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1 The comparison between the conditional MPP and the

marginal MPP

In this section, a theoretical comparison between the conditional MPP and the marginal MPP is

presented. Suppose that the LMMs for the current study and the historical control arm are as

follows

yi = Xi βC + di βT +Zi bi + εi, (S1)

and

y0i′ = X0i′ βC +Z0i′ b0i′ + ε0i′ . (S2)

The posterior of the model parameters with the conditional MPP and the marginal MPP can be

derived based on the above models.

The posterior of the model parameters in the conditional MPP is

p(βC , βT ,G, σ
2, b, b0, α | y,y0) =

[
n∏
i=1

p(yi | βC , βT , bi, σ2) p(bi | G)

]
p(βT )

[
n0∏
i′=1

p(y0i′ | βC , b0i′ , σ2)α p(b0i′ | G)

]
p(θ)

∫ ∫ [ n0∏
i′=1

p(y0i′ | βC , b0i′ , σ2)α p(b0i′ | G)

]
p(θ)db0dθ

p(α) =

[
n∏
i=1

exp(− 1
2
ATi R

−1
i Ai)√

(2π)mi | Ri |
exp(− 1

2
bTi G

−1bi)√
(2π)q | G |

]
p(βT )

[
n0∏
i′=1

(
exp(− 1

2
AT

0i′R
−1
0i′A0i′ )√

(2π)m0i′ | R0i′ |

)α
exp(− 1

2
bT
0i′G

−1b0i′ )√
(2π)q | G |

]
p(θ)

∫ [ n0∏
i′=1

∫ (
exp(− 1

2
AT

0i′R
−1
0i′A0i′ )√

(2π)m0i′ | R0i′ |

)α
exp(− 1

2
bT
0i′G

−1b0i′ )√
(2π)q | G |

db0i′

]
p(θ)dθ

p(α),

(S3)

where Ai = yi −XiβC − diβT −Zibi, A0i′ = y0i′ −X0i′βC −Z0i′b0i′ and θ = (βC ,G, σ
2).

The posterior in the marginal MPP is obtained based on the marginal likelihood, which is given

by
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p(βC , βT ,G, σ
2, α | y,y0) =

[
n∏
i=1

∫
p(yi | βC , βT , bi, σ2) p(bi | G)dbi

]
p(βT )

[
n0∏
i′=1

∫
p(y0i′ | βC , b0i′ , σ2) p(b0i′ | G)db0i′

]α
p(θ)

∫ [ n0∏
i′=1

∫
p(y0i′ | βC , b0i′ , σ2) p(b0i′ | G)db0i′

]α
p(θ)dθ

p(α) =

[
n∏
i=1

(∫
exp(− 1

2
ATi R

−1
i Ai)√

(2π)mi | Ri |
exp(− 1

2
bTi G

−1bi)√
(2π)q | G |

dbi

)]
p(βT )

[
n0∏
i′=1

(∫
exp(− 1

2
AT

0i′R
−1
0i′A0i′ )√

(2π)m0i′ | R0i′ |
exp(− 1

2
bT
0i′G

−1b0i′ )√
(2π)q | G |

db0i′

)α]
p(θ)

∫ [ n0∏
i′=1

(∫
exp(− 1

2
AT

0i′R
−1
0i′A0i′ )√

(2π)m0i′ | R0i′ |
exp(− 1

2
bT
0i′G

−1b0i′ )√
(2π)q | G |

db0i′

)α]
p(θ)dθ

p(α) =

[
n∏
i=1

exp(− 1
2
BTi V

−1
i Bi)√

(2π)mi | Vi |

]
p(βT )

 n0∏
i′=1

exp(− 1
2
αBT

0i′ (Z0i′GZ
T
0i′ +R0i′ )

−1B0i′ )

(
√

(2π)m0i′ | Z0i′GZ
T
0i′ +R0i′ |)α

 p(θ)
∫  n0∏

i′=1

exp(− 1
2
αBT

0i′ (Z0i′GZ
T
0i′ +R0i′ )

−1B0i′ )

(
√

(2π)m0i′ | Z0i′GZ
T
0i′ +R0i′ |)α

 p(θ) dθ
p(α), (S4)

where Vi = ZiGZ
T
i + Ri, Bi = yi − XiβC − diβT and B0i′ = y0i′ − X0i′βC . If we rescale the

covariance matrix, Z0i′GZ
T
0i′+R0i′ , with the power parameter α, the posterior in the marginal MPP

then becomes

[
n∏
i=1

exp(− 1
2
BTi V

−1
i Bi)√

(2π)mi | Vi |

]
p(βT )

 n0∏
i′=1

√
(2π)m0i′ | Z0i′

G
α
ZT

0i′ +
R0i′
α
|

(
√

(2π)m0i′ | Z0i′GZ
T
0i′ +R0i′ |)α

exp(− 1
2
BT

0i′ (Z0i′
G
α
ZT

0i′ +
R0i′
α

)−1B0i′ )√
(2π)m0i′ | Z0i′

G
α
ZT

0i′ +
R0i′
α
|

 p(θ)
∫  n0∏

i′=1

√
(2π)m0i′ | Z0i′

G
α
ZT

0i′ +
R0i′
α
|

(
√

(2π)m0i′ | Z0i′GZ
T
0i′ +R0i′ |)α

exp(− 1
2
BT

0i′ (Z0i′
G
α
ZT

0i′ +
R0i′
α

)−1B0i′ )√
(2π)m0i′ | Z0i′

G
α
ZT

0i′ +
R0i′
α
|

 p(θ) dθ
p(α) =

[
n∏
i=1

exp(− 1
2
BTi V

−1
i Bi)√

(2π)mi | Vi |

]
p(βT )

 n0∏
i′=1

| Z0i′GZ
T
0i′ +R0i′ |

(1−α)
2

exp(− 1
2
BT

0i′ (Z0i′
G
α
ZT

0i′ +
R0i′
α

)−1B0i′ )√
(2π)m0i′ | Z0i′

G
α
ZT

0i′ +
R0i′
α
|

 p(θ)
∫  n0∏

i′=1

| Z0i′GZ
T
0i′ +R0i′ |

(1−α)
2

exp(− 1
2
BT

0i′ (Z0i′
G
α
ZT

0i′ +
R0i′
α

)−1B0i′ )√
(2π)m0i′ | Z0i′

G
α
ZT

0i′ +
R0i′
α
|

 p(θ) dθ
p(α) (S5)

To our knowledge, the marginal posterior of α does not have a closed form in the conditional

MPP or the marginal MPP.

To help identify the difference between the conditional MPP and the marginal MPP, we first

derive the marginal posterior of βC , βT , G, σ2, and α by integrating out the random effects (b, b0)

in the conditional MPP, which is given by
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p(βC , βT ,G, σ
2, α | y,y0) =

[
n∏
i=1

∫
exp(− 1

2
ATi R

−1
i Ai)√

(2π)mi | Ri |
exp(− 1

2
bTi G

−1bi)√
(2π)q | G |

dbi

]
p(βT )

[
n0∏
i′=1

∫
exp(− 1

2
αAT

0i′R
−1
0i′A0i′ )

(
√

(2π)m0i′ | R0i′ |)α
exp(− 1

2
bT
0i′G

−1b0i′ )√
(2π)q | G |

db0i′

]
p(θ)

∫ [ n0∏
i′=1

∫
exp(− 1

2
αAT

0i′R
−1
0i′A0i′ )

(
√

(2π)m0i′ | R0i′ |)α
exp(− 1

2
bT
0i′G

−1b0i′ )√
(2π)q | G |

db0i′

]
p(θ)dθ

p(α) =

[
n∏
i=1

exp(− 1
2
BTi V

−1
i Bi)√

(2π)mi | Vi |

]
p(βT )

 n0∏
i′=1

√
(2π)m0i′ | R0i′

α
|

(
√

(2π)m0i′ | R0i′ |)α

∫
exp(− 1

2
AT

0i′ (
R0i′
α

)−1A0i′ )√
(2π)m0i′ | R0i′

α
|

exp(− 1
2
bT
0i′G

−1b0i′ )√
(2π)q | G |

db0i′

 p(θ)
∫  n0∏

i′=1

√
(2π)m0i′ | R0i′

α
|

(
√

(2π)m0i′ | R0i′ |)α

∫
exp(− 1

2
AT

0i′ (
R0i′
α

)−1A0i′ )√
(2π)m0i′ | R0i′

α
|

exp(− 1
2
bT
0i′G

−1b0i′ )√
(2π)q | G |

db0i′

 p(θ)dθ
p(α) =

[
n∏
i=1

exp(− 1
2
BTi V

−1
i Bi)√

(2π)mi | Vi |

]
p(βT )

 n0∏
i′=1

| R0i′ |
(1−α)

2
exp(− 1

2
BT

0i′ (Z0i′GZ
T
0i′ +

R0i′
α

)−1B0i′ )√
(2π)m0i′ | Z0i′GZ

T
0i′ +

R0i′
α
|

 p(θ)
∫  n0∏

i′=1

| R0i′ |
(1−α)

2
exp(− 1

2
BT

0i′ (Z0i′GZ
T
0i′ +

R0i′
α

)−1B0i′ )√
(2π)m0i′ | Z0i′GZ

T
0i′ +

R0i′
α
|

 p(θ)dθ
p(α). (S6)

Equation (S5) and Equation (S6) differ in terms of (a) the compensate term in front of the mul-

tivariate normal distribution, and (b) the covariance matrix of the multivariate normal distribution.

To simplify the comparison between the conditional MPP and the marginal MPP, we can assume

G and σ2 to be known so that the compensate terms in front of the multivariate normal distribution

in Equation (S5) and Equation (S6) can be canceled out. Based on the above formulations, the

conditional MPP only inflates the variance of the multivariate normal distribution of y0i′ with a

weight of 1
α

for the error variance, but the marginal MPP inflates the variance of the multivariate

normal distribution with the weight 1
α

for both variances of random effects and the error variance.

Thus the conditional MPP tends to borrow more historical information given the same power value.

In conclusion, we have found in the above comparison that the closed forms of the power param-

eter posterior in both approaches are not available, and interpretations of the same power value in

both approaches are different because the same value leads to different amount of borrowing.

2 The sampling for the posterior of the MPP

The sampling for the posterior of the MPP consists of two main steps, including (1) the calculation

of the scaling constants corresponding to different fixed power values, and (2) the sampling from the

posterior distribution based on the scaling constants calculated in the first step. The algorithm is

adapted from a similar algorithm proposed in our previous study [1].
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2.1 Step 1 : Calculation of the scaling constant

In this step, a path sampling algorithm is adopted to calculate the scaling constant. In the algorithm,

the logarithm of C(α) is equal to the expected log-likelihood of the historical data as a function of

parameters that are sampled from the power prior, i.e.,

log(C(α)) =

∫ α

α=0

Ep(θ,b0|α,y0) logL(θ, b0 | y0)dα

for the conditional MPP, and

log(C(α)) =

∫ α

α=0

Ep(θ|α,y0) logL(θ | y0)dα

for the marginal MPP, where θ is the model parameters such as regression coefficients, covariance

matrix and error variance, and b0 is the historical random effects. The details of the algorithm are

as follows.

1. Choose ∆α, the increase in α per iteration and niter, the number of HMC samples per iteration.

Initialize α= 0, and initialize the model parameters using a draw from the prior p(θ).

2. Repeat the following until α ≥ 1:

(a) Increase the value of α by ∆α;

(b) Sample niter HMC iterations from the power prior distribution with fixed power parameter

α, which is

L(θ, b0 | y0)α p(b0 | θ) p(θ)∫ ∫
L(θ, b0 | y0)α p(b0 | θ) p(θ)db0dθ

for the conditional MPP or[∫
L(θ, b0 | y0) p(b0 | θ)db0

]α
p(θ)∫ [∫

L(θ, b0 | y0) p(b0 | θ)db0
]α
p(θ)dθ

for the marginal MPP;

(c) Calculate the average log-likelihood of the historical data, i.e., E(logL(θ, b0 | y0)) for the

conditional MPP and E(logL(θ | y0)) for the marginal MPP, using all the parameter sets

sampled for the current value of α.

3. Calculate the cumulative sum of the average log-likelihood values that were calculated in the

last step, as a function of α.

4. C(α) is now proportional to the exponential of the cumulative sum calculated in the previous

step.
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2.2 Step 2 : Sampling from the posterior distribution

In the second step, model parameters and the power parameter are sampled using HMC from

p(θ, b, b0, α | y,y0) ∝ L(θ, b | y) p(b | θ)
L(θ, b0 | y0)α p(b0 | θ) p(θ)

C(α)
p(α)

for the conditional MPP or

p(θ, α | y,y0) ∝
∫
L(θ, b | y) p(b | θ)db

[∫
L(θ, b0 | y0) p(b0 | θ)db0

]α
p(θ)

C(α)
p(α)

for the marginal MPP, where b is the current random effects and C(α) is calculated with linear

interpolation using the grid of fixed power values and their corresponding values of log(C(α)) obtained

from Step 1.

3 Sampling the posterior in the conditional MPP

In the second step of the above algorithm, the efficiency of the sampler for the conditional MPP

is relatively low due to a large number of historical random effects to be sampled. In linear mixed

models, we can avoid sampling the historical random effects by integrating them out to improve the

computational efficiency. The marginal posterior of βC , βT , b, G, σ2, and α is as follows.

p(βC , βT , b,G, σ
2, α | y0,y) ∝

[
n∏
i=1

exp(− 1
2
ATi R

−1
i Ai)√

(2π)mi | Ri |
exp(− 1

2
bTi G

−1bi)√
(2π)q | G |

]
p(βT )× n0∏

i′=1

(2π)
m

0i′ (1−α)

2 α
−m

0i′
2 | R0i′ |

(1−α)
2

exp(− 1
2
BT

0i′ (Z0i′GZ
T
0i′ +

R0i′
α

)−1B0i′ )√
(2π)m0i′ | Z0i′GZ

T
0i′ +

R0i′
α
|

 p(θ)
∫ [ n0∏

i′=1

∫ (
exp(− 1

2
AT

0i′R
−1
0i′A0i′ )√

(2π)m0i′ | R0i′ |

)α
exp(− 1

2
bT
0i′G

−1b0i′ )√
(2π)q | G |

db0i′

]
p(θ)dθ

p(α), (S7)

where the scaling constant in the denominator is calculated in Step 1. According to preliminary

simulations, the new sampler is more efficient than the sampler with random effects in terms of (a)

computational time, and (b) number of iterations required to achieve convergence.
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4 Results of the simulation study

In the following tables, we presented the results of the simulation including the type I error rate and the statistical power, the performance

measures of effect estimation, and distributions of power parameters in the conditional MPP and the marginal MPP. In the tables, β2 = 0

implies scenarios without treatment effect, while β2 = 0.36 indicates scenarios with treatment effect.

Table S1: The type I error rate and statistical power (%) of the estimated treatment effect (Monte Carlo SE in parentheses) in the

simulation study based on 500 simulated data sets

Method
Scenario for between-study heterogeneity

No RI+Low RI+Moderate RI+High RIS+Low RIS+Moderate RIS+High

β2 = 0

No borrowing 5.2 (1.0) 4.8 (1.0) 4.2 (0.9) 5.8 (1.0) 4.0 (0.9) 4.0 (0.9) 5.4 (1.0)

Conditional MPP 5.4 (1.0) 6.4 (1.1) 7.8 (1.2) 9.0 (1.3) 6.0 (1.1) 8.2 (1.2) 10.4 (1.4)

Marginal MPP 5.2 (1.0) 5.6 (1.0) 5.6 (1.0) 6.2 (1.1) 5.2 (1.0) 5.4 (1.0) 8.8 (1.3)

Commensurate prior 5.2 (1.0) 4.8 (1.0) 4.6 (0.9) 6.2 (1.1) 4.0 (0.9) 3.8 (0.9) 5.6 (1.0)

Pooling 5.4 (1.0) 7.2 (1.2) 15.2 (1.6) 26.6 (2.0) 7.2 (1.2) 26.2 (2.0) 42.2 (2.2)

β2 = 0.36

No borrowing 71.2 (2.0) 73.0 (2.0) 71.8 (2.0) 71.2 (2.0) 71.8 (2.0) 70.0 (2.0) 72.0 (2.0)

Conditional MPP 82.2 (1.7) 82.4 (1.7) 77.4 (1.9) 73.8 (2.0) 81.2 (1.7) 72.0 (2.0) 70.8 (2.0)

Marginal MPP 81.6 (1.7) 81.6 (1.7) 78.0 (1.9) 75.6 (1.9) 80.8 (1.8) 73.6 (2.0) 70.4 (2.0)

Commensurate prior 75.8 (1.9) 75.8 (1.9) 74.8 (1.9) 73.4 (2.0) 74.4 (2.0) 70.6 (2.0) 72.4 (2.0)

Pooling 82.4 (1.7) 83.6 (1.7) 75.6 (1.9) 70.6 (2.0) 81.6 (1.7) 69.8 (2.1) 66.0 (2.1)
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Table S2: The average bias (Monte Carlo SE in parentheses) of the estimated treatment effect in the simulation study based on 500

simulated data sets

Method
Scenario for between-study heterogeneity

No RI+Low RI+Moderate RI+High RIS+Low RIS+Moderate RIS+High

β2 = 0

No borrowing −0.006 (0.006) −0.007 (0.006) 0.016 (0.006) 0.002 (0.006) −0.004 (0.006) 0.005 (0.006) 0.005 (0.006)

Conditional MPP −0.001 (0.006) −0.002 (0.006) 0.016 (0.006) 0.003 (0.007) −0.001 (0.006) 0.015 (0.007) 0.005 (0.007)

Marginal MPP −0.001 (0.006) −0.001 (0.006) 0.018 (0.006) 0.006 (0.006) 0.000 (0.006) 0.013 (0.006) 0.007 (0.007)

Commensurate prior −0.005 (0.006) −0.006 (0.006) 0.016 (0.006) 0.003 (0.006) −0.005 (0.006) 0.005 (0.006) 0.004 (0.006)

Pooling −0.005 (0.006) −0.006 (0.006) 0.012 (0.008) 0.000 (0.010) −0.004 (0.006) 0.004 (0.010) 0.011 (0.013)

β2 = 0.36

No borrowing −0.002 (0.006) 0.006 (0.006) 0.001 (0.007) 0.003 (0.007) 0.002 (0.006) −0.005 (0.006) −0.001 (0.006)

Conditional MPP −0.002 (0.006) 0.013 (0.006) 0.004 (0.007) 0.003 (0.007) 0.006 (0.006) 0.000 (0.007) 0.000 (0.007)

Marginal MPP 0.000 (0.006) 0.013 (0.006) 0.006 (0.006) 0.005 (0.007) 0.007 (0.006) 0.001 (0.007) 0.000 (0.006)

Commensurate prior −0.001 (0.006) 0.008 (0.006) 0.002 (0.006) 0.004 (0.007) 0.003 (0.006) −0.005 (0.006) −0.002 (0.006)

Pooling −0.005 (0.006) 0.010 (0.006) 0.003 (0.008) −0.008 (0.009) 0.003 (0.006) −0.007 (0.010) −0.009 (0.013)
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Table S3: The average posterior SD of the estimated treatment effect in the simulation study based on 500

simulated data sets

Method
Scenario for between-study heterogeneity

No RI+Low RI+Moderate RI+High RIS+Low RIS+Moderate RIS+High

β2 = 0

No borrowing 0.142 0.142 0.141 0.142 0.142 0.142 0.141

Conditional MPP 0.123 0.124 0.130 0.134 0.124 0.134 0.137

Marginal MPP 0.128 0.130 0.133 0.136 0.130 0.136 0.138

Commensurate prior 0.138 0.138 0.138 0.139 0.139 0.140 0.140

Pooling 0.123 0.123 0.124 0.126 0.123 0.124 0.126

β2 = 0.36

No borrowing 0.142 0.142 0.142 0.142 0.143 0.142 0.143

Conditional MPP 0.123 0.124 0.131 0.134 0.125 0.134 0.137

Marginal MPP 0.128 0.130 0.133 0.136 0.131 0.136 0.140

Commensurate prior 0.138 0.138 0.139 0.139 0.139 0.140 0.142

Pooling 0.123 0.123 0.124 0.124 0.124 0.125 0.127

Note: All the Monte Carlo errors are less than 0.001 thus not reported in the table.
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Table S4: The average MSE (Monte Carlo SE in parentheses) of the estimated treatment effect in the simulation study based on 500

simulated data sets

Method
Scenario for between-study heterogeneity

No RI+Low RI+Moderate RI+High RIS+Low RIS+Moderate RIS+High

β2 = 0

No borrowing 0.021 (0.001) 0.021 (0.001) 0.020 (0.001) 0.020 (0.001) 0.020 (0.001) 0.019 (0.001) 0.021 (0.001)

Conditional MPP 0.016 (0.001) 0.018 (0.001) 0.021 (0.001) 0.022 (0.001) 0.018 (0.001) 0.023 (0.001) 0.026 (0.002)

Marginal MPP 0.016 (0.001) 0.017 (0.001) 0.019 (0.001) 0.020 (0.001) 0.017 (0.001) 0.020 (0.001) 0.024 (0.001)

Commensurate prior 0.019 (0.001) 0.019 (0.001) 0.018 (0.001) 0.018 (0.001) 0.019 (0.001) 0.018 (0.001) 0.021 (0.001)

Pooling 0.016 (0.001) 0.018 (0.001) 0.032 (0.002) 0.047 (0.003) 0.019 (0.001) 0.049 (0.003) 0.088 (0.005)

β2 = 0.36

No borrowing 0.020 (0.001) 0.021 (0.002) 0.022 (0.001) 0.022 (0.001) 0.019 (0.001) 0.021 (0.001) 0.019 (0.001)

Conditional MPP 0.016 (0.001) 0.018 (0.001) 0.023 (0.002) 0.024 (0.001) 0.018 (0.001) 0.026 (0.002) 0.023 (0.001)

Marginal MPP 0.016 (0.001) 0.018 (0.001) 0.021 (0.001) 0.022 (0.001) 0.017 (0.001) 0.023 (0.002) 0.021 (0.001)

Commensurate prior 0.019 (0.001) 0.019 (0.001) 0.020 (0.001) 0.020 (0.001) 0.018 (0.001) 0.020 (0.001) 0.018 (0.001)

Pooling 0.016 (0.001) 0.018 (0.001) 0.032 (0.002) 0.044 (0.003) 0.019 (0.001) 0.054 (0.003) 0.085 (0.005)
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Distributions of the power parameter in the conditional MPP and the marginal MPP in scenarios without treatment effect are

visualized using box plots in the main text. The medians and IQRs of the posterior means of the power parameter for the conditional

MPP and the marginal MPP in different scenarios are shown in Table S5, which indicates both methods can incorporate the historical

information adaptively.

Table S5: The median (IQR in the parentheses) of the posterior means of the power parameter in the conditional MPP and the marginal

MPP in all simulation scenarios based on 500 simulated data sets

Method
Scenario for between-study heterogeneity

No RI+Low RI+Moderate RI+High RIS+Low RIS+Moderate RIS+High

β2 = 0

Conditional MPP 0.82 (0.76, 0.85) 0.81 (0.76, 0.85) 0.75 (0.35, 0.82) 0.64 (0.02, 0.81) 0.80 (0.75, 0.84) 0.70 (0.14, 0.80) 0.26 (0.01, 0.77)

Marginal MPP 0.65 (0.60, 0.69) 0.64 (0.57, 0.69) 0.51 (0.26, 0.64) 0.37 (0.13, 0.62) 0.62 (0.54, 0.67) 0.43 (0.23, 0.58) 0.25 (0.09, 0.53)

β2 = 0.36

Conditional MPP 0.82 (0.77, 0.86) 0.81 (0.75, 0.85) 0.75 (0.46, 0.83) 0.65 (0.03, 0.81) 0.81 (0.76, 0.85) 0.70 (0.07, 0.81) 0.28 (0.01, 0.77)

Marginal MPP 0.66 (0.61, 0.70) 0.63 (0.55, 0.69) 0.53 (0.29, 0.64) 0.37 (0.16, 0.60) 0.64 (0.56, 0.69) 0.44 (0.20, 0.60) 0.26 (0.11, 0.50)
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5 Sensitivity analysis on the prior for the power parameter

Based on above performance measures of the MPP with Beta(1, 1) prior for the power parameter, the type I error rate can be inflated

when the between-study heterogeneity is moderate or high, which implies the current version of MPP is too optimistic in borrowing

historical information. Therefore we did a sensitivity analysis using a more skeptical prior, Beta(1, 2), for the power parameter with more

probability density near zero to evaluate its effect on the control of type I error rate.

Table S6: The median (IQR in parentheses) of the posterior means of the power parameter in the conditional MPP and the marginal

MPP in all simulation scenarios with Beta(1, 2) prior for the power parameter

Method
Scenario for between-study heterogeneity

No RI+Low RI+Moderate RI+High RIS+Low RIS+Moderate RIS+High

β2 = 0

Conditional MPP 0.73 (0.68, 0.76) 0.72 (0.67, 0.76) 0.64 (0.12, 0.73) 0.40 (0.02, 0.71) 0.71 (0.65, 0.76) 0.54 (0.06, 0.71) 0.09 (0.01, 0.66)

Marginal MPP 0.51 (0.46, 0.55) 0.50 (0.44, 0.54) 0.40 (0.22, 0.49) 0.29 (0.12, 0.47) 0.48 (0.42, 0.53) 0.34 (0.20, 0.45) 0.21 (0.09, 0.41)

β2 = 0.36

Conditional MPP 0.74 (0.69, 0.77) 0.71 (0.65, 0.76) 0.64 (0.18, 0.74) 0.43 (0.02, 0.71) 0.72 (0.66, 0.77) 0.55 (0.04, 0.71) 0.10 (0.01, 0.63)

Marginal MPP 0.51 (0.47, 0.55) 0.49 (0.42, 0.54) 0.40 (0.25, 0.50) 0.30 (0.14, 0.46) 0.49 (0.43, 0.54) 0.34 (0.18, 0.46) 0.22 (0.10, 0.39)
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Table S7: The type I error rate and statistical power (%) of the estimated treatment effect (Monte Carlo SE in parentheses) in the

simulation study with Beta(1, 2) prior for the power parameter

Method
Scenario for between-study heterogeneity

No RI+Low RI+Moderate RI+High RIS+Low RIS+Moderate RIS+High

β2 = 0

Conditional MPP 5.4 (1.0) 5.6 (1.0) 7.4 (1.2) 8.6 (1.3) 6.0 (1.1) 7.2 (1.2) 9.8 (1.3)

Marginal MPP 5.2 (1.0) 4.8 (1.0) 5.6 (1.0) 6.2 (1.1) 5.0 (1.0) 5.0 (1.0) 8.0 (1.2)

β2 = 0.36

Conditional MPP 81.8 (1.7) 81.6 (1.7) 77.0 (1.9) 74.2 (2.0) 80.2 (1.8) 73.6 (2.0) 71.6 (2.0)

Marginal MPP 80.8 (1.8) 80.2 (1.8) 77.6 (1.9) 76.2 (1.9) 79.8 (1.8) 74.4 (2.0) 71.4 (2.0)

As can be seen from Table S6, estimates of the power parameter are lower than those with a Beta(1, 1) prior due to this more skeptical

prior. Although the type I error rate was slightly reduced compared to the original MPP when there was between-study heterogeneity

according to Table S7, the Beta(1,2) prior still led to inflated type I error rates in the above scenarios. Hence the prior for the power

parameter should be even more skeptical to control the type I error rate.
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6 Sensitivity analysis on the LKJ prior in the real data analysis

In the analysis of ADCS data sets, the LKJ(1) prior was used for the correlation matrix in the covariance matrix of random effects. The

choice of the hyperparameter η in the LKJ prior may influence the inference for the parameters of interest. A hyperparameter η < 1

favors more correlation while η > 1 favors less correlation. Therefore, we conducted a sensitivity analysis on the choice of η (η = 0.5, 2)

using the ADCS data. The results are shown in Figure S8, which are almost identical to those based on the LKJ(1) prior.

Table S8: Parameter estimates of the ADC-027 trial using different borrowing methods with different LKJ priors

η Method
Time effect β5 Treatment effect β6

Posterior mean Posterior SD 95% CI Posterior mean Posterior SD 95% CI

0.5 No borrowing 0.521 0.039 (0.445, 0.599) −0.022 0.051 (−0.124, 0.078)

Conditional MPP 0.462 0.026 (0.412, 0.514) 0.033 0.040 (−0.044, 0.112)

Marginal MPP 0.477 0.032 (0.415, 0.541) 0.021 0.045 (−0.069, 0.109)

Commensurate prior 0.514 0.039 (0.440, 0.590) −0.015 0.051 (−0.115, 0.083)

Pooling 0.452 0.024 (0.404, 0.501) 0.041 0.040 (−0.036, 0.118)

2 No borrowing 0.521 0.039 (0.444, 0.599) −0.022 0.051 (−0.124, 0.079)

Conditional MPP 0.461 0.026 (0.412, 0.511) 0.035 0.040 (−0.044, 0.113)

Marginal MPP 0.477 0.032 (0.416, 0.540) 0.022 0.044 (−0.067, 0.108)

Commensurate prior 0.516 0.039 (0.440, 0.594) −0.019 0.051 (−0.121, 0.082)

Pooling 0.452 0.025 (0.403, 0.500) 0.041 0.040 (−0.038, 0.121)

The medians and the IQRs of the power parameter are 0.63 (0.56, 0.73) and 0.70 (0.61, 0.78) for the conditional MPP with η = 0.5, 2,

respectively. For the marginal MPP, the medians and IQRs of the power parameter are 0.41 (0.32, 0.54) and 0.42 (0.32, 0.56), respectively.
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7 Graphical convergence diagnostics for the motivating data

analysis

In this section, we present the trace plots and the autocorrelation plots for parameters of interest

of the methods involved in Section 7 of the paper. The plots have shown that all the methods have

achieved convergence in the real data analysis.

Figure S1: Trace plots and autocorrelation plots for the time effect and the treatment effect in the

no borrowing method
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Figure S2: Trace plots and autocorrelation plots for the time effect, the treatment effect and the

power parameter in the conditional MPP method
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Figure S3: Trace plots and autocorrelation plots for the time effect, the treatment effect and the

power parameter in the marginal MPP method
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Figure S4: Trace plots and autocorrelation plots for the time effect and the treatment effect in the

commensurate prior method
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Figure S5: Trace plots and autocorrelation plots for the time effect and the treatment effect in the

pooling method

8 Source code

The R and Stan syntax files for the methods in the simulation study are available on a GitHub

repository (https://github.com/QiHongchao/MPP_longitudinal).
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