1.04 Stdev 1.06 0.86 Median 0.85 1.07 Mean 1.34 1.31	Median0.670.742.86Mean1.141.043.62Stdev1.060.862.88Median0.851.074.07Mean1.341.314.44	Median0.670.742.860.62Mean1.141.043.620.88Stdev1.060.862.881.01Median0.851.074.070.72Mean1.341.314.441.05	Median0.670.742.860.620.55Mean1.141.043.620.880.60Stdev1.060.862.881.010.41Median0.851.074.070.720.61Mean1.341.314.441.050.74	Median0.670.742.860.620.550.25Mean1.141.043.620.880.601.31Stdev1.060.862.881.010.411.17Median0.851.074.070.720.610.28Mean1.341.314.441.050.741.53

Supplementary Table 1. The RMSD (Å) of CDRs and paratope in the LOOCV and holdout set.

Initial epitope prediction of LOOCV set

nitial epitope prediction of LOOCV set					
	Prediction	Median	Mean	Stdev	
	TRAIN ROC AUC	0.863	0.854	0.048	
	TEST ROC AUC	0.694	0.687	0.147	
AbAdapt/AbAdapt-AF	TEST PR AUC	0.165	0.200	0.137	
	TEST Recall	0.625	0.599	0.241	
	TEST Precision	0.149	0.157	0.088	

Initial epitope prediction of holdout set

	Prediction	Median	Mean	Stdev
	TEST ROC AUC	0.695	0.690	0.146
Ab Adapt / Ab Adapt AF	TEST PR AUC	0.162	0.212	0.159
AbAdapt/AbAdapt-AF	TEST Recall	0.571	0.593	0.224
	TEST Precision	0.150	0.159	0.092

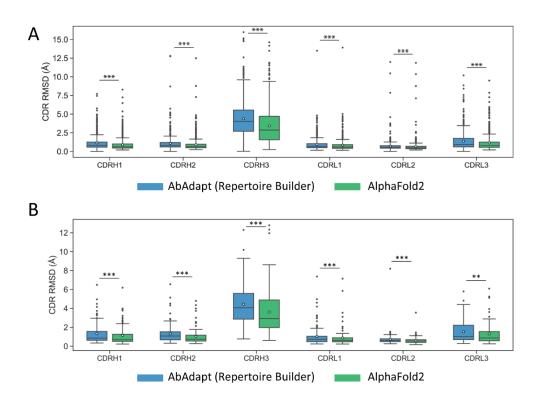
Supplementary Table 2. The initial epitope prediction of AbAdapt and AbAdapt-AF in LOOCV and holdout set.

	Prediction	Median	Mean	Stdev
	TEST ROC AUC	0.721	0.705	0.152
AbAdaat	TEST PR AUC	0.189	0.226	0.151
AbAdapt	TEST Sensitivity	0.684	0.621	0.246
	TEST Precision	0.155	0.159	0.084
	TEST ROC AUC	0.756	0.727	0.172
AbAdant AF	TEST PR AUC	0.204	0.276	0.214
AbAdapt-AF	TEST Sensitivity	0.775	0.708	0.250
	TEST Precision	0.162	0.161	0.090
	TEST ROC AUC	0.745	0.715	0.168
AbAdapt-AF	TEST PR AUC	0.195	0.259	0.206
(AF's Ab/Ag models)	TEST Sensitivity	0.771	0.691	0.258
	TEST Precision	0.158	0.160	0.096

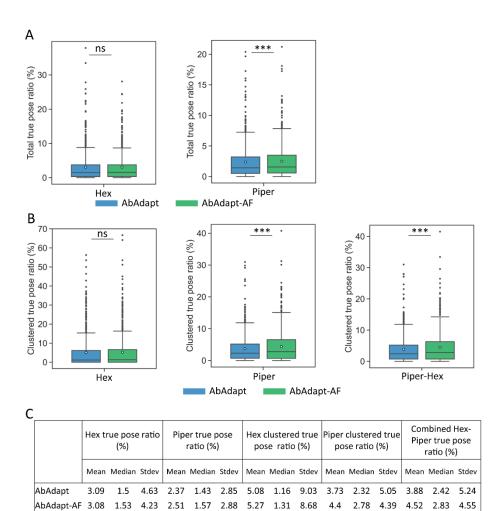
Supplementary Table 3. Comparison of the performance of antibody-specific epitope prediction between AbAdapt and AbAdapt-AF. Analysis of the antibody-specific epitope prediction performance of the AbAdapt-AF pipeline that was trained by antigen models from Spanner and antibody models from AlphaFold2 versus using antibody and antigen models both from AlphaFold2 as input.

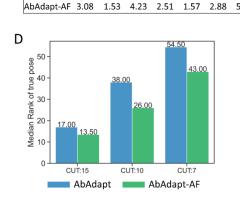
		Rank 1	Rank 2	Rank 3	Rank 4	Rank 5
	Median	2.88	2.90	2.95	2.90	3.18
CDR-H3	Mean	3.44	3.45	3.51	3.53	3.69
	Stdev	2.42	2.42	2.38	2.42	2.49
	Median	1.76	1.78	1.86	1.83	1.96
Paratope	Mean	2.08	2.10	2.12	2.15	2.21
	Stdev	1.28	1.27	1.31	1.29	1.29

The RMSD of CDR-H3 and paratope in the LOOCV set

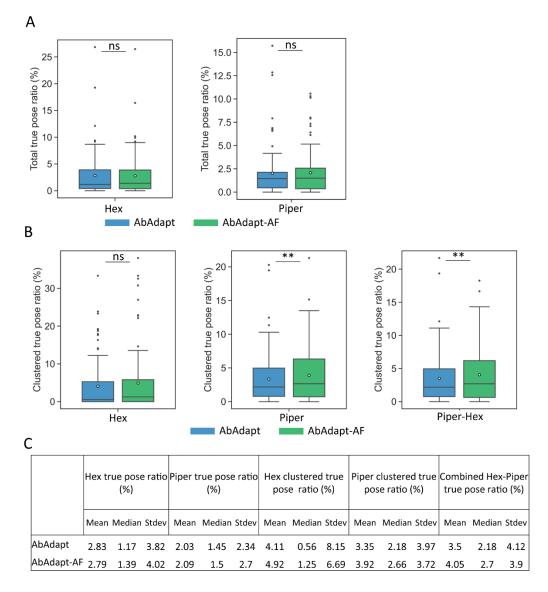

The RMSD of CDR-H3 and paratope in the holdout set

	he RIVISD of CDR-HS and paratope in the holdout set					
		Rank 1	Rank 2	Rank 3	Rank 4	Rank 5
	Median	2.86	3.04	2.95	3.04	3.41
CDR-H3	Mean	3.62	3.74	3.80	3.83	3.86
	Stdev	2.88	2.84	2.89	2.82	2.80
Paratope	Median	1.80	1.97	1.91	1.84	1.98
	Mean	2.12	2.17	2.20	2.23	2.28
	Stdev	1.17	1.15	1.19	1.26	1.30

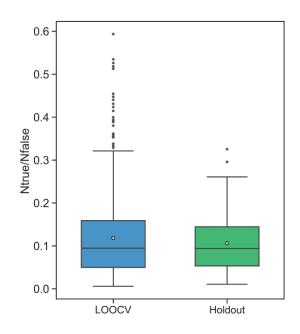

Supplementary Table 4. Comparison of the quality of top 5 antibody models by AlphaFold2.

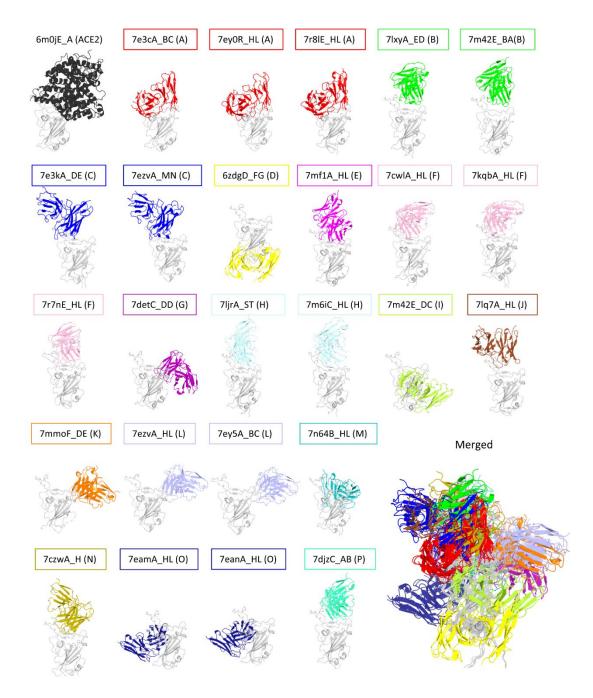

Name	Description
Initial_Paratope	DNN binary classifier to predict paratope (1) or not (0) based on
	Antibody sequence and structure
Initial_Epitope	DNN binary classifier to predict epitope (1) or not (0) based on Antigen
	sequence and structure
Piper_Docking and	Boosted Tree binary classifier to predict of a pose is True (1) or not (0)
Hex_Docking	based on pose sequence and structure
Piper_Hex_Docking	Boosted Tree regressor to predict IRMSD ⁻² , based on AbAdapt docking
	Score, the number of clashes, Hex or Piper docking energy, the fraction
	of Piper poses in a cluster, and cluster size
Final_Epitope	DNN binary classifier to predict epitope (1) or not (0) based on Antigen
	sequence and structure as well as docking contact statistics

Supplementary Table 5. Description of machine learning models in AbAdapt and AbAdapt-AF pipelines.



Supplementary Figure 1. Comparison of the modeling performance of antibodies between AbAdapt and AlpahFold2. The RMSD of six CDRs of antibody model in LOOCV training set with 620 queries (A) and Holdout set with 100 queries (B) by AbAdapt powered by Repertoire Builder (blue) or AlphaFold2 (green). The Wilcoxon matched-pairs signed rank test was performed to compare the corresponding performance between AbAdapt and AbAdapt-AF (** $P \le 0.01$; *** $P \le 0.001$). The empty circle in each box indicated the average value.




Supplementary Figure 2. Comparison of docking performance and pose combination between AbAdapt and AbAdapt-AF in LOOCV set. (A) The total true pose that produced by Hex (left) and Piper (right) by AbAdapt and AbAdapt-AF. (B) The true pose ratio after clustering the pose from Hex (left) and Piper (middle) separately and a combination of them (right). The Wilcoxon matched-pairs signed rank test was performed to compute the significance (*** $P \le 0.001$, ns: not significant). (C) The average and median values of each true pose ratio that related to (A) and (B). (D) The median rank of true poses after the combination of Hex-Piper clusters for the sharing of successful queries among AbAdapt and AbAdapt-AF. The true pose was defined by the cutoff value indicated on the x-axis (15, 10, or 7 Å) for the RMSD of the interface residues (IRMSD) with minimum epitope and paratope accuracies of 50%.

Supplementary Figure 3. Comparison of docking performance and pose combination between AbAdapt and AbAdapt-AF in holdout set. (A) The total true pose that produced by Hex (left) and Piper (right) by AbAdapt and AbAdapt-AF. (B) The true pose ratio after clustering the pose from Hex (left) and Piper (middle) separately and a combination of them (right). The Wilcoxon matched-pairs signed rank test was performed to compute the significance (** $P \le 0.01$, ns: not significant). (C) The average and median values of each true pose ratio that related to (A) and (B).

Supplementary Figure 4. PR ROC baseline of LOOCV and holdout sets. The baseline is based on the ratio of epitope and non-epitope amino acid residue. The "Ntrue" indicate the number of epitope residue and "Nfalse" indicate the number of non-epitope residue in each antigen from the LOOCV set (blue) and the holdout set (green).

Supplementary Figure 5. The visualization of 25 SARS-Cov-2 RBD-antibody complexes. The epitope cluster is given followed by the query name. Each RBD in the complex was aligned as the orientation of the RBD in RBD-ACE2 binding pose.