Global parameters for the moth model. Below, we show a table of all the required parameters to recreate the simulated model of a moth.

Label	Value	Units	Description
L1	0.9	cm	Length from the thorax-abdomen joint
			to the center of mass of the head-
			thorax
L2	1.9	cm	Length from the thorax-abdomen joint
			to the center of mass of the abdomen
$\overline{L3}$	0.75	cm	Length from the thorax-abdomen joint
			to the aerodynamic force vector
ρ_{head}	0.9	g/cm^2	The density of the insect head-thorax
ρ_{butt}	0.4	$\rm g/cm^2$	The density of the insect abdomen
ρ_A	0.00118	$\rm g/cm^3$	The density of air
μ_A	0.000186	g/cm·s	The dynamic viscosity of air at 27°C
a_{head}	0.9	cm	Length of 1/2 major axis of head-
			thorax ellipsoid
a_{butt}	1.9	cm	Length of $1/2$ of major axis of ab-
			domen ellipsoid
$\overline{b_{head}}$	0.5	cm	Length of 1/2 of minor axis of head-
			thorax ellipsoid
b_{butt}	0.75	cm	Length of $1/2$ of minor axis of abdomen
			ellipsoid
K	23000	$\text{cm}^2 \cdot \text{g}/(\text{rad} \cdot \text{s}^2)$	Torsional spring constant of the
			thorax-abdomen joint
c	14075.8	$\mathrm{cm^2 \cdot g/s}$	Torsional damping constant of the
			thorax-abdomen joint
g	14075.8	$\mathrm{cm/s^2}$	Acceleration due to gravity
β_R	0	rad	Resting configuration of the torsional
			spring = (initial abdomen angle) - (ini-
			tial head-thorax angle) - π
t	0.02	S	Time step