Science Advances

Supplementary Materials for

An enzyme-mimic single Fe-N₃ atom catalyst for the oxidative synthesis of nitriles via C–C bond cleavage strategy

Jingzhong Qin et al.

Corresponding author: Wen Dai, daiwen@dicp.ac.cn; Zehui Zhang, zehuizh@mail.ustc.edu.cn

Sci. Adv. **8**, eadd1267 (2022) DOI: 10.1126/sciadv.add1267

This PDF file includes:

Figs. S1 to S22 Tables S1 to S15 Supplementary NMR data Supplementary mass spectrometry and NMR spectrometry

Fig. S1. Characterization of the surface area of the catalyst by nitrogen physisorption measurements. Nitrogen adsorption-desorption isotherms (a) and pore size distribution (b) of the Fe catalysts.

Fig. S2. XRD patterns of the as-prepared Fe catalysts. XRD patterns of Fe-N₃/NC-1100 also gave no diffraction peaks of Fe species, but showed two weak peaks at 24.4° and 44.6°, assigning to the (002) and (101) planes of graphitic carbon.

Fig. S3. Raman spectra of the as-prepared Fe catalysts. Two peaks with the Raman shifts around 1350 (called D bond) and 1570 cm⁻¹ (called G bond) were observed.

Fig. S4. Fe 2p XPS spectra of the as-prepared Fe catalysts. (a) Fe-N₃/NC-1100; (b) Fe-N₃/NC-1000.

Fig. S5. N 1s XPS spectra and content of the as-prepared Fe catalysts. (a) Fe-N₃/NC-1100; (b) Fe-N₃/NC-1000; (c) Content of types of N atoms.

Fig. S6. Wavelet-transformed k³-weighted EXAFS spectra. (a) Fe-N₃/NC-1100; (b) Fe foil; (c) Fe₃O₄; (d) FeO.

Fig. S7. The possible structures of Fe-N₃/NC-1100 were further studied by DFT calculation.

Fig. S8. STEM images of the Fe-N₃/NC-1000 catalyst. (a~b) SEM; (c~d) TEM.

Fig. S9. Characterization of the Fe-N₃/NC-1000 catalyst. (a) XANES spectra at the Fe K-edge; (b) FT-EXAFS spectra of the Fe foil, Fe₃O₄, FeO and Fe-N₃/NC-1000; (c) R space and (d) k space of Fe-N₃/NC-1000; (e) Wavelet-transformed k³ -weighted EXAFS spectra of Fe-N₃/NC-1000; (f) HAADF-STEM image of Fe-N₃/NC-1000 (single-atom Fe is highlighted with red circles).

Fig. S10. STEM images of the Fe-N₄/NC-800 catalyst. (a~d) STEM images of Fe-N₄/NC-800; (e~f) HRTEM images of Fe-N₄/NC-800.

Fig. S11. XRD patterns of the Fe-N₄/NC-800 catalyst. XRD patterns of Fe-N₄/NC-800 also gave no diffraction peaks of Fe species, but showed two weak peaks at 25.4° and 43.6° .

Fig. S12. The structure of the hemoglobin molecule and cytochrome P450 in organism. (a) hemoglobin molecule; (b) cytochrome P450.

Fig. S13. The recycling test of the Fe-N₃/NC-1100 catalyst. (a) Time-yield plots over Fe-N₃/NC-1100 (black line) or removing Fe-N₃/NC-1100 after 4 h (red line); (b) Recycling experiment of the oxidative transformation of acetophenone into benzonitrile. Reaction conditions: Acetophenone (0.20 mmol), toluene (1.5 mL), Fe-N₃/NC-1100 (20 mg, 0.93 mmol %), NH₃·H₂O (26.5 wt.% 400 μ L), 150 °C, O₂ (10 bar) and 4 h.

Fig. S14. CO₂ was detected by mass spectrometry.

Fig. S15. GC spectrum of the intermediate generated from the aerobic oxidation cleavage and functionalization of DL-1-phenethylalcohol in toluene.

(benzonitrile)

Fig. S16. GC-MS spectrum of the intermediate generated from the aerobic oxidation cleavage and functionalization of acetophenone in toluene.

Fig. S17. Detection of H_2O_2 . UV/visible spectrophotometer of 30% H_2O_2 solution and solution after reaction in methanol.

Fig. S18. Some important intermediates for the synthesis of benzonitrile. Reaction conditions: Substrate (0.20 mmol), Fe-N₃/NC-1100 (20 mg 0.98 mmol%), NH₃•H₂O (26.5 wt.% 400 μ L), toluene (1.5 mL), O₂ (10 bar), 150 °C and 10 h.

Fig. S19. Practical applications of developed catalytic methods.

Fig. S20. XRD and Raman patterns of Fe-N₃/NC-1100 after five large-scale cycles. (a) XRD; (b) Raman.

Fig. S21. STEM images of the Fe-N₃/NC-1100 after five large-scale cycles. (a~e) STEM images; (f) HAADF-STEM image (single-atom Fe is highlighted with red circles).

Reaction conditions: substrates (0.20 mmol), catalyst (20 mg), NH_3•H_2O (26.5 wt.%, 400 $\mu L),$ toluene (1.5 mL).

Fig. S22. Comparison of catalytic activity of Fe-N₃/NC-1100 and Fe-N₄/NC-800.

Sampla	SBET	Pore Volume	Pore Size	Cor	itent
Sample	(m^{2}/g)	(cm^{3}/g)	(nm)	Fe (wt.%) ^{<i>a</i>}	$Zn (wt.\%)^a$
Fe-N ₃ /NC-1100	811	0.67	3.3	0.52	0.05
Fe-N ₃ /NC-1000	627	0.40	2.6	0.76	0.54

 Table S1. Texture properties and elements content in the Fe catalysts.

^{*a*} Measured by ICP-AES.

Sample	C (at.%)	N (at.%)	O (at.%)	Fe (at.%)	Zn (at.%)
Fe-N ₃ /NC-1100	89.67	1.71	8.42	0.2	0
Fe-N ₃ /NC-1000	87.45	5.46	6.08	0	1.01

 Table S2. Elements content in the Fe catalysts. a

^{*a*} Measured by XPS.

Sample	Shell	CNa	$R(\text{\AA})^b$	$\sigma^2(\text{\AA}^2)^c$	$\Delta E_0(eV)$	<i>R</i> factor
			Fe K-edg	re		
Fo foil	Fe-Fe	8*	2.46±0.01	0.0048	50	0.0055
re ion	Fe-Fe	6*	2.85±0.01	0.0055	5.8	0.0033
E-O	Fe-O	6.0	2.12±0.01	0.0147	2.2	0.0074
reO	Fe-Fe	12.0	3.07±0.01	0.0119	-2.2	0.0074
	Fe-O	6.0	2.00±0.01	0.0135		
Fe ₃ O ₄	Fe-Fe	8.0	3.00±0.02	0.0145	-0.9	0.0092
	Fe-Fe	8.0	3.50±0.01	0.0092		
Fe-	Fe-N	2.9±0.6	1.97±0.01	0.0111		
N ₃ /NC- 1000	Fe-O	2.3±0.5	1.70±0.03	0.0111	-7.9	0.0048
Fe-	Fe-N	2.7±0.4	1.98±0.01	0.0101		
N ₃ /NC- 1100	Fe-O	2.1±0.3	1.72±0.02	0.0101	-6.6	0.0035

Table S3. EXAFS fitting parameters at the Fe K-edge for various samples (S_0^2 =0.811).

^a*CN*, coordination number; ^b*R*, distance between absorber and backscatter atoms; ^c σ^2 , Debye-Waller factor to account for both thermal and structural disorders; ^d ΔE_0 , inner potential correction; *R* factor indicates the goodness of the fit. *S*0² was fixed to 0.811, according to the experimental EXAFS fit of Fe foil by fixing CN as the known crystallographic value. Fitting range: $3.0 \le k$ (/Å) ≤ 12.5 and $1.0 \le R$ (Å) ≤ 3.0 (Fe foil, FeO and Fe3O4); $2.0 \le k$ (/Å) $\le \sim 9.5$ and $1.0 \le R$ (Å) $\le \sim 3.0$ (Fe-1000 and Fe-1100). A reasonable range of EXAFS fitting parameters: $0.700 < S_0^2 < 1.000$; *CN* > 0; $\sigma^2 > 0$ Å²; $\Delta E_0 < 10$ eV; *R* factor < 0.02.

$\bigcup_{OH} \longrightarrow \bigcup_{1} \longrightarrow \bigcup_{2} OH$				
Entry	Solvent	Con. (%)	Sel. of 1 (%)	Sel.of 2 (%)
1	Toluene	> 99	40	60
2	Methanol	> 99	14	58
3	THF	> 99	43	46
4	Hexane	> 99	10	31
5	1,4-Dioxane	43	93	7
6	Acetonitrile	> 99	45	26

Table S4. Oxidative transformation of *R*,*R*-hydrobenzoin in different solvents.^{*a*}

^{*a*} Reaction conditions: *R*,*R*-hydrobenzoin (0.20 mmol), Fe-N₃/NC-1100 (20 mg, 0.93 mmol%), NH₃•H₂O (26.5 wt.%, 200 μL), solvent (1.5 mL), O₂ (1 bar), 25 °C and 8 h.

Table S5. The effect of $NH_3 \cdot H_2O$ loading on the oxidative transformation of *R*,*R*-hydrobenzoin.^{*a*}

$\begin{array}{c} OH \\ OH \\ OH \end{array} \longrightarrow \begin{array}{c} OH \\ 1 \end{array} + \begin{array}{c} OCN \\ 2 \end{array}$					
Entry	NH3•H2O (μL)	Con. (%)	Sel. of 1 (%)	Sel. of 2 (%)	
1	50	> 99	55	45	
2	100	> 99	50	50	
3	200	> 99	40	60	
4	300	> 99	29	71	
5	400	> 99	21	79	

^{*a*} Reaction conditions: *R*,*R*-hydrobenzoin (0.20 mmol), Fe-N₃/NC-1100 (20 mg, 0.93 mmol%), NH₃•H₂O (26.5 wt.%, 50~400 μL), toluene (1.5 mL), O₂ (1 bar), 25 °C and 8 h.

	C C			
Entry	Time (h)	Con. (%)	Sel. of 1 (%)	Sel. of 2 (%)
1	0.5	62	96	4
2	1	87	81	19
3	2	> 99	67	33
4	4	> 99	37	63
5	8	> 99	29	71
6	16	> 99	5	95
7	24	> 99	0	> 99

Table S6. Time course of the products distribution during the oxidative transformation of R, R-hydrobenzoin. ^{*a*}

^{*a*} Reaction conditions: *R*,*R*-hydrobenzoin (0.20 mmol), Fe-N₃/NC-1100 (20 mg, 0.93 mmol%), NH₃•H₂O (26.5 wt.%, 400 μL), toluene (1.5 mL), O₂ (1 bar) and 25 °C.

$\square \longrightarrow \square \longrightarrow$						
Entry	T (°C)	O ₂ pressure (bar)	Con. (%)	Sel. of 1 (%)	Sel. of 2 (%)	
1	120	1	0	-	-	
2	140	1	0	-	-	
3	150	1	4	0	100	
4	150	2.5	15	27	73	
5	150	5	36	14	86	
6	150	7.5	70	19	81	
7	150	10	70	9	91	

 Table S7. The effect of the reaction temperature and oxygen pressure on the oxidative transformation of acetophenone. ^a

^{*a*} Reaction conditions: Acetophenone (0.20 mmol), toluene (1.5 mL), Fe-N₃/NC-1100 (20 mg, 0.93 mmol%), NH₃•H₂O (26.5 wt.%, 400 μ L) and 4 h.

			^{NH} ₂ + CN 2	
Entry	Time (h)	Con. (%)	Yield of 1 (%)	Yield of 2 (%)
1	0.5	21	1	20
2	1	31	2	29
3	2	50	3	47
4	4	70	5	65
5	8	90	6	84
6	10	100	7	93

Table S8. Time course of the products distribution during the oxidative transformation of acetophenone. ^{*a*}

^a Reaction conditions: Acetophenone (0.20 mmol), toluene (1.5 mL), Fe-N₃/NC-1100 (20 mg, 0.93 mmol%), NH₃•H₂O (26.5 wt.%, 400 μL), 150 °C and O₂ (10 bar).

		,	- CN		
Entry	Catalyst	T (°C)	Time (h)	Con. (%)	Yield (%)
1	Fe-N ₃ /NC-1100	150	4	70	65
2	NC-1100	150	4	0	-
3	$Fe\text{-}N_3/NC\text{-}1100\text{-}H^+$	150	4	76	74
4	Fe-N ₃ /NC-1100-H ⁺ + KSCN (2 equiv.)	150	4	13	12

Table S9. Control experiments for the oxidative transformation of ketones into nitriles. ^a

^{*a*} Reaction conditions: Acetophenone (0.20 mmol), toluene (1.5 mL), catalyst (20 mg, 0.93 mmol%), NH₃•H₂O (26.5 wt.%, 400 μ L), 150 °C and O₂ (10 bar) and 4 h.

		н `	- CN		
Entry	Catalyst	T (°C)	Time (h)	Con. (%)	Yield (%)
1	Fe-N ₃ /NC-1100	150	30	99	90
2	NC-1100	150	30	0	-
3	Fe-N ₃ /NC-1100-H ⁺	150	30	99	94
4	$Fe-N_3/NC-1100-H^+ + KSCN$ (2 equiv.)	150	30	28	27

 Table S10. Control experiments for the oxidative transformation of secondary alcohols into nitriles. ^a

^{*a*} Reaction conditions: DL-1-phenethylalcohol (0.20 mmol), toluene (1.5 mL), catalyst (20 mg, 0.93 mmol%), NH₃•H₂O (26.5 wt.%, 400 μ L), 150 °C and O₂ (10 bar) and 30 h.

Entry	Additive	Conversion (%)	Yield (%)	
1	-	70	58	
2	BHT	18	18	
3	1,4-Benzoquinone	16	13	
4	Furfuryl alcohol	65	54	
5	Isopropyl alcohol	72	62	

Table S11. The radical inhibition experiments of the oxidative transformation of acetophenone into benzonitrile. a

^{*a*} Reaction conditions: Acetophenone (0.20 mmol), Fe-N₃/NC-1100 catalyst (20 mg, 0.93 mmol%), additive (2 equiv.), NH₃•H₂O (26.5 wt.%, 400 μ L), toluene (1.5 mL), O₂ (10 bar), 150 °C and 4 h.

Entry	Ferrocene	ZIF-8	Pyrolysis (at ramp. 5 °C/min)	Catalyst mass (g)
1	56 mg	4 g	1100 °C, 2 h	1.46
2	112 mg	8 g	1100 °C, 2 h	3.28
3	168 mg	12 g	1100 °C, 2 h	5.12

Table S12. Methods for the preparation of Fe-N₃/NC-1100 with $1\sim5$ gram scale.

Substrates				F C C
Products	CN	CN N		F CN
Catalyst from 1.46 g of scale	97% yield	92% yield	99% yield	85% yield ^b
Catalyst from 3.28 g of scale	99% yield	89% yield	99% yield	88% yield ^b
Catalyst from 5.12 g of scale	95% yield	90% yield	99% yield	86% yield ^b

Table S13. Activity test of the prepared catalyst in difference scale. ^{*a*}

^{*a*} Reaction conditions: Substrate (0.20 mmol), catalyst (20 mg), NH₃•H₂O (26.5 wt.%, 400 μ L) toluene (1.5 mL), O₂ (1 bar), 25 °C and 24 h; ^{*b*}O₂ (10 bar). 150 °C and 10 h.
Substrates				онс		
Products	CN		CN CN	NC		
Yield	86%	93%	83%	88%	93%	95%

Table S14. Large-scale applications in the synthesis of nitriles. ^a

^{*a*} Reaction conditions: Substrates (2 g), catalyst (500 mg), NH₃•H₂O (26.5 wt.%, 1 mL) acetonitrile (10 mL), O₂ (10 bar), 80 °C and 24 h.

The figure of products

(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)								
Entry	Catalyst	T (°C)	Time (h)	Yield. (%)				
1		80	24	99				
2		80	24	99				
3	Fe-N ₃ /NC-1100	80	24	99				
4		80	24	99				
5		80	24	99				

Table S15. Large-scale cycle experiment in the synthesis of nitriles. ^a

^{*a*} Reaction conditions: 2,6-dichlorobenzaldehyde (1 g), Fe-N₃/NC-1100 (500 mg), NH₃•H₂O (26.5 wt.%, 1 mL), acetonitrile (10 mL), O₂ (10 bar), 80 °C and 24 h.

GC spectrum of cycle

Benzonitrile

¹H NMR (400 MHz, CDCl₃) δ 7.63-7.51 (m, 3H), 7.43 (t, *J*=7.7 Hz, 2H).
¹³C NMR (101 MHz, CDCl₃) δ 132.71, 131.97, 129.03, 118.73, 112.19.

4-Fluorobenzonitrile

¹H NMR (400 MHz, CDCl₃) δ 7.70-7.57 (m, 2H), 7.19-7.06 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 166.20, 163.65, 134.68, 134.59, 117.97, 116.88, 116.66, 108.46, 108.42.

4-Chlorobenzonitrile

CN \mathbf{C}

¹H NMR (400 MHz, CDCl₃) δ 7.56 (d, *J*=8.5 Hz, 2H), 7.42 (d, *J*=8.4 Hz, 2H).
¹³C NMR (101 MHz, CDCl₃) δ 139.39, 133.32, 129.59, 117.89, 110.66.

4-Bromobenzonitrile

¹H NMR (400 MHz, CDCl₃) δ 7.61-7.55 (m, 2H), 7.52-7.46 (m, 2H).
 ¹³C NMR (101 MHz, CDCl₃) δ 133.36, 132.54, 127.91, 117.99, 111.11.

2-Chlorobenzonitrile

¹**H NMR (400 MHz, CDCl₃) δ** 7.63 (dd, *J*=7.7, 1.5 Hz, 1H), 7.57-7.43 (m, 2H), 7.40-7.32 (m, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 136.64, 133.95, 129.98, 127.21, 115.93, 113.17.

4-Methylbenzonitrile

¹H NMR (400 MHz, CDCl₃) δ 7.46 (d, *J*=8.0 Hz, 2H), 7.22 (d, *J*=8.0 Hz, 2H), 2.36 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 143.60, 131.82, 129.71, 119.00, 109.05, 21.64.

4-Methoxybenzonitrile

CN

¹H NMR (400 MHz, CDCl₃) δ 7.51 (d, *J*=8.9 Hz, 2H), 6.89 (d, *J*=8.9 Hz, 2H), 3.80 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 162.74, 133.81, 119.13, 114.66, 103.67, 55.44.

3-Methoxybenzonitrile

CN

¹H NMR (400 MHz, CD₃OD) δ 7.46-7.33 (m, 1H), 7.27-7.10 (m, 3H), 3.84-3.72 (m, 3H).
¹³C NMR (101 MHz, CD₃OD) δ 161.17, 131.59, 125.32, 120.40, 119.60, 117.85, 114.03, 56.07.

Isonicotinonitrile

¹H NMR (400 MHz, CDCl₃) δ 8.76-8.65 (m, 2H), 7.46 (dd, *J*=4.5, 1.5 Hz, 2H).
¹³C NMR (101 MHz, CDCl₃) δ 150.60, 125.12, 120.18, 116.26.

Furan-2-carbonitrile

¹**H NMR (400 MHz, CD₃OD)** δ 7.85-7.70 (m, 1H), 7.28 (d, *J*=3.6 Hz, 1H), 6.63 (dd, *J*=3.6, 1.8 Hz, 1H).

¹³C NMR (101 MHz, CD₃OD) δ 149.43, 127.11, 123.48, 112.65, 112.32.

3-Chlorobenzonitrile

¹H NMR (400 MHz, CDCl₃) δ 7.62-7.50 (m, 3H), 7.45-7.37 (m, 1H).
¹³C NMR (101 MHz, CDCl₃) δ 135.15, 133.22, 131.84, 130.52, 130.29, 117.41, 113.89.

4-(Trifluoromethyl)benzonitrile

CN F₃C

¹**H NMR (400 MHz, CDCl₃) δ** 7.79 (d, *J*=8.3 Hz, 2H), 7.73 (d, *J*=8.4 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 132.73, 126.23, 126.20, 126.16, 126.12, 124.46, 121.75, 117.48, 116.07.

1,4-Dicyanobenzene

¹H NMR (400 MHz, CDCl₃) δ 7.80 (s, 4H).
¹³C NMR (101 MHz, CDCl₃) δ 132.85, 117.07, 116.75.

4-Nitrobenzonitrile

CN O₂N

¹H NMR (400 MHz, CDCl₃) δ 8.35 (d, *J*=8.7 Hz, 2H), 7.89 (d, *J*=8.8 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 150.04, 133.57, 124.33, 118.32, 116.90.

4-(Methylsulfonyl)benzonitrile

¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, *J*=8.5 Hz, 2H), 7.87 (d, *J*=8.5 Hz, 2H), 3.08 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 144.42, 133.26, 128.22, 117.53, 117.14, 44.21.

3-Methylbenzonitrile

CN

¹H NMR (400 MHz, CD₃OD) δ 7.61-7.10 (m, 4H), 2.34 (s, 3H).
¹³C NMR (101 MHz, CD₃OD) δ 140.74, 134.85, 133.34, 130.22, 130.21, 119.82, 113.05, 21.06.

2-Methylbenzonitrile

¹H NMR (400 MHz, CD₃OD) δ 7.64-7.43 (m, 2H), 7.38-7.21 (m, 2H), 2.45 (s, 3H).
¹³C NMR (101 MHz, CD₃OD) δ 142.89, 133.94, 133.42, 131.31, 127.44, 118.83, 113.46, 20.39.

4-Tert-Butylbenzonitrile

CN

¹H NMR (400 MHz, CD₃OD) δ 7.58 (dd, *J*=19.5, 8.5 Hz, 4H), 1.31 (s, 9H).
¹³C NMR (101 MHz, CD₃OD) δ 157.84, 132.80, 127.26, 119.69, 110.02, 35.87, 31.07.

2-Methoxybenzonitrile

¹**H NMR (400 MHz, CD₃OD)** δ 7.34-7.27 (m, 2H), 7.26-7.20 (m, 1H), 2.89-2.78 (m, 1H), 2.60 (qd, *J*=7.2, 1.7 Hz, 3H).

¹³C NMR (101 MHz, CD₃OD) δ 162.52, 135.90, 134.65, 121.89, 117.32, 112.68, 102.14, 56.61.

4-Cyanothioanisole

¹**H NMR (400 MHz, CDCl₃)** δ 7.48 (d, *J* = 8.4 Hz, 2H), 7.23 (t, *J* = 11.4 Hz, 2H), 2.47 (d, *J* = 6.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 146.03, 131.99, 125.30, 118.87, 107.37, 14.52.

[1,1'-Biphenyl]-4-carbonitrile

¹H NMR (400 MHz, CDCl₃) δ 7.68 (q, *J*=8.5 Hz, 4H), 7.63-7.54 (m, 2H), 7.54-7.40 (m, 3H).
¹³C NMR (101 MHz, CDCl₃) δ 145.49, 139.00, 132.51, 129.07, 128.63, 127.62, 127.14, 118.91, 110.77.

Benzo[d][1,3]dioxole-5-carbonitrile

CN

¹**H NMR (400 MHz, CDCl₃) δ** 7.16 (dd, *J*=8.1, 1.5 Hz, 1H), 6.98 (d, *J*=1.4 Hz, 1H), 6.83 (d, *J*=8.1 Hz, 1H), 6.04 (s, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 151.50, 147.98, 128.15, 118.87, 111.28, 109.08, 104.78, 102.25.

Naphthonitrile

¹H NMR (400 MHz, CDCl₃) δ 8.14 (s, 1H), 7.88-7.78 (m, 3H), 7.65-7.50 (m, 3H).
¹³C NMR (101 MHz, CDCl₃) δ 134.50, 134.01, 132.09, 129.09, 128.98, 128.31, 127.96, 127.59, 126.18, 119.21, 109.20.

Thiophene-2-carbonitrile

CN

¹H NMR (400 MHz, CDCl₃) δ 7.63-7.55 (m, 2H), 7.14-7.04 (m, 1H).
¹³C NMR (101 MHz, CDCl₃) δ 147.38, 137.41, 132.68, 127.64, 122.04, 114.21, 109.61.

Phenylpropanenitrile

¹**H NMR (400 MHz, CD₃OD)** δ 7.34-7.27 (m, 2H), 7.26-7.20 (m, 3H), 2.89-2.78 (m, 2H), 2.60 (qd, *J*=7.2, 1.7 Hz, 2H).

¹³C NMR (101 MHz, CD₃OD) δ 139.86, 129.62, 129.36, 127.92, 120.66, 32.16, 19.49.

1,3-Dicyanobenzene

¹H NMR (400 MHz, CDCl₃) δ 8.03-7.81 (m, 3H), 7.66 (t, *J*=7.8 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 136.02, 135.39, 130.34, 116.62, 114.02.

2,6-Dichlorobenzonitrile

¹H NMR (400 MHz, CDCl₃) δ 7.54-7.35 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 138.49, 133.97, 128.21, 114.38, 113.40.

3,5-Dibromobenzonitrile

¹H NMR (400 MHz, CDCl₃) δ 7.95-7.85 (m, 1H), 7.73 (d, *J*=1.3 Hz, 2H).
¹³C NMR (101 MHz, CDCl₃) δ 138.85, 133.47, 123.61, 115.94, 115.45.

2,4,6-Trimethylbenzonitrile

¹H NMR (400 MHz, CD₃OD) δ 7.23-6.71 (m, 2H), 2.75-1.80 (m, 9H).
¹³C NMR (101 MHz, CD₃OD) δ 144.34, 142.80, 129.09, 118.05, 110.75, 21.39, 20.39.

4-Vinylbenzonitrile

¹H NMR (400 MHz, CDCl₃) δ 7.58 (d, J=8.2 Hz, 2H), 7.47 (t, J=10.7 Hz, 2H), 6.70 (dd, J=17.6, 10.9 Hz, 1H), 5.86 (d, J=17.6 Hz, 1H), 5.43 (d, J=10.9 Hz, 1H).
¹³C NMR (101 MHz, CDCl₃) δ 141.82, 135.27, 132.31, 126.69, 118.87, 117.71, 110.99.

2,3-Dihydrothieno[3,4-b][1,4]dioxine-5-carbonitrile

¹H NMR (400 MHz, CD₃OD) δ 6.83 (s, 1H), 4.43-4.30 (m, 2H), 4.25 (dd, *J*=5.3, 3.0 Hz, 2H).
¹³C NMR (101 MHz, CD₃OD) δ 151.14, 142.16, 113.41, 108.61, 85.23, 66.75, 65.37.

Quinoline-6-carbonitrile

CN

¹**H NMR (400 MHz, CDCl₃) δ** 8.90 (s, 1H), 8.26-7.87 (m, 3H), 7.66 (d, *J*=6.6 Hz, 1H), 7.39 (s, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 152.91, 148.65, 136.04, 133.83, 130.62, 129.69, 127.16, 122.47, 118.19, 109.88.

4-(Trifluoromethoxy)benzonitrile

CN F

¹H NMR (400 MHz, CD₃OD) δ 7.85 (d, *J*=8.6 Hz, 2H), 7.45 (d, *J*=8.2 Hz, 2H).
¹³C NMR (101 MHz, CD₃OD) δ 153.26, 135.50, 122.43, 118.41, 112.02.

6-Nitrobenzo[d][1,3]dioxole-5-carbonitrile

CN NO₂

¹H NMR (400 MHz, CD₃OD) δ 7.82 (s, 1H), 7.40 (d, *J*=8.4 Hz, 1H), 6.31 (s, 2H).
¹³C NMR (101 MHz, CD₃OD) δ 113.78, 106.80, 106.30.

2-Phenylacetonitrile

¹H NMR (400 MHz, CD₃OD) δ 7.58-6.89 (m, 5H), 4.07-3.52 (m, 2H).
¹³C NMR (101 MHz, CD₃OD) δ 131.89, 129.92, 128.88, 128.69, 119.59, 23.44.

Cinnamonitrile

CN

¹H NMR (400 MHz, CDCl₃) δ 7.80-6.93 (m, 6H), 5.85 (d, *J*=16.6 Hz, 1H).
¹³C NMR (101 MHz, CDCl₃) δ 150.36, 133.31, 131.06, 128.94, 127.23, 118.08, 96.13.

Cyclohexanecarbonitrile

CN

¹**H NMR (400 MHz, CDCl₃) δ** 2.58 (dt, *J*=11.9, 4.0 Hz, 1H), 1.98-1.54 (m, 6H), 1.53-1.17 (m, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 122.50, 29.33, 27.79, 25.08, 23.90.

Pentanenitrile

`CN

¹**H NMR (400 MHz, CDCl₃) δ** 2.26 (t, *J*=7.1 Hz, 2H), 1.55 (dt, *J*=15.1, 7.1 Hz, 2H), 1.46-1.29 (m, 2H), 0.86 (t, *J*=7.3 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 119.61, 27.03, 21.51, 16.47, 12.90.

Adiponitrile

NC **`**CN

¹H NMR (400 MHz, CDCl₃) δ 2.59-1.95 (m, 4H), 1.90-1.39 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 118.73, 23.59, 15.83.

Heptanenitrile

~~~\_\_\_\_\_\_\_CN

<sup>1</sup>H NMR (400 MHz, CD<sub>3</sub>OD) δ 2.78-2.13 (m, 2H), 1.91-0.51 (m, 11H).
<sup>13</sup>C NMR (101 MHz, CD<sub>3</sub>OD) δ 120.91, 31.87, 29.18, 26.23, 23.23, 17.11, 14.13.

Octanenitrile

**`CN** 

<sup>1</sup>H NMR (400 MHz, CD<sub>3</sub>OD) δ 2.52-2.25 (m, 2H), 1.81-1.17 (m, 10H), 1.00-0.76 (m, 3H). <sup>13</sup>C NMR (101 MHz, CD<sub>3</sub>OD) δ 120.90, 32.50, 29.48, 29.37, 26.28, 23.39, 17.11, 14.23. Dodecanenitrile

<sup>1</sup>H NMR (400 MHz, CD<sub>3</sub>OD) δ 2.67-2.12 (m, 2H), 1.80-1.09 (m, 16H), 1.06-0.68 (m, 3H).
<sup>13</sup>C NMR (101 MHz, CD<sub>3</sub>OD) δ 120.86, 32.88, 30.54, 30.50, 30.33, 30.29, 29.75, 29.56, 26.31, 23.56, 17.13, 14.34.

3,4,5-Trimethoxybenzonitrile



<sup>1</sup>H NMR (400 MHz, CD<sub>3</sub>OD) δ 7.01 (s, 2H), 4.09-3.49 (m, 9H).
<sup>13</sup>C NMR (101 MHz, CD<sub>3</sub>OD) δ 154.77, 110.53, 61.01, 56.73.












































































170 150 130 110 90 80 70 60 50 40 30 20 10 f1 (ppm)























