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Supplementary Results 

Region of Interest analysis. 

We sought to confirm our findings in the whole brain using an ROI approach because this 

allowed us to take a stricter approach to multiple comparisons. In this approach we took ROIs which 

overlapped with findings from (28) because this is the only paper reports findings from a sample of post-

pubertal individuals who were exposed to institutionalization. Thus, these findings are likely to be most 

similar to what we would expect to observe here. Mackes and colleagues observed differences in cortical 

surface area and thickness associated with exposure to institutionalization in the inferior frontal gyrus, 

anterior cingulate cortex, and temporal pole(28). Using structurally defined regions of interest with the 

Desikan and Killiany atlas (78) we examined group (FCG vs CAUG) differences in thickness at age 16 in 

six regions: right and left caudal anterior cingulate cortex, left and right pars triangularis, and left and 

right temporal pole. We set our threshold for significance at p < .008 using a Bonferonni correction. We 

observed significant differences between CAUG and FCG in two regions of interest, the left caudal 

anterior cingulate cortex (t79 = 3.06, p = .001, d = .21) and pars triangularis (t79 = 3.13, p = .001, d = .15). 

These anatomically defined regions overlap significantly spatially with differences we observed in the 

whole brain analysis. No other regions were significantly different between groups (all p’s > .07).  

Impact of institutionalization on subcortical volume without controls for ICV 

When not controlling for intracranial volume, ever-institutionalized children had significantly 

smaller right (F1,111 = 6.10, p =.02,	𝜂	 .052) and left (F1,111 = 2.74, p =.10,	𝜂	 .024) hippocampus, right 

(F1,111 = 4.52, p =.04,	𝜂	 .039) and left (F1,111 = 4.36, p =.04,	𝜂	 .038) amygdala, and right (F1,111 = 8.09, p 

=.005,	𝜂	 .068) and left (F1,111 = 12.17, p <.001,	𝜂	 .099) thalamus volume relative to never-

institutionalized children following correction for multiple comparisons using false discovery rate(75) 

(FDR). However, none of these differences were significant after controlling for total intracranial volume. 

Non-significant results (group effects) 
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We found no evidence for significant differences in subcortical volume at 16 years of age between 

children in the ever vs. never institutionalized groups in the right (F1,111 = 1.88, p =.17,	𝜂	.017) and left 

(F1,111 = 1.02, p =.32,	𝜂	.009) caudate, right (F1,111 = .98, p =.32,	𝜂	.009) and left (F1,111 = .23, p =.64,	

𝜂	.002) putamen, or the right (F1,111 = 1.95, p =.17,	𝜂	.017) and left (F1,111 = .67, p =.41,	𝜂	.006) globus 

pallidus after controlling for multiple comparisons.  

We found no evidence for the impact of foster care intervention on subcortical volume at 16 years 

of age in the right (t80 = 1.01, p = .16, d =.22) and left (t80 = 1.15, p = .13, d =.25) hippocampus, right (t80 

= 1.30, p = .10, d =.29) and left (t80 = 1.61, p = .06, d =.36) amygdala, right (t80 = .19, p = .42, d =.043) 

and left (t80 = -.05, p = .48, d = -.01) caudate, right (t80 = .94, p = .18, d =.21) and left (t80 = 1.82, p = .04, 

d =.40) putamen, right (t80 = .90, p = .19, d =.19) and left (t80 = .06, p = .48, d =.014) globus pallidus, or 

right (t80 = .83, p = .21, d =.18) and left (t80 = .83, p = .20, d =.18) thalamus after controlling for multiple 

comparisons. 

We found no evidence for the impact of randomization out of foster care intervention early vs. 

late on subcortical volume at 16 years of age in the right (t39 = .87, p = .20, d =.27) and left (t39 = .94, p 

= .18, d =.29) hippocampus, right (t39 = .58, p = .28, d =.18) and left (t39 = 1.21, p = .12, d =.38) 

amygdala, right (t39 = .60, p = .28, d =.19) and left (t39 = .36, p = .36, d =.11) caudate, right (t39 = 1.35, p 

= .09, d 

=.42) and left (t39 = 1.83, p = .04, d =.57) putamen, right (t39 = .32, p = .38, d =.10) and left (t39 = .96, p = 

.17, d =.29) globus pallidus, or right (t39 = -.37, p = .36, d = -.12) and left (t39 = -.21, p = .42, d = -.06) 

thalamus after controlling for multiple comparisons.  

Associations between neural structure and psychopathology  

We examined associations between psychopathology as measured by factor scores and cortical 

thickness in the two regions in the left hemisphere (ACC and IFG) which showed a significant impact of 

randomization to foster care on neural structure at age 16 controlling for age at scan and gender. As 

reported in the paper thickness in the ACC significantly predicted factor scores on the externalizing factor 

but not the ‘p’ factor, or internalizing factor. Thickness in the IFG did not significantly predict factor 



 

scores on the externalizing (β = .09, t = .82, p = .41, f2= .008), internalizing (β = .11, t = .98, p = .33, 

f2= .019) or ‘p’ factor (β = .14, t = 1.25, p = .21, f2= .012). 

Longitudinal change  

Because acquisition parameters changed between 8 and 16 years, we wanted to document that we 

observed patterns of change in cortical volume from 9 -16 years which would be expected based on prior 

research. Here we report on change in volume and thickness across all participants regardless of group. 

Given that this sample is not representative of any specific population we report these findings only as a 

methods note to the overall paper. First, as expected based on previous work(32,45), we observed 

significant reductions in grey matter volume (F 1,61 = 9.32, p <.003) and increases in white matter volume 

(F 1,61 = 7.94, p <.007) from early to middle adolescence.  

Second, as expected based on previous work, subcortical volume also changed from 9 to 16 years 

in this sample(4). We observed significant reductions over time in subcortical grey matter volume in the 

left (F 1,61 = 5.41, p = .02) and right (F 1,61 = 10.15, p = .002) hippocampus, right amygdala (F 1,61 = 3.99, p 

= .05), right thalamus (F 1,61 = 4.25, p = .04), left (F 1,61 = 11.98, p = .001) and right caudate (F 1,61 = 7.09, 

p = .01), and in the left (F 1,61 = 13.59, p < .001) and right (F 1,61 = 10.94, p = .002) pallidum. Of these 

regions, change in the right hippocampus, caudate, and pallidum remained significant after controlling 

for multiple comparisons. 

Third, we examined change in cortical thickness and surface area from 9 to 16 years of age in a 

vertex-wise analysis that controlled for multiple comparisons. As predicted from the extant literature, 

cortical thickness decreased across age in most areas of cortex (Figure S3; Table S1). This change was 

prominent across temporal cortex, IFG, medial PFC and the post central gyrus.  



Fig. S1. 

Figure S1. Consort diagram for the BEIP study through 16 years of age. At the third follow-up (16 years) the 
following participants were re-enrolled into the parent study (FCG n = 53; CAUG n = 56; NIG n = 50). At both 9 
and 16 years, not every participant was able to be recruited into the MRI portion of the study, many refused to 
participate because of concerns about the MRI scanner, others because of time constraints with scheduling or 
funding. As a result, the final number of participants for the MRI portions of the study are smaller than for the parent 
study at both 9 and 16 years. More participants were successfully recruited into the MRI portion of the study at 16 
relative to 9 years, primarily due to funding constraints at the 9 year time point.  Many participants in the ‘never 
institutionalized’ group refused further participation in all portions of the study. This is indicated in the ‘Community 
Controls’ portion of the diagram. As can be observed, these participants left at every time point (for example, in the 
final sample at 16 years 7 dropped out before the baseline, 19 dropped out between the baseline and 54 month 
follow up, etc.). 

Assessed at 12 years (n = 56)
29 BEIP foster care

2 Adopted
12 Returned to bio family

8 Government foster care
5 Institutional care

Discontinued  (n = 12)

Assessed at 12 years (n = 58)
20 Institutional care
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18 Returned to bio family
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Assessed for eligibility
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in Bucharest, Romania 

Randomized at baseline 
(n = 136)

Excluded (n = 51)
Did not meet inclusion

Assigned to foster care (n = 68) Assigned to care as usual (n = 68)
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(n = 78)

Excluded (n = 6)
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(n = 6)  
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7 Dropped out > 54 mo < 8 years
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Assessed at 12 years (n = 51)
28 Retained
23 Recruited at 8 years

Discontinued (n = 82) 
7 Dropped out > baseline

19 Dropped out > baseline < 54 mo
7 Dropped out > 54 mo < 8 years

48 Dropped out > 8 years < 12 years
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3rd Follow-upAssessed at 16 years (n = 53)
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Assessed at 16 years (n = 56)
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Discontinued (n = 85)
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Analysis
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Fig. S2. 

Fig. S3. 

Figure S2. Latent Change Analysis. Structure of the latent change score (LCS) analysis with change in cortical thickness 
(CT) from age 8 to 16 years predicted by initial level of CT at age 8 years. Group membership (care-as-usual = 0, foster care 
= 1) was added as a predictor of change (ΔCT) in cortical thickness of the ACC and IFG (in separate models) given that 
these were the regions showing differences by intervention group. This analysis used a maximum likelihood with robust 
standard errors (MLR) estimator and used full-information maximum likelihood, meaning all participants with at least one 
data point at age 8 and/or 16 years were included in the analysis. This served as a test of robustness of the main results by 
including all participants. 



 

Figure S3. Cortical Thickness and Developmental Outcomes. Correlations between cortical thickness 
at age 16 in (A) the inferior frontal gyrus (IFG) and Full Scale IQ at age 18 years and (B) the anterior 
cingulate cortex (ACC) and externalizing factors scores at age 16.   

Fig. S4. 

Figure S4. Developmental change in thickness regardless of group assignment. Areas of cortex 
showing significant decreases in thickness from 9 to 16 years regardless of experiences of 
institutionalization 



Table S1. 

CAUG FCG NIG 
Average age at 16 year follow up (SD) 200m (5.8m) 198m (6.2m) 201m (5.6m) 
Months between Scan 1 and Scan 2 84m 82m 78m 
Gender 54% female 49% female 42% female 

Table S1. Demographic and sample information 



Table S2. 

Table S2. Regions with significant differences in longitudinal cortical thickness (mm2) among all subjects 
regardless of group membership.   

Brain Area 
Cluster size 

Z-value of Max
Vertex

P-value of
cluster

Approximate Coordinates of Max 
Vertex in MNI space 

(mm2) z p x y z 
Change in thickness between 9 and 16 years across groups ( n = 64) 
L Lat Orbital frontal 
cortex 71458 -18.16 >0.001 -19.3 30.1 -17.5
R Lingual cortex 67462 -15.35 >0.001 15.3 -53.0 -2.5



Table S3. 

5 

10 

15 

Table S3. Volume of total cortical grey and white matter as well as volume of six subcortical structures in 
cubic centimeters at the second (age 16 years) time point. Volume was measured using FreeSurfer 
analysis suite. Only differences between the EIG and NIG were significant for total grey and white matter 
volume.   

CAUG (n = 40) FCG (n= 41) NIG (n = 33) 
Total grey matter volume (cubic 
centimeters) 

469.3(48.6) 470.4 (43.6) 482.1 (51.5) 

Total white matter volume 423.9 (49.1) 438.6 (48.7) 456.6 (56.6) 
Amygdala Right 1.5 (.2) 1.5 (.2) 1.5 (.2) 

Left 1.4 (.2) 1.5 (.2) 1.5 (.2) 
Hippocampus Right 4.0 (.4) 4.0 (.4) 4.1 (.4) 

Left 3.9 (.4) 4.0 (.4) 4.0 (.4) 
Thalamus Right 6.9 (.7) 7.0 (.8) 7.2 (.8) 

Left 7.4 (.7) 7.5 (.9) 7.9 (.8) 
Caudate Right 3.9 (.5) 3.9 (.6) 3.9 (.5) 

Left 3.7 (.4) 3.7 (.5) 3.7 (.5) 
Putamen Right 5.6 (.7) 5.7 (.5) 5.6 (.7) 

Left 5.6 (.8) 5.9 (.6) 5.8 (.9) 
Globus Pallidus Right 1.6 (.2) 1.6 (.2) 1.7 (.2) 

Left 1.7 (.3) 1.7 (.2) 1.7 (.3) 
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